首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anticodon-anticodon complex   总被引:6,自引:0,他引:6  
Gel electrophoresis has been used to measure the binding between two tRNAs with complementary anticodons, tRNAVal (Escherichia coli) (anticodon X,A,C) and tRNATyr (E. coli) (anticodon Q,U,A). The association constant K at 0 °C was found to be 4 × 105 m?1 which is about three orders of magnitude greater than the association constant for tRNATyr (E. coli) binding its trinucleotide codon UAC. The temperature dependence of K suggests that this results from the rigidity of the anticodon loop. tRNATyr (E. coli) binds an order of magnitude more weakly to tRNAVal (yeast) than to tRNAVal (E. coli), presumably because it contains the wobble base pair A · I. The relationship between the anticodon-anticodon complex and codon recognition is discussed.  相似文献   

2.
Dnmt2, a member of the DNA methyltransferase superfamily, catalyzes the formation of 5-methylcytosine at position 38 in the anticodon loop of tRNAs. Dnmt2 regulates many cellular biological processes, especially the production of tRNA-derived fragments and intergenerational transmission of paternal metabolic disorders to offspring. Moreover, Dnmt2 is closely related to human cancers. The tRNA substrates of mammalian Dnmt2s are mainly detected using bisulfite sequencing; however, we lack supporting biochemical data concerning their substrate specificity or recognition mechanism. Here, we deciphered the tRNA substrates of human DNMT2 (hDNMT2) as tRNAAsp(GUC), tRNAGly(GCC) and tRNAVal(AAC). Intriguingly, for tRNAAsp(GUC) and tRNAGly(GCC), G34 is the discriminator element; whereas for tRNAVal(AAC), the inosine modification at position 34 (I34), which is formed by the ADAT2/3 complex, is the prerequisite for hDNMT2 recognition. We showed that the C32U33(G/I)34N35 (C/U)36A37C38 motif in the anticodon loop, U11:A24 in the D stem, and the correct size of the variable loop are required for Dnmt2 recognition of substrate tRNAs. Furthermore, mammalian Dnmt2s possess a conserved tRNA recognition mechanism.  相似文献   

3.
4.
Localization of Two Recognition Sites in Yeast Valine tRNA I   总被引:7,自引:0,他引:7  
AS a part of our research on the structure–function relationships of tRNAvalI we have been mapping the regions that take part in the recognition of valyl tRNA ligase. Using the “dissected molecule” method1, we have shown that associated molecules consisting of tRNAValI fragments lacking nucleotides in the anticodon loop, the dihydrouridine loop (D) or the thymidine loop (T) retain their acceptor activity. By contrast, dissected molecules devoid of the pentanucleotide A36CACGp (the sequence A36C belongs to the anticodon T35AC) or lacking any quarter (F1–19, F17–35 or F36–57) are inactive2–4. Here we report a study of the acceptor activity of other incomplete tRNAvalI molecules. The principal inference is that the dinucleotides A36Cp in the anticodon loop and 5′-terminal pG1Gp in the CCA stem are at least parts of two different recognition sites of this tRNA.  相似文献   

5.
Transfer RNA is highly modified. Nucleotide 37 of the anticodon loop is represented by various modified nucleotides. In Escherichia coli, the valine-specific tRNA (cmo5UAC) contains a unique modification, N6-methyladenosine, at position 37; however, the enzyme responsible for this modification is unknown. Here we demonstrate that the yfiC gene of E. coli encodes an enzyme responsible for the methylation of A37 in tRNA1Val. Inactivation of yfiC gene abolishes m6A formation in tRNA1Val, while expression of the yfiC gene from a plasmid restores the modification. Additionally, unmodified tRNA1Val can be methylated by recombinant YfiC protein in vitro. Although the methylation of m6A in tRNA1Val by YfiC has little influence on the cell growth under standard conditions, the yfiC gene confers a growth advantage under conditions of osmotic and oxidative stress.  相似文献   

