首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Laser Raman spectroscopy has been employed to study the structure of the hen egg yolk protein phosvitin in H2O and D2O solutions at neutral and acidic pH (pD) and in the solid state. The Raman data indicate an unusual conformation for phosvitin in neutral aqueous solution, which is deficient in both alpha-helix and conventional beta-sheet conformations. This unusual pH 7 structure is, however, largely converted to a beta-sheet conformation in strongly acidic media (pH less than 2). beta-Sheet is also the predominant secondary structure for phosvitin in the solid state, obtained by lyophilization of the protein from aqueous solution at neutral pH. The imidazolium rings of histidyl residues remain significantly protonated near neutrality, which suggests substantial elevation of the pK for imidazolium ring ionizations of phosvitin in aqueous solution. This may result from extensive ion-pair interactions involving positively charged histidines and negatively charged phosphoserines, which are prevalent in the phosvitin sequence. The present results suggest that antiparallel beta-sheets may not be the secondary structure most characteristic of native phosvitin (physiological pH), even though beta-sheet is the predominant conformation for phosvitin in acidic solutions (pH 1.5) and in the lyophilized solid. Phosvitin appears to be the first protein for which the major component to the Raman amide I band is centered near 1685 cm-1, which is 10-40 cm-1 higher than proteins heretofore examined in aqueous solution by Raman spectroscopy.  相似文献   

2.
Phosvitin, a highly phosphorylated glycoprotein, represents the major fraction of hen egg yolk phosphoproteins. Circular dichroism, Fourier transform infrared spectroscopy, and Fourier transform infrared photoacoustic and fluorescence spectroscopic methods were employed to determine the secondary structure of the protein in both the solid and solution phases. This was supplemented by a Chou-Fasman type of predictive algorithm for the first 25 residues at the N terminus of the dephosphorylated protein. A three-compartment model consisting of alpha-helical, beta-sheet, and beta-turn components with beta-turns occurring at the interface between alpha-helical and beta-sheet regions in the proximity of O-phosphoserine residues is suggested from the combined analyses. Beta-sheets appear to be the dominant secondary structural component in phosvitin in the solid and solution phases. The suggested model bears many similarities to other phosphoproteins reported in the literature. The secondary structure of phosvitin is observed to be sensitive to environmental factors as previously reported although the present studies differ in some respects from earlier results. Preliminary results suggest that Ca2+ ions trigger a decrease in beta-sheet structure at pH 2.  相似文献   

3.
Vibrational circular dichroism (VCD) studies are reported for two unrelated recombinant growth factor proteins: epidermal growth factor and basic fibroblast growth factor (bFGF). NMR, electronic CD, and bFGF X-ray studies indicate that these two proteins are primarily composed of beta-sheet and loop secondary structure elements with no detectable alpha-helices. Two reports on solution conformation of these proteins using FTIR absorption spectroscopy with subsequent resolution enhancement confirmed the presence of a large fraction of a beta-sheet conformation but in addition indicated the presence of large absorption bands in the 1650-1656 cm-1 region, which are typically assigned to alpha-helices. The VCD spectra of both proteins have band shapes that strongly resemble those of other high beta-sheet fraction proteins, such as the trypsin family of proteins. Quantitative analysis of the VCD spectra also indicates that these proteins are predominantly in beta-sheet and extended ("other") conformations with very little alpha-helix fraction. These results agree with the CD interpretation and affirm that the FTIR peaks in the region 1650-1656 cm-1 can be assigned to loops. This study provides an example of the limitations of using FTIR frequencies alone for examination of protein secondary structure.  相似文献   

