首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ofir M  Kigel J 《Annals of botany》2003,91(3):391-400
Variation in the onset of summer dormancy and flowering capacity of 16 populations of Poa bulbosa, collected along a steep north-south aridity gradient in Israel (810-110 mm rain year(-1)), was studied under controlled conditions in a phytotron (16 h daylength, 22/16 degrees C day/night) and under natural conditions in a garden experiment in a net-house. Plant age at the onset of dormancy varied markedly amongst populations (7-16 weeks under controlled conditions) and was positively correlated with mean annual precipitation at the site of origin of the population, i.e. dormancy was earlier as aridity increased. Flowering capacity in the different populations was negatively correlated with rainfall in the original habitat and, consequently, also with the age at onset of dormancy, i.e. the lower the mean annual precipitation, the earlier the onset of dormancy and the higher the proportion of flowering plants and panicles per plant. Differences in xeromorphic leaf traits were also observed among populations from locations differing in aridity. Plants from the more arid sites (110-310 mm year(-1)) generally had greyish and curved leaves, whereas plants from more humid sites (500-810 mm year(-1)) tended to have green and straight leaves. Thus, plants with curved and/or greyish leaves generally had a higher flowering capacity and entered dormancy earlier than plants with straight and/or green leaves. The significance of the association among these traits for the adaptation of P. bulbosa to increasing aridity is discussed.  相似文献   

2.
Ofir M  Kigel J 《Annals of botany》2007,99(2):293-299
BACKGROUND AND AIMS: Survival of many herbaceous species in Mediterranean habitats during the dry, hot summer depends on the induction of summer dormancy by changes in environmental conditions during the transition between the winter (growth) season to the summer (resting) season, i.e. longer days, increasing temperature and drought. In Poa bulbosa, a perennial geophytic grass, summer dormancy is induced by long days, and the induction is enhanced by high temperature. Here the induction of summer dormancy in a Mediterranean perennial grass by water deficit under non-inductive photoperiodic conditions is reported for the first time. METHODS: Plants grown under 22/16 degrees C and non-inductive short-day (9 h, SD) were subjected to water deficit (WD), applied as cycles of reduced irrigation, or sprayed with ABA solutions. They were compared with plants in which dormancy was induced by transfer from SD to inductive long-day (16 h, LD). Responses of two contrasting ecotypes, from arid and mesic habitats were compared. Dormancy relaxation in bulbs from these ecotypes and treatments was studied by comparing sprouting capacity in a wet substrate at 10 degrees C of freshly harvested bulbs to that of dry-stored bulbs at 40 degrees C. Endogenous ABA in the bulbs was determined by monoclonal immunoassay analysis. KEY RESULTS: Dormancy was induced by WD and by ABA application in plants growing under non-inductive SD. Dormancy induction by WD was associated with increased levels of ABA. Bulbs were initially deeply dormant and their sprouting capacity was very low, as in plants in which dormancy was induced by LD. Dormancy was released after 2 months dry storage at 40 degrees C in all treatments. ABA levels were not affected by dormancy relaxation. CONCLUSIONS: Summer dormancy in P. bulbosa can be induced by two alternative and probably additive pathways: (1) photoperiodic induction by long-days, and (2) water deficit. Increased levels of endogenous ABA are involved in both pathways.  相似文献   

3.

Background and Aims

Versatility in the reproductive development of pseudoviviparous grasses in response to growth conditions is an intriguing reproduction strategy. To better understand this strategy, this study examined variation in flowering and pseudovivipary among populations, co-occurring clones within populations, and among tillers in individual clones of Poa bulbosa, a summer-dormant geophytic grass that reproduces sexually by seed, and asexually by basal tiller bulbs and bulbils formed in proliferated panicles.

Methods

Clones were collected from 17 populations across a rainfall gradient. Patterns of reproduction were monitored for 11 years in a common garden experiment and related to interannual differences in climatic conditions. Intraclonal variation in flowering and pseudovivipary was studied in a phytotron, under daylengths marginal for flowering induction.