6.
7.
Electron paramagnetic resonance spectroscopy has been used to study the coupling of Mn2+ ions with the tRNAVal1 modified with a spin label at four pseudouridylic residues and with the valyl-tRNAVal1 modified with a spin label at the α-amine group of the valyl residue. A sharp increase of spin-label mobility has been found in these samples, due to the conformational transition induced by the first and second Mn2+ ions. Analysis of dipole–dipole couplings of spin labels with the coordinated ions revealed a definite order in the occupation of ion coordination sites in the tRNA. For some valyl-tRNAVal1 molecules, the second Mn2+ ions were shown to coordinate on the α-amine group of the valyl residue at a distance of 15–25 Å from a spin label. As a result of the conformational transition, a coordination site appeared in the tRNA at one of the pseudouridylic residues, its distance from the spin label being less than 10 Å. It has been suggested that the conformational transition induced by ions excluded some bases from the system of hydrogen bonds at the level of the tRNA tertiary structure. As a result, these bases acquired sufficient sterical freedom to participate in the Mn2+ ion coordination.  相似文献   

8.
We have noticed that during a long storage and handling, the plant methionine initiator tRNA is spontaneously hydrolyzed within the anticodon loop at the C34-A35 phosphodiester bond. A literature search indicated that there is also the case for human initiator tRNAMet but not for yeast tRNAMet i or E. coli tRNAMet f. All these tRNAs have an identical nucleotide sequence of the anticodon stems and loops with only one difference at position 33 within the loop. It means that cytosine 33 (C33) makes the anticodon loop of plant and human tRNAMet i susceptible to the specific cleavage reaction. Using crystallographic data of tRNAMet f of E. coli with U33, we modeled the anticodon loop of this tRNA with C33. We found that C33 within the anticodon loop creates a pocket that can accomodate a hydrogen bonded water molecule that acts as a general base and catalyzes a hydrolysis of C-A bond. We conclude that a single nucleotide change in the primary structure of tRNAMet i made changes in hydration pattern and readjustment in hydrogen bonding which lead to a cleavage of the phosphodiester bond.  相似文献   

9.
10.
Abstract

Fluorophore of proflavine was introduced onto the 3′-terminal ribose moiety of yeast tRNAPhe. The distance between the fluorophore and the fluorescent Y base in the anticodon of yeast tRNAPhe was measured by a singlet-singlet energy transfer. Conformational changes of tRNAPhe with binding of tRNAGlu 2, which has the anticodon UUC complementary to the anticodon GAA of tRNAPhe, were investigated. The distance obtained at the ionic strength of 100 mM K+ and 10 mM Mg2+ is very close to the distance from x-ray diffraction, while the distance obtained in the presence of tRNAGlu 2 is significantly smaller. Further, using a fluorescent probe of 4-bromomethl-7-methoxycoumarin introduced onto pseudouridine residue Ψ55 in the TΨC loop of tRNAPhe, Stern-Volmer quenching experiments for the probe with or without added tRNAGlu 2were carried out. The results showed greater access of the probe to the quencher with added tRNAGlu 2. These results suggest that both arms of the L-shaped tRNA structure tend to bend inside with binding of tRNAGlu 2 and some structural collapse occurs at the corner of the L-shaped structure.  相似文献   

11.
Residual dipolar couplings (RDCs) complement standard NOE distance and J-coupling torsion angle data to improve the local and global structure of biomolecules in solution. One powerful application of RDCs is for domain orientation studies, which are especially valuable for structural studies of nucleic acids, where the local structure of a double helix is readily modeled and the orientations of the helical domains can then be determined from RDC data. However, RDCs obtained from only one alignment media generally result in degenerate solutions for the orientation of multiple domains. In protein systems, different alignment media are typically used to eliminate this orientational degeneracy, where the combination of RDCs from two (or more) independent alignment tensors can be used to overcome this degeneracy. It is demonstrated here for native E. coli tRNAVal that many of the commonly used liquid crystalline alignment media result in very similar alignment tensors, which do not eliminate the 4-fold degeneracy for orienting the two helical domains in tRNA. The intrinsic magnetic susceptibility anisotropy (MSA) of the nucleobases in tRNAVal was also used to obtain RDCs for magnetic alignment at 800 and 900 MHz. While these RDCs yield a different alignment tensor, the specific orientation of this tensor combined with the high rhombicity for the tensors in the liquid crystalline media only eliminates two of the four degenerate orientations for tRNAVal. Simulations are used to show that, in optimal cases, the combination of RDCs obtained from liquid crystalline medium and MSA-induced alignment can be used to obtain a unique orientation for the two helical domains in tRNAVal. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
In order to learn about the effect of the G:U wobble interaction we characterized the codon:anticodon binding between triplets: UUC, UUU and yeast tRNAPhe (anticodon GmAA) as well as the anticodon:anticodon binding between Escherichia coli tRNAGlu2, E. coli tRNALys (anticodons: mam5s2UUC, and mam5s2UUU, respectively) and tRNAPhe from yeast and E. coli (anticodon GAA) using equilibrium fluorescence titrations and temperature jump measurements with fluorescence and absorption detection. The difference in stability constants between complexes involving a G:U pair rather than a usual G:C basepair is in the range of one order of magnitude and is mainly due to the shorter lifetime of the complex involving G:U in the wobble position. This difference is more pronounced when the codon triplet is structured, i.e., is built in the anticodon loop of a tRNA. The reaction enthalpies of the anticodon:anticodon complexes involving G:U mismatching were found to be about 4 kcal/mol smaller, and the melting temperatures more than 20°C lower, than those of the corresponding complexes with the G:C basepair. The results are discussed in terms of different strategies that might be used in the cell in order to minimize the effect of different lifetimes of codon-tRNA complexes. Differences in these lifetimes may be used for the modulation of the translation efficiency.  相似文献   