4.
Protein structural transitions and beta-sheet formation are a common problem both in vivo and in vitro and are of critical relevance in disparate areas such as protein processing and beta-amyloid and prion behavior. Silks provide a "databank" of well-characterized polymorphic sequences, acting as a window onto structural transitions. Peptides with conformationally polymorphic silk-like sequences, expected to exhibit an intractable beta-sheet form, were characterized using Fourier transform infrared spectroscopy, circular dichroism, and electron diffraction. Polymorphs resembling the silk I, silk II (beta-sheet), and silk III (threefold polyglycine II-like helix) crystal structures were identified for the peptide fibroin C (GAGAGS repetitive sequence). Two peptides based on silk amorphous sequences, fibroin A (GAGAGY) and fibroin V (GDVGGAGATGGS), crystallized as silk I under most conditions. Methanol treatment of fibroin A resulted in a gradual transition from silk I to silk II, with an intermediate state involving a high proportion of beta-turns. Attenuated total reflectance Fourier transform infrared spectroscopy has been used to observe conformational changes as the peptides adsorb from solution onto a hydrophobic surface. Fibroin C has a beta-strand structure in solution but adopts a silk I-like structure upon adsorption, which when dried on the ZnSe crystal contains silk III crystallites.  相似文献   

5.
The vibrational cd (VCD) of a double-stranded RNA, poly(rA) - poly(rU), at pH 7 and moderate added salt concentration (0.1M) has been measured in both the base-stretching and phosphate-stretching regions of the ir as a function of temperature. The data in both cases show two distinct phase transitions. The first is from double- to a triple-stranded form, and the second is from triple- to single-stranded forms, which still retain substantial local order even up to 80°C. The nature of these transitions has been identified by comparison of the VCD and ir absorption spectra of the initially double-stranded samples with those of single-stranded poly(rA) and poly(rU) and with triple-stranded poly-(rA) -poly-(rU) poly (rU). The large differences in the VCD band shapes allows positive identification of the intermediate and final states. Thus under VCD-concentration conditions, a simple helix-to-coil transition can be eliminated for poly (rA ) - poly (rU) while such a two-step transition can be seen at low salt conditions. All of these observations are consistent with previous studies of the phase transitions of poly (rA) - poly (rU) under various salt conditions. Additionally, the VCD is indicative of premelting for all the triple-, double-, and single-strand complexes studied. The triple-strand complex did not show disproportionation to double strand on heating under these added salt conditions. The unusual VCD pattern for low temperature poly (rA) - poly (rU), as compared to high G? C content RNAs and DNAs, is qualitatively, but not quantitatively, explained using exciton coupling of localized dipolar transitions in each type of base within the strand. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
Receptor-mediated vitellogenin binding to chicken oocytes.   总被引:1,自引:1,他引:0       下载免费PDF全文
The specific binding of vitellogenin to chicken oocyte membranes was characterized. This major hen serum phospholipoglycoprotein and one of its lower-molecular-weight components, phosvitin, bound to oocyte membranes with KD values of approx. 6 x 10-7 M. The optimum pH for binding was 6.0, the same as the pH of yolk contents. Phosvitin and vitellogenin compete with each other for binding; other proteins tested do not compete to the same degree. Phosvitin, which contains 10% phosphate by weight, appears to be the polypeptide recognized by the receptor. RNA failed to compete with either vitellogenin or phosvitin for binding, suggesting that the binding specificity may require more than polymeric phosphate. The binding was tissue-specific in that phosvitin and vitellogenin bound to oocyte surfaces (at both pH 6.0 and 7.5), but not to chicken erythrocytes (at either pH).  相似文献   

7.
8.
Morillas M  Vanik DL  Surewicz WK 《Biochemistry》2001,40(23):6982-6987
It is believed that the critical event in the pathogenesis of transmissible spongiform encephalopathies is the conversion of the prion protein from an alpha-helical form, PrP(C), to a beta-sheet-rich conformer, PrP(Sc). Recently, we have shown that incubation of the recombinant prion protein under mildly acidic conditions (pH 5 or below) in the presence of low concentrations of guanidine hydrochloride results in a transition to PrP(Sc)-like beta-sheet-rich oligomers that show fibrillar morphology and an increased resistance to proteinase K digestion [Swietnicki, W., Morillas, M, Chen, S., Gambetti, P., and Surewicz, W. K. (2000) Biochemistry 39, 424-431]. To gain insight into the mechanism of this transition, in the present study we have characterized the biophysical properties of the recombinant human prion protein (huPrP) at acidic pH in the presence of urea and salt. Urea alone induces unfolding of the protein but does not result in protein self-association or a conversion to beta-sheet structure. However, a time-dependent transition to beta-sheet structure occurs upon addition of both urea and NaCl to huPrP, even at a sodium chloride concentration as low as 50 mM. This transition occurs concomitantly with oligomerization of the protein. At a given protein and sodium chloride concentration, the rate of monomeric alpha-helix to oligomeric beta-sheet transition is strongly dependent on the concentration of urea. Low and medium concentrations of the denaturant accelerate the reaction, whereas strongly unfolding conditions are not conducive to the conversion of huPrP into an oligomeric beta-sheet-rich structure. The present data strongly suggest that partially unfolded intermediates may be involved in the transition of the monomeric recombinant prion protein into the oligomeric scrapie-like form.  相似文献   