Key Results

Clones showed large temporal variability in their reproductive behaviour. They flowered in some years but not in others, produced normal or proliferated panicles in different years, or became dormant without flowering. Proliferating clones did not show a distinct time sequence of flowering and proliferation across years. Populations differed in incidence of flowering and proliferation. The proportion of flowering clones increased with decreasing rainfall at the site of population origin, but no consistent relationship was found between flowering and precipitation in the common garden experiment across years. In contrast, flowering decreased at higher temperatures during early growth stages after bulb sprouting. Pulses of soil fertilization greatly increased the proportion of flowering clones and panicle production. High intraclonal tiller heterogeneity was observed, as shown by the divergent developmental fates of daughter plants arising from bulbs from the same parent clone and grown under similar conditions. Panicle proliferation was enhanced by non-inductive 8 h short days, while marginally inductive 12 h days promoted normal panicles.

Conclusions

Interannual variation in flowering and proliferation in P. bulbosa clones was attributed to differences in the onset of the rainy season, resulting in different daylength and temperature conditions during the early stages of growth, during which induction of flowering and dormancy occurs.  相似文献   

4.

Background and Aims

Summer dormancy is an adaptive trait in geophytes inhabiting regions with a Mediterranean climate, allowing their survival through the hot and dry summers. Summer dormancy in Poa bulbosa is induced by increasing day-length and temperature and decreasing water availability during spring. Populations from arid habitats became dormant earlier than those from mesic habitats. Relaxation of dormancy was promoted by the hot, dry summer conditions. Here we test the hypothesis that dormancy relaxation is also delayed in ecotypes of P. bulbosa inhabiting arid regions, as a cautious strategy related to the greater unpredictability of autumn rains associated with decreasing precipitation.

Methods

Ecotypes collected across a precipitation gradient (100–1200 mm year−1) in the Mediterranean climate region were grown under similar conditions in a net-house in Israel. Differences among ecotypes in dormancy induction and dormancy relaxation were determined by measuring time to dormancy onset in spring, and time to sprouting after the first effective rain in autumn. Seasonal and ecotype variation in dormancy relaxation were assessed by measuring time to sprouting initiation, rate of sprouting and maximal sprouting of resting dry bulbs sampled in the net-house during late spring, and mid- and late summer, and planted in a wet substrate at temperatures promoting (10 °C) or limiting (20 °C) sprouting.

Key Results

Earlier dormancy in the spring and delayed sprouting in autumn were correlated with decreasing mean annual rainfall at the site of ecotype origin. Seasonal and ecotype differences in dormancy relaxation were expressed in bulbs planted at 20 °C. During the summer, time to sprouting decreased while rate of sprouting and maximal sprouting increased, indicating dormancy relaxation. Ecotypes from more arid sites across the rainfall gradient showed delayed onset of sprouting and lower maximal sprouting, but did not differ in rate of sprouting. Planting at 10 °C promoted sprouting and cancelled differences among ecotypes in dormancy relaxation.

Conclusions

Both the induction and the relaxation of summer dormancy in P. bulbosa are correlated with mean annual precipitation at the site of population origin. Ecotypes from arid habitats have earlier dormancy induction and delayed dormancy relaxation, compared with those from mesic habitats.  相似文献   