13.
Analysis of purified tRNA species by polyacrylamide gel electrophoresis   总被引:5,自引:0,他引:5  
Six purified amino acid acceptor tRNA species were examined by polyacrylamide gel electrophoresis. Small differences in migration were observed under conditions that preserve the conformation of tRNA. When tRNA was heated in the presence of either 10 mM acetate or EDTA at 60° a change in migration was observed for tRNAGlu. No difference in migration was seen between Val-tRNAVal and tRNAVal. When tRNA was denatured by heating in 4M urea and applied to a gel containing the same amount of urea, all tRNA species migrated approximately the same distance with the exception of tRNALeu V, which showed an appreciable slower migration. From the difference in migration of tRNALeu V as compared to tRNAVal and 5 S RNA, the difference in chain length between tRNAVal and tRNALeu V was estimated to be approximately 9 nucleotides.  相似文献   

14.
Codon-anticodon recognition and transfer RNA utilization for the leucine tRNA isoaccepting species of Escherichia coli have been studied by protein synthesis in vitro directed by sequenced bacteriophage MS2 RNA. We have added radioactive Leu-tRNALeu isoaccepting species as tracers, rather than use a tRNA-dependent system, since in the presence of an excess of non-radioactive leucine, there is no transfer of radioactive leucine from one isoaccepting species to another. MS2-specific peptides containing leucine residues encoded by known codons were isolated and identified, and the relative abilities of the Leu-tRNALeu isoaccepting species to transfer leucine into these peptides compared. Sequenced tRNA1Leu and sequenced tRNA3Leu are of roughly equal efficiency in their ability to recognize CUC and CUA codons, while tRNA3Leu is highly preferred for the CUU codon; tRNA4Leu and tRNA5Leu both recognize UUA and UUG codons, with tRNA4Leu slightly preferred for the UUA codon. We conclude that: (1) wobble is greater than permitted by the wobble hypothesis; (2) there is still some discrimination in the third code letter, and that the CUX4 (CUC, CUA, CUU, CUG) portion of the leucine family of six codons is not read by a simple “two out of three” mechanism; (3) a Watson-Crick pair (C · G) between codon and anticodon does not appear to be preferred over an unorthodox pair (C · C) in the wobble position; (4) a standard wobble pair (U · G) between codon and anticodon is preferred over an unorthodox pair (U · C); and (5) the extensive wobble observed in the CUX4 leucine codon series is not paralleled in the UUX4 leucine (UUG, UUA) and phenylalanine (UUU, UUC) codon series, where mistranslation would be the consequence of such wobble.  相似文献   