9.
The vibrational circular dichroism (VCD) spectra of 20 proteins dissolved in D2O are presented in the amide I' region. These data are decomposed into a linear combination of orthogonal subspectra generated by the principal component method of factor analysis, and the results for 13 of them are compared to their secondary structures as determined from X-ray crystallography. Factor analysis of the VCD yields six statistically significant subspectra that can be used to reproduce the spectra. Their coefficients can then be used to characterize a given protein. Comparison of cluster analyses of these VCD coefficients and of the secondary structure fractional coefficients from X-ray crystallography showed that proteins clustered in the VCD analysis were also clustered in the X-ray analysis. The relative fractions of alpha-helix and beta-sheet in the protein dominate the clustering in both data sets. Qualitative characterization of the secondary structure of a given protein is obtained from its clustering on the basis of spectral characteristics. A strong linear correlation was found between the coefficient of the second subspectrum and the alpha-helical fraction for the proteins studied. The second coefficient also correlated to the beta-sheet fraction, and the first coefficient weakly correlated to the fraction for "other". Subsequent multiple-parameter regression analyses of the VCD factor analysis coefficients, constrained to include only significant dependencies, yielded reliable determination of the alpha-helix fraction and somewhat less confident determination of beta-sheet, bend, and "other" components. Predictive capability for proteins not in the regression was good. Varimax rotation of the coefficients transformed the subspectra and gave simple correlations to secondary structure components but had less reliability and more restrictions than the multiple regression on the original coefficients. The partial least-squares analysis method was also used to predict fractional secondary structures for the training set proteins but resulted in somewhat higher average error, particularly for beta-sheet, than the multiple regression. The turn fraction was effectively undetermined in both the regression and partial least-squares analyses. These statistical analyses represent the first determination of a quantitative relationship between VCD spectra and secondary structure in proteins.  相似文献   

10.
A systematic study was performed of the fiber forming properties and polymerization characteristics of two peptide amphiphiles containing a diacetylene functionality in the alkyl tail comprising 23 and 25 C atoms, respectively. Both diyne containing peptide amphiphiles were able to form stable beta-sheet fibers of micrometers length in an aqueous solution. However, there was a large difference between the stability of the two amphiphiles. This was shown by a large difference in assembly and disassembly temperature and by different behavior during polymerization. Because the monomers were preorganized with a tight molecular packing, the polymerization could be carried out using wavelengths up to 532 nm. For both amphiphiles, the fiber structure did not change when the polymerization was carried out at an elevated temperature. The degree of polymerization, however, barely decreased for the longer amphiphile (2) but showed a gradual decline for the shorter one (1) when the temperature was raised from room temperature to the melting temperature of the fibers. Furthermore, the pH did not influence the fiber assembly for 2, but hampered it for 1 at alkaline pH. The fiber structure was, for both of the amphiphiles, not dependent on the pH. After polymerization, the molecular packing of the amphiphiles was only slightly influenced by an increase in temperature, as indicated by the small color change of polymerized fibers, which was also reversible. Additionally, pH had no influence on the assembly structure, as indicated by the color of the polymer which was the same at all pH values. Thus, both fibers increased in stability upon polymerization. The large difference in assembly and polymerization behavior of the two similar-looking amphiphiles 1 and 2, with a 23 or 25 carbon tail, is indicative of the subtlety of the assembly and disassembly processes in these fibrous architectures.  相似文献   