5.
Summer‐dormancy occurs in geophytes that inhabit regions with a Mediterranean climate (mild, rainy winters and hot, dry summers). The environmental control of summer‐dormancy and the involvement of phytohormones in its induction have been little studied. Poa bulbosa L. is a perennial grass geophyte in which summer‐dormancy is induced by long days and by high temperature. Prolonged treatment with ABA (0.1‐1.0 m M ) under non‐inductive 8‐h short days (SD) resulted in cessation of leaf and tiller production and in the development of typical features of dormancy: bulbing at the base of the tillers and leaf senescence. Short‐term applications of ABA had similar effects but dormancy was transient, i.e. after a short while, leaf growth from the formed bulbs was resumed. ABA treatment of plants growing under an inductive 16‐h photoperiod (LD) enhanced the onset of dormancy. Endogenous levels of ABA in leaf blades and at the tiller base (where the bulb develops) increased markedly after the plants were transferred from SD to LD. This increase was greater in the tiller base, and concomitant with bulb maturation. High temperature (27/22 vs 22/17°C) accelerated both bulb development and ABA accumulation in leaf blades.
These results suggest that ABA plays a key role in the photoperiodic induction and development of summer‐dormancy in P. bulbosa .  相似文献   

6.
Poa bulbosa L., like many other Mediterranean geophytes, grows in the winter and enters a phase of summer dormancy in the spring. Summer dormancy enables these plants to survive the hot and dry summer. Long days are the main environmental factor active in the induction of summer dormancy in P . bulbosa and elevated temperatures accelerate dormancy development. P . bulbosa becomes dormant earlier than most other species that grow actively in the winter. Previous studies suggested that pre-exposure of P . bulbosa to short days and low temperatures during the autumn and early winter increased its sensitivity to photoperiodic induction in late winter, and thus enabled the early imposition of dormancy. To study this hypothesis, experiments were carried out under controlled photothermal conditions in the phytotron, under natural daylight extended with artificial lighting. The critical photoperiod for induction of summer dormancy at an optimal temperature (22/17°C day/night) was between 11 and 12 h. Photoperiods shorter than 12 h were noninductive, while 14- and 16-h days were fully inductive. A night break of 1 h of light given at the middle of the dark period of an 8-h photoperiod also resulted in full induction of dormancy. Pre-exposure to either low temperature (chilling at 5°C) or to short days of 8 h (SD) enhanced the inductive effect of subsequent 16-h long days (LD). The enhancing effect of chilling and SD increased with longer duration, i.e. fewer LDs were required to impose dormancy. However, the day-length during the low-temperature pretreatment had no effect on the level of induction at the following LD. Chilling followed by SD did not induce dormancy. The relevance of these responses to the development and survival of P . bulbosa in its natural habitat is discussed.  相似文献   

7.
The flowering response of Owari Satsuma mandarin ( Citrus unshiu Marc) to low temperature treatments has been determined using potted trees and in vitro bud cultures. In potted trees the chilling treatments released bud dormancy and enhanced both sprouting and flowering, but these two responses could not be separated. However, bud cultures showed no dormancy, and a specific effect of low temperature on flower induction was demonstrated. Low temperature appears to have a dual effect, releasing bud dormancy and inducing flowering. Potential flower buds have a deeper dormancy than vegetative buds, and the first stages of flower initiation seem to occur before the winter rest period.  相似文献   

8.
Apples ( Pyrus mains L., ev. Golden Delicious) were placed at 0, 12 and 35°C. At different intervals, seeds were taken from fruits, and the ability of isolated embryos to germinate was determined. In parallel, the survival of similar embryos frozen for 30 min at -7°C was estimated. Storage of apples at 0°C led to complete removal of embryo dormancy within ca 10 weeks. At 12°C, dormancy was only partly eliminated, and at 35°C breaking of dormancy did not occur. The onset of secondary embryo dormancy was thus evident as the result of 35 and 12°C treatments. On the other hand, the storage of apples at 35°C was the most effective treatment for induction of frost resistance in the embryos. At 12°C the same level of frost resistance was reached much slower. Even a prolonged storage of apples at 0°C did not allow frost survival of all embryos. The above relations were confirmed in experiments with transfer of fruits from one temperature of storage to another. The temperature of fruit storage affected the dormancy removal in embryos and induction of resistance to rapid freezing in opposite directions.  相似文献   