15.
Escherichia coli has only a single copy of a gene for tRNA6Leu (Y. Komine et al., J. Mol. Biol. 212:579–598, 1990). The anticodon of this tRNA is CAA (the wobble position C is modified to O2-methylcytidine), and it recognizes the codon UUG. Since UUG is also recognized by tRNA4Leu, which has UAA (the wobble position U is modified to 5-carboxymethylaminomethyl-O2-methyluridine) as its anticodon, tRNA6Leu is not essential for protein synthesis. The BT63 strain has a mutation in the anticodon of tRNA6Leu with a change from CAA to CUA, which results in the amber suppressor activity of this strain (supP, Su+6). We isolated 18 temperature-sensitive (ts) mutants of the BT63 strain whose temperature sensitivity was complemented by introduction of the wild-type gene for tRNA6Leu. These tRNA6Leu-requiring mutants were classified into two groups. The 10 group I mutants had a mutation in the miaA gene, whose product is involved in a modification of tRNAs that stabilizes codon-anticodon interactions. Overexpression of the gene for tRNA4Leu restored the growth of group I mutants at 42°C. Replacement of the CUG codon with UUG reduced the efficiency of translation in group I mutants. These results suggest that unmodified tRNA4Leu poorly recognizes the UUG codon at 42°C and that the wild-type tRNA6Leu is required for translation in order to maintain cell viability. The mutations in the six group II mutants were complemented by introduction of the gidA gene, which may be involved in cell division. The reduced efficiency of translation caused by replacement of the CUG codon with UUG was also observed in group II mutants. The mechanism of requirement for tRNA6Leu remains to be investigated.In the universal genetic code, 61 sense codons correspond to 20 amino acids, and the various tRNA species mediate the flow of information from the genetic code to amino acid sequences. Since codon-anticodon interactions permit wobble pairing at the third position, 32 tRNAs, including tRNAfMet, should theoretically be sufficient for a complete translation system. Although some organisms have fewer tRNAs (1), most have abundant tRNA species and multiple copies of major tRNAs. For example, Escherichia coli has 86 genes for tRNA (79 genes identified in reference 14, 6 new ones reported in reference 3, and one fMet tRNA at positions 2945406 to 2945482) that encode 46 different amino acid acceptor species. Although abundant genes for tRNAs are probably required for efficient translation, the significance of the apparently nonessential tRNAs has not been examined.E. coli has five isoaccepting species of tRNALeu. According to the wobble rule, tRNA1Leu recognizes only the CUG codon. The CUG codon is also recognized by tRNA3Leu (tRNA2Leu) and thus tRNA1Leu may not be essential for protein synthesis. Similarly, tRNA6Leu is supposed to recognize only the UUG codon, but tRNA4Leu can recognize both UUA and UUG codons. Thus, tRNA6Leu appears to be dispensable. The existence of an amber suppressor mutation of tRNA6Leu (supP, Su+6) supports this possibility. tRNA6Leu is encoded by a single-copy gene, leuX (supP), and Su+6 has a mutation in the anticodon, which suggests loss of the ability to recognize UUG (26). Why are so many species of tRNALeu required? Holmes et al. (12) examined the utilization of the isoaccepting species of tRNALeu in protein synthesis and showed that utilization differs depending on the growth medium; in minimal medium, isoacceptors tRNA2Leu (cited as tRNA3Leu; see Materials and Methods) and tRNA4Leu are the predominant species that are found bound to ribosomes, but an increased relative level of tRNA1Leu is found bound to ribosomes in rich medium. The existence of tRNA6Leu is puzzling. This isoaccepting tRNA accounts for approximately 10% of the tRNALeu in total-cell extracts. However, little if any tRNA6Leu is found on ribosomes in vivo, and it is also only weakly active in protein synthesis in vitro with mRNA from E. coli (12). It thus appears that tRNA6Leu is only minimally involved in protein synthesis in E. coli.To investigate the role of tRNA6Leu in E. coli, we attempted to isolate tRNA6Leu-requiring mutants from an Su+6 strain. These mutants required wild-type tRNA6Leu for survival at a nonpermissive temperature. We report here the isolation and the characterization of these mutants.  相似文献   