11.
Amyloid fibril formation is widely accepted as a critical step in all types of amyloidosis. Amyloid fibrils derived from different amyloidogenic proteins share structural elements including beta-sheet secondary structure and similar tertiary structure. While some amyloidogenic proteins are rich in beta-sheet in their soluble form, others, like Alzheimer beta-amyloid peptide (Abeta) or serum amyloid A, must undergo significant structural transition to acquire a high beta-sheet content. We postulate that Abeta and other amyloidogenic proteins undergo a transition to beta-sheet as a result of aging-related chemical modifications of aspartyl residues to the form of succinimide or isoaspartyl methyl ester. We hypothesize that spontaneous cyclization of aspartate residues in amyloidogenic proteins can serve as a nucleation event in amyloidogenesis. To test this hypothesis, we synthesized a series of designed peptides having the sequence VTVKVXAVKVTV, where X represents aspartic acid or its derivatives. Studies using circular dichroism showed that neutralization of the aspartate residue through the formation of a methyl ester or an amide, or replacement of aspartate with glutamate led to an increased beta-sheet content at neutral and basic pH. A higher content of beta-sheet structure correlated with increased propensity for fibril formation and decreased solubility at neutral pH.  相似文献   

12.
We have investigated the conformational transition and aggregation process of recombinant Syrian hamster prion protein (SHaPrP90-232) by Fourier transform infrared spectroscopy, circular dichroism spectroscopy, light scattering, and electron microscopy under equilibrium and kinetic conditions. SHaPrP90-232 showed an infrared absorbance spectrum typical of proteins with a predominant alpha-helical structure both at pH 7.0 and at pH 4.2 in the absence of guanidine hydrochloride. At pH 4.2 and destabilizing conditions (0.3-2 m guanidine hydrochloride), the secondary structure of SHaPrP90-232 was transformed to a strongly hydrogen-bonded, most probably intermolecularly arranged antiparallel beta-sheet structure as indicated by dominant amide I band components at 1620 and 1691 cm-1. Kinetic analysis of the transition process showed that the decrease in alpha-helical structures and the increase in beta-sheet structures occurred concomitantly according to a bimolecular reaction. However, the concentration dependence of the corresponding rate constant pointed to an apparent third order reaction. No beta-sheet structure was formed within the dead time (190 ms) of the infrared experiments. Light scattering measurements revealed that the structural transition of SHaPrP90-232 was accompanied by formation of oligomers, whose size was linearly dependent on protein concentration. Extrapolation to zero protein concentration yielded octamers as the smallest oligomers, which are considered as "critical oligomers." The small oligomers showed spherical and annular shapes in electron micrographs. Critical oligomers seem to play a key role during the transition and aggregation process of SHaPrP90-232. A new model for the structural transition and aggregation process of the prion protein is described.  相似文献   

13.
The oxidation-reduction reactions and structural characteristics of phosvitin-bound cytochrome c were examined at various ratios of cytochrome c to phosvitin. At binding ratios below half the maximum, the rate constants for the oxidation reactions with cytochrome c oxidase and ferricyanide and the rate constants for the reduction reactions with cytochrome b2 and ascorbate were low, but at higher ratios these rate constants gradually increased to that of free cytochrome c and, in particular, the rate constant for oxidation by cytochrome c oxidase was raised to two to three times that of the free form. This binding-ratio dependence of the rate constants for the oxidation and reduction reactions was different from that of the net charge of the cytochrome c-phosvitin complex, implying that the negative charges of phosvitin are unlikely to modulate the rates. In contrast, the broadening of the NMR signals for the heme and methionine-80 methyl groups and the conformational transition in the vicinity of the heme moiety on change from the native to the cyanide-bound or urea-denatured form of cytochrome c showed a similar binding-ratio dependence to the rate constants for the oxidation and reduction reactions. Since the conformation and electronic structure in the heme environment of ferric and ferrous cytochromes c were not changed significantly by binding to phosvitin, and since the binding strength of cytochrome c to phosvitin at binding ratios below half the maximum is different from that at higher ratios, these findings suggest that a difference in the movement of cytochrome c in its complex with phosvitin may modulate its oxidation-reduction reactions.  相似文献   