9.
Free, soluble and insoluble conjugated polyamines from the needles, roots and stem of five month old Scots pine (Pinus sylvestris L.) seedlings inoculated with Suillus variegatus (Fr.) O. Kuntze and seedlings without inoculation were analysed during decrease in daylength and temperature. Temporary changes in free, soluble and insoluble conjugated polyamine pools caused by a decrease in daylength or temperature were observed. Inoculation of pine seedlings affected significantly the polyamine levels of five month old pine seedlings. The roots of inoculated seedlings contained significantly higher levels of free and soluble conjugated purtrescine and free, soluble conjugated and insoluble conjugated spermidine than the roots of noninoculated seedlings. The needles of inoculated seedlings contained significatly higher concentrations of free putrescine and soluble conjugated spermidine but lower amount of free spermine than the needles of noninoculated seedlings. The stems of inoculated seedlings contained higher concentrations of free putrescine but lower amounts of insoluble conjugated spermine. Changes in polyamine levels in noninoculated seedlings were observed after shortening of the daylength, whereas in inoculated ones changes were induced mainly by the decrease in temperature. The possible role of polyamines in the initial stage of cold hardening process is discussed.  相似文献   

10.
Members of the CENTRORADIALIS (CEN)/TERMINAL FLOWER 1 (TFL1) subfamily control shoot meristem identity, and loss‐of‐function mutations in both monopodial and sympodial herbaceous plants result in dramatic changes in plant architecture. We studied the degree of conservation between herbaceous and woody perennial plants in shoot system regulation by overexpression and RNA interference (RNAi)‐mediated suppression of poplar orthologs of CEN, and the related gene MOTHER OF FT AND TFL 1 (MFT). Field study of transgenic poplars (Populus spp.) for over 6 years showed that downregulation of PopCEN1 and its close paralog, PopCEN2, accelerated the onset of mature tree characteristics, including age of first flowering, number of inflorescences and proportion of short shoots. Surprisingly, terminal vegetative meristems remained indeterminate in PopCEN1‐RNAi trees, suggesting the possibility that florigen signals are transported to axillary mersitems rather than the shoot apex. However, the axillary inflorescences (catkins) of PopCEN1‐RNAi trees contained fewer flowers than did wild‐type catkins, suggesting a possible role in maintaining the indeterminacy of the inflorescence apex. Expression of PopCEN1 was significantly correlated with delayed spring bud flush in multiple years, and in controlled environment experiments, 35S::PopCEN1 and RNAi transgenics required different chilling times to release dormancy. Considered together, these results indicate that PopCEN1/PopCEN2 help to integrate shoot developmental transitions that recur during each seasonal cycle with the age‐related changes that occur over years of growth.  相似文献   

11.
Dormancy release and thermal time to budburst as affected by duration of chilling outdoors, followed by different flushing temperatures and daylengths in a phytotron, were studied in cuttings of several northern tree species. In Betula pubescens, B. pendula and Prunus padus vegetative buds were released from dormancy already in December, in Populus tremula in January, whereas in Alnus incana and A. glutinosa dormancy was not released until February. Thermal time (day degrees >0°C) to budburst decreased non-linearily with increasing duration of chilling (i. e. duration outdoors), and the slope of this relationship differed among species. The estimated effective base temperature for accumulation of thermal time varied from + 1°C in P. tremula to −4°C in P. padus . The use of 0°C as base temperature is recommended. Long days reduced the thermal time to budburst at all flushing temperatures (9, 15 and 21°C) in all the above species and in Corylus avellana , whereas Sorbus aucuparia and Rubus idaeus showed no daylength response. Since the chilling requirement of all species was far exceeded even in a winter with January-March temperatures 6.5°C above normal, it is concluded that under Scandinavian conditions, the main effect of climatic warming would be earlier budburst and, associated with that, a longer growing season and increased risk of spring frost injury.  相似文献   