16.
Most archaea and bacteria use a modified C in the anticodon wobble position of isoleucine tRNA to base pair with A but not with G of the mRNA. This allows the tRNA to read the isoleucine codon AUA without also reading the methionine codon AUG. To understand why a modified C, and not U or modified U, is used to base pair with A, we mutated the C34 in the anticodon of Haloarcula marismortui isoleucine tRNA (tRNA2Ile) to U, expressed the mutant tRNA in Haloferax volcanii, and purified and analyzed the tRNA. Ribosome binding experiments show that although the wild-type tRNA2Ile binds exclusively to the isoleucine codon AUA, the mutant tRNA binds not only to AUA but also to AUU, another isoleucine codon, and to AUG, a methionine codon. The G34 to U mutant in the anticodon of another H. marismortui isoleucine tRNA species showed similar codon binding properties. Binding of the mutant tRNA to AUG could lead to misreading of the AUG codon and insertion of isoleucine in place of methionine. This result would explain why most archaea and bacteria do not normally use U or a modified U in the anticodon wobble position of isoleucine tRNA for reading the codon AUA. Biochemical and mass spectrometric analyses of the mutant tRNAs have led to the discovery of a new modified nucleoside, 5-cyanomethyl U in the anticodon wobble position of the mutant tRNAs. 5-Cyanomethyl U is present in total tRNAs from euryarchaea but not in crenarchaea, eubacteria, or eukaryotes.  相似文献   

17.
Lee Johnson  Dieter Sll 《Biopolymers》1971,10(11):2209-2221
Valine specific transfer RNA (tRNAVal) was isolated from Bacillus stearothermophilus and Escherichia coli by chromatography on benzoylated DEAE–cellulose (BD–cellulose). Likewise isoleucine specific transfer RNA (tRNAIle) was isolated from B. stearothermophilus and from Mycoplasma sp. Kid. The thermal denaturation profiles (melting curves) of the two tRNAVal species in the presence of Mg+ + were nearly identical. However, the Tm for the Kid tRNAIle was about 10°C lower than that for the B. stearothermophilus tRNAIle. A nuclease and tRNA-free aminoacyl-tRNA synthetase (AA-tRNA synthetase) preparation from B. stearothermophilus was able to function efficiently at temperatures up to 80°C in the aminoacylation of all four tRNA species. Determination of the amino acid-acceptor activity of each tRNA species as a function of temperature of the aminoacylation reaction showed in each case a strong correlation between the loss of acceptor activity and the thermal denaturation profile of the tRNA. Evidence is presented that the loss in acceptor activity is most likely due to a change in structure of the tRNA as opposed to denaturation of the enzyme. These results further support the idea that correct secondary and/or tertiary structure must be maintained for tRNA to be active as a substrate for the AA-tRNA synthetase.  相似文献   

18.
Three tRNAsLeu have been purified from bean chloroplasts and their nucleotide sequence determined. tRNA1Leu has 88 nucleotides and a U1AA anticodon, tRNA2Leu has 85 nucleotides and a CmAA anticodon, and tRNA3Leu has 83 nucleotides and a UAm7G anticodon.  相似文献   

19.
Summary Different wild-type isolates of Dictyostelium discoideum exhibit extensive polymorphism in the length of restriction fragments carrying tRNA genes. These size differences were used to study the organisation of two tRNA gene families which encode a tRNAVal(GUU) and a tRNAVal(GUA) gene. The method used involved a combination of classitics. The tRNA genes were mapped to specific linkage groups (chromosomes) by correlating the presence of polymorphic DNA bands that hybridized with the tRNA gene probes with the presence of genetic markers for those linkage groups. These analyses established that both of the tRNA gene families are dispersed among sites on several of the chromosomes. Information of nine tRNAVal(GUU) genes from the wild-type isolate NC4 was obtained: three map to linkage group I (C, E, F,), two map to linkage group II (D, I), one maps to linkage group IV (G), one, which corresponds to the cloned gene, maps to either linkage group III or VI (B), and two map to one of linkage groups III, VI or VIII (A, H). Six tRNAVal(GUA) genes from the NC4 isolate were mapped; one to linkage group I (D), two to linkage group III, VI or VII (B, C) and three to linkage group VII or III (A, E, F).  相似文献   

20.
One form of aspartic acid tRNA from Drosophila,melanogaster (tRNAAsp) is selectively bound to columns of Con A-Sepharose. Unlike the other Q-containing tRNAs of Drosophila, it therefore appears that tRNAAsp contains the more highly modified nucleoside, Q1 (mannose form) in its anticodon. This is further supported by the chromatographic insensitivity of tRNAAsp to NaIO4 treatment. Utilizing Con A-Sepharose chromatography, tRNAAsp from Drosophila was purified and its nucleoside composition determined by chemical tritium labelling. In addition to the major nucleosides, this tRNA contains rT, hU, m5C, ψ, and Q1, but no other modified nucleosides. Its nucleoside composition is very similar to yeast tRNAAsp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号