14.
The refolding of beta-lactoglobulin, a beta-barrel protein consisting of beta strands betaA-betaI and one major helix, is unusual because non-native alpha-helices are formed at the beginning of the process. We studied the refolding kinetics of bovine beta-lactoglobulin A at pH 3 using the stopped-flow circular dichroism and manual H/(2)H exchange pulse labeling coupled with heteronuclear NMR. The protection pattern from the H/(2)H exchange of the native state indicated the presence of a stable hydrophobic core consisting of betaF, betaG and betaH strands. The protection pattern of the kinetic intermediate obtained about one second after initiating the reaction was compared with that of the native state. In this relatively late kinetic intermediate, which still contains some non-native helical structure, the disulfide-bonded beta-hairpin made up of betaG and betaH strands was formed, but the rest of the molecule was fluctuating, where the non-native alpha-helices may reside. Subsequently, the core beta-sheet extends, accompanied by a further alpha-helix to beta-sheet transition. Thus, the refolding of beta-lactoglobulin exhibits two elements: the critical role of the core beta-sheet is consistent with the hierarchic mechanism, whereas the alpha-helix to beta-sheet transition suggests the non-hierarchic mechanism.  相似文献   

15.
Organic solvents may induce non-native structures of proteins that mimic folding intermediates and/or conformations that occur in proximity to biological membranes. Here we systematically investigate the effects of simple (i.e., MeOH and EtOH) and fluorinated (i.e., trifluoroethanol, TFE) alcohols on the secondary structure and thermodynamic stability of two complementary model proteins using a combination of circular dichroism, fluorescence, and Fourier transform infrared (FTIR) detection methods. The selected proteins are alpha-helical Borrelia burgdorferi VlsE and beta-sheet human mitochondrial co-chaperonin protein 10 (cpn10). We find that switches between VlsE's native and non-native superhelical and beta-sheet structures readily occur (pH 7, 20 degrees C). The pathway depends on the alcohol: addition of MeOH induces a transition to a superhelical structure that is followed by conversion to beta-structure, whereas EtOH only unfolds the protein. TFE unfolds VlsE at low percentages but promotes the formation of a superhelical state upon further additions. For cpn10, both MeOH and TFE additions govern initial unfolding; however, further additions of MeOH result in the formation of a non-native beta-structure, whereas subsequent additions of TFE induce a superhelical structure. EtOH additions promptly unfold and precipitate cpn10. Both VlsE's and cpn10's non-native structures exhibit high stability toward chemical and thermal perturbations. This study demonstrates that in response to different alcohols, polypeptides can readily adopt both alpha- and beta-enriched conformations. The biological significance of these findings is discussed.  相似文献   

16.
Conformational transitions of human calcitonin (hCT) during fibril formation in the acidic and neutral conditions were investigated by high-resolution solid-state 13C NMR spectroscopy. In aqueous acetic acid solution (pH 3.3), a local alpha-helical form is present around Gly10 whereas a random coil form is dominant as viewed from Phe22, Ala26, and Ala31 in the monomer form on the basis of the 13C chemical shifts. On the other hand, a local beta-sheet form as viewed from Gly10 and Phe22, and both beta-sheet and random coil as viewed from Ala26 and Ala31 were detected in the fibril at pH 3.3. The results indicate that conformational transitions from alpha-helix to beta-sheet, and from random coil to beta-sheet forms occurred in the central and C-terminus regions, respectively, during the fibril formation. The increased 13C resonance intensities of fibrils after a certain delay time suggests that the fibrillation can be explained by a two-step reaction mechanism in which the first step is a homogeneous association to form a nucleus, and the second step is an autocatalytic heterogeneous fibrillation. In contrast to the fibril at pH 3.3, the fibril at pH 7.5 formed a local beta-sheet conformation at the central region and exhibited a random coil at the C-terminus region. Not only a hydrophobic interaction among the amphiphilic alpha-helices, but also an electrostatic interaction between charged side chains can play an important role for the fibril formation at pH 7.5 and 3.3 acting as electrostatically favorable and unfavorable interactions, respectively. These results suggest that hCT fibrils are formed by stacking antiparallel beta-sheets at pH 7.5 and a mixture of antiparallel and parallel beta-sheets at pH 3.3.  相似文献   