12.
Summary 7 years of airborne pollen monitoring in Perugia (central Italy) were used to determine the temperature requirements to break dormancy and to resume growth and bloom ofCorylus avellana L.,Corylus needs 1000 chill-units to complete its dormancy and this value, in the Perugian area, is met by the end of December or the first days of January. MoreoverCorylus trees require 220 growth degree hours before they are able to flower. If air temperature is high, this value can be achieved in only 10 days, but if the temperature remains too low, the heat accumulation can require up to 35 days. With these parameters it is possible to build a model to predict the date of the beginning ofCorylus avellana pollen season.  相似文献   

13.
Background and AimsDaylength determines flowering dates. However, questions remain regarding flowering dates in the natural environment, such as the synchronous flowering of plants sown simultaneously at highly contrasting latitudes. The daily change in sunrise and sunset times is the cue for the flowering of trees and for the synchronization of moulting in birds at the equator. Sunrise and sunset also synchronize the cell circadian clock, which is involved in the regulation of flowering. The goal of this study was to update the photoperiodism model with knowledge acquired since its conception.MethodsA large dataset was gathered, including four 2-year series of monthly sowings of 28 sorghum varieties in Mali and two 1-year series of monthly sowings of eight rice varieties in the Philippines to compare with previously published monthly sowings in Japan and Malaysia, and data from sorghum breeders in France, Nicaragua and Colombia. An additive linear model of the duration in days to panicle initiation (PI) and flowering time using daylength and daily changes in sunrise and sunset times was implemented.Key ResultsSimultaneous with the phyllochron, the duration to PI of field crops acclimated to the mean temperature at seedling emergence within the usual range of mean cropping temperatures. A unique additive linear model combining daylength and daily changes in sunrise and sunset hours was accurately fitted for any type of response in the duration to PI to the sowing date without any temperature input. Once calibrated on a complete and an incomplete monthly sowing series at two tropical latitudes, the model accurately predicted the duration to PI of the concerned varieties from the equatorial to the temperate zone.ConclusionsIncluding the daily changes in sunrise and sunset times in the updated photoperiodism model largely improved its accuracy at the latitude of each experiment. More research is needed to ascertain its multi-latitudinal accuracy, especially at latitudes close to the equator.  相似文献   

14.
Abstract. The germination behaviour of two Petunia hybrida lines. M30 and Th7, and their reciprocal hybrids was studied. Two sets of experimental conditions appeared helped to distinguish between dormant and non-dormant parental lines: (1) 25 and 35 °C in the dark, in the latter case after 2 months of dry storage at 20 °C; (2) 35 and 40 °C in the light. Photosensitivity was tested in the first case and sensitivity to GA3 in the second case. The predominance of paternal control over dormancy was evident. A maternal or tegumentary control of photosensitivity and of sensitivity to GA3 was also shown. Transferring the seeds, originally imbibed in conditions expressing primary dormancy, to conditions which previously supported their germination, allowed us to show that secondary dormancy could be easily induced when a deeper primary dormancy had already developed in the seeds.  相似文献   