17.
18.
Phosvitin/casein type II kinase was purified from HeLa cell extracts to homogeneity and characterized. The kinase prefers phosvitin over casein (Vmax phosvitin greater than Vmax casein; apparent Km 0.5 microM phosvitin and 3.3 microM casein) and utilizes as cosubstrate ATP (apparent Km 3-4 microM), GTP (apparent Km 4-5 microM) and other purine nucleoside triphosphates, including dATP and dGTP but not pyrimidine nucleoside triphosphates. Enzyme reaction is optimal at pH 6-8 and at 10-25 mM Mg2+.Mg2+ cannot be replaced by, but is antagonized by other divalent metal ions. The kinase is stimulated by polycations (spermine) and monovalent cations (Na+,K+), and is inhibited by fluoride, 2,3-diphosphoglycerate, and low levels of heparin (50% inhibition at 0.1 microgram/ml). The HeLa enzyme is composed of three subunits with Mr of approximately 43,000 (alpha), 38,000 (alpha'), and 28,000 (beta) forming alpha alpha'beta 2 and alpha'2 beta 2 structures with obvious sequence homology of alpha with alpha' but not with beta. Photoaffinity labeling with [alpha-32P]- and [gamma-32P]8-azido-ATP revealed high affinity binding sites on subunits alpha and alpha' but not on subunit beta. The kinase autophosphorylates subunit beta and, much weaker, subunits alpha and alpha'. Ecto protein kinase, detectable only by its enzyme activity but not yet as a protein (J. Biol. Chem. 257, 322-329), was characterized in cell-bound form and in released form, and the released form both with and without prior separation from phosvitin which was employed to induce the kinase release from intact HeLa cells (Proc. Natl. Acad. Sci. U.S.A. 80, 4021-4025). Ratios of phosvitin/casein phosphorylation (greater than 2) and of ATP/GTP utilization (1.5-2.1), inhibition by heparin (50% inhibition at 0.1 microgram/ml), and amino-acid side chains phosphorylated in phosvitin and casein (serine, threonine) are comparable for cell-bound and released form. These properties resemble those of type II kinase as does Mr of released ecto kinase (120-150,000). Consistently, a protein with Mr 125,000 in calf serum and a protein (possibly two) with Mr greater than 300,000 in calf plasma which are selectively phosphorylated by the ecto kinase are also substrates of the type II kinase. Thus, nearly all properties examined of the ecto kinase are characteristic for a type II kinase.  相似文献   

19.
The neurodegenerative illness Familial Danish Dementia (FDD) is linked to formation and aggregation of the 34-residue ADan peptide, whose cytotoxicity may be mediated by membrane interactions. Here we characterize the derived peptide SerADan, in which the two cysteines found in ADan have been changed to serines to emulate the reduced peptide. SerADan aggregates rapidly at pH 5.0 and 7.5 in a series of conformational transitions to form beta-sheet rich fibril-like structures, which nevertheless do not bind amyloid-specific dyes, probably due to the absence of organized beta-sheet contacts. Aggregation is prevented at neutral/acidic pH and low ionic strength by anionic lipid vesicles. These vesicles are permeabilized by monomeric SerADan assembling on the membrane to form stable beta-sheet structures which are different from the solution aggregates. In contrast, solution ageing of SerADan first reduces and then abolishes permeabilization properties. The competition between lipid binding and aggregation may reflect bifurcating pathways for the ADan peptide in vivo between accumulation of inert aggregates and formation of cytotoxic permeabilizing species. Our work demonstrates that non-fibrillar aggregates can assemble in a series of steps to form a hierarchy of higher-order assemblies, where rapid formation of stable local beta-sheet structure may prevent rearrangement to amyloid proper.  相似文献   

20.
Vibrational circular dichroism (VCD) provides alternative views of protein and peptide conformation with advantages over electronic (UV) CD (ECD) or IR spectroscopy. VCD is sensitive to short-range order, allowing it to discriminate beta-sheet and various helices as well as disordered structure. Quantitative secondary structure analyses use protein VCD bandshapes, but are best combined with ECD and IR for balance. Much recent work has focused on empirical and theoretical VCD analyses of peptides, with detailed prediction of helix, sheet and hairpin spectra and site-specific application of isotopic substitution for structure and folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号