15.
W. Wipking 《Oecologia》1995,102(2):202-210
The onset of larval diapause in the burnet moth Zygaena trifolii is clearly characterized by the larva molting into a specialized dormant morph. In a potentially bivoltine Mediterranean population (Marseille) two types of diapause can occur within 1 year: firstly, a facultative summer diapause of 3–10 weeks, and secondly, an obligate winter diapause, which can be lengthened by a period of thermal quiescence to several months in temperatures of 5°C. For the first time, three successive physiological periods have been experimentally distinguished within an insect dormancy (between onset of diapause and molting to the next non-diapause stage), using chilling periods of 30–180 days at 5°C, and varying conditions of photoperiod and temperature. These stages are: (1) a continuous Diapause-ending process (DEP); (2) thermal quiescence (Q); and finally, (3) a period of postdiapause development (PDD) before molting to the next larval instar. The result of transferring dormant larvae from chilling at 5°C to 20°C depended on the length of the chilling period. After chilling for 120–180 days, molting to the next instar occurred after 6–10 days, independent of daylength. This period corresponds with the duration of PDD. After shorter chilling periods (90, 60, 30 days and the control, 0 days) the period to eclosion increased exponentially, and included both the latter part of the previous diapause process and the 6–10 day period of PDD. However, photoperiod also influences the time to eclosion after chilling. Short daylength (8 h light / 16 h dark: LD 8/16) lengthened the diapause in comparison to long daylength (16 h light / 8 h dark: LD 16/8). Short daylength had a similar effect during chilling at 5°C, as measured by the longer time to eclosion after transfer. The shorter time to eclosion resulting from longer chilling periods (30–90 days) demonstrates that the state of diapause is continuously shortened at 5°C, and corresponds to the neuroendocrine controlled DEP. Presumably the DEP has already started after the onset of diapause. When chilling was continued after the end of the DEP, which ranged between 90 and 120 days, thermal quiescence (Q) followed (observed maximum 395 days). Different photoperiodic conditions during the pre-diapause inductive period modified diapause intensity (measured as the duration of diapause), in that a photoperiodic signal just below the critical photoperiod for diapause induction (LD 15/9) intensified diapause. Experiments simulating the summer diapause showed that PDD occurred in the range of 10–25°C. Higher temperatures (15 and 20°C) shortened the DEP at LD 16/8, so that at 20°C many individuals had already terminated diapause after 10–40 days and had molted after the 6–10 days of PDD. A temperature of 25°C unexpectedly lengthened the DEP to 110 days in several individuals. The ecological consequences and the adaptive significance of variation in the duration of the diapause are discussed in relation to the persistence of local populations predictably variable and rare climatic extremes throughout the year.  相似文献   

16.
植物种子休眠的原因及休眠的多形性   总被引:73,自引:3,他引:70  
概述了植物种子休眠的原因及种子休眠的多形性。种壳障碍、胚形态发育不全和生理后熟以及种子中含有化学抑制剂都可导致种子休眠。根据不同的分类标准可将种子休眠可分成不同类型,但通常将休眠分为外源休眠、内源休眠和综合休眠。影响休眠的因素是复杂的,植物种类不同,休眠特性不同;同种植物的种子,来源于不同居群和植株,在不同时期采集,位于母株不同位置,其休眠有可能不同;甚至同一果实中的不同种子,休眠特性都会有差异。影响休眠性状表达的基因既有核基因,又有质基因,休眠通常表现为一种受多基因控制的数量性状。种子休眠的多形性有利于调节种子萌发的时空分布。  相似文献   

17.
Background and Aims Summer dormancy in perennial grasseshas been studied inadequately, despite its potential to enhanceplant survival and persistence in Mediterranean areas. The aimof the present work was to characterize summer dormancy anddehydration tolerance in two cultivars of Dactylis glomerata(dormant ‘Kasbah’, non-dormant ‘Oasis’)and their hybrid using physiological indicators associated withthese traits. • Methods Dehydration tolerance was assessed in a glasshouseexperiment, while seasonal metabolic changes which produce putativeprotectants for drought, such as carbohydrates and dehydrinsthat might be associated with summer dormancy, were analysedin the field. • Key Results The genotypes differed in their ability tosurvive increasing soil water deficit: lethal soil water potential(s) was –3·4 MPa for ‘Kasbah’ (althoughnon-dormant), –1·3 MPa for ‘Oasis’,and –1·6 MPa for their hybrid. In contrast, lethalwater content of apices was similar for all genotypes (approx.0·45 g H2O g d. wt–1), and hence the greater survivalof ‘Kasbah’ can be ascribed to better drought avoidancerather than dehydration tolerance. In autumn-sown plants, ‘Kasbah’had greatest dormancy, the hybrid was intermediate and ‘Oasis’had none. The more dormant the genotype, the lower the metabolicactivity during summer, and the earlier the activity declinedin spring. Decreased monosaccharide content was an early indicatorof dormancy induction. Accumulation of dehydrins did not correlatewith stress tolerance, but dehydrin content was a function ofthe water status of the tissues, irrespective of the soil moisture.A protein of approx. 55 kDa occurred in leaf bases of the mostdormant cultivar even in winter. • Conclusions Drought avoidance and summer dormancy arecorrelated but can be independently expressed. These traitsare heritable, allowing selection in breeding programmes.  相似文献   

18.
大田增温对夏玉米产量和品质的影响   总被引:16,自引:3,他引:16  
研究了大田条件下增温(3 ℃)对夏玉米产量和品质的影响. 结果表明:增温条件下玉米的籽粒产量显著降低,农大108(ND108)和掖单13号(YD13)分别减产46.6%和45.1%.增温也显著影响了玉米的籽粒品质,与对照相比,ND108和YD13的粗蛋白含量分别提高了11.6%和2.02%;粗脂肪含量分别降低了38.9%和9.6%;淀粉含量分别降低了7.0%和8.4%,且主要降低了支链淀粉的含量;赖氨酸含量则分别降低了58.9%和51.2%.  相似文献   

19.
大田增温对夏玉米光合特性的影响   总被引:18,自引:0,他引:18  
在大田条件下研究了增温对两个夏玉米品种农大108(ND108)和掖单13号(YD13)光合特性及产量的影响.结果表明:大喇叭口期到成熟期增温显著降低了夏玉米籽粒产量,ND108和YD13的籽粒产量分别较对照降低了46.6%和45.1%;叶面积指数平均值分别降低了15.4%和11.5%;穗位叶叶片光合速率平均值分别降低了22.85%和18.14%;两个玉米品种叶片的叶绿素a和叶绿素b含量显著降低,但对叶绿素a的影响更显著.增温后玉米叶片的磷酸烯醇式丙酮酸羧化酶(PEPCase)和核酮糖二磷酸羧化酶(RuBPCase)活性都显著降低,ND108、YD13叶片的PEPCase和RuBPCase活性分别较对照降低了51.1%、32.4%和29.5%、7.7%.  相似文献   

20.

Background and Aims

The duration of the plant life cycle is an important attribute that determines fitness and coexistence of weeds in arable fields. It depends on the timing of two key life-history traits: time from seed dispersal to germination and time from germination to flowering. These traits are components of the time to reproduction. Dormancy results in reduced and delayed germination, thus increasing time to reproduction. Genotypes in the arable seedbank predominantly have short time to flowering. Synergy between reduced seed dormancy and reduced flowering time would create stronger contrasts between genotypes, offering greater adaptation in-field. Therefore, we studied differences in seed dormancy between in-field flowering time genotypes of shepherd''s purse.

Methods

Genotypes with early, intermediate or late flowering time were grown in a glasshouse to provide seed stock for germination tests. Secondary dormancy was assessed by comparing germination before and after dark-incubation. Dormancy was characterized separately for seed myxospermy heteromorphs, observed in each genotype. Seed carbon and nitrogen content and seed mass were determined as indicators of seed filling and resource partitioning associated with dormancy.

Key Results

Although no differences were observed in primary dormancy, secondary dormancy was weaker among the seeds of early-flowering genotypes. On average, myxospermous seeds showed stronger secondary dormancy than non-myxospermous seeds in all genotypes. Seed filling was similar between the genotypes, but nitrogen partitioning was higher in early-flowering genotypes and in non-myxospermous seeds.

Conclusions

In shepherd''s purse, early flowering and reduced seed dormancy coincide and appear to be linked. The seed heteromorphism contributes to variation in dormancy. Three functional groups of seed dormancy were identified, varying in dormancy depth and nitrate response. One of these groups (FG-III) was distinct for early-flowering genotypes. The weaker secondary dormancy of early-flowering genotypes confers a selective advantage in arable fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号