首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Nakayama J  Klar AJ  Grewal SI 《Cell》2000,101(3):307-317
Inheritance of stable states of gene expression is essential for cellular differentiation. In fission yeast, an epigenetic imprint marking the mating-type (mat2/3) region contributes to inheritance of the silenced state, but the nature of the imprint is not known. We show that a chromodomain-containing Swi6 protein is a dosage-critical component involved in imprinting the mat locus. Transient overexpression of Swi6 alters the epigenetic imprint at the mat2/3 region and heritably converts the expressed state to the silenced state. The establishment and maintenance of the imprint are tightly coupled to the recruitment and the persistence of Swi6 at the mat2/3 region during mitosis as well as meiosis. Remarkably, Swi6 remains bound to the mat2/3 interval throughout the cell cycle and itself seems to be a component of the imprint. Our analyses suggest that the unit of inheritance at the mat2/3 locus comprises the DNA plus the associated Swi6 protein complex.  相似文献   

3.
Rev1 protein of Saccharomyces cerevisiae functions with DNA polymerase zeta in mutagenic trans-lesion synthesis. Because of the reported preferential incorporation of a C residue opposite an abasic site, Rev1 has been referred to as a deoxycytidyltransferase. Here, we use steady-state kinetics to examine nucleotide incorporation by Rev1 opposite undamaged and damaged template residues. We show that Rev1 specifically inserts a C residue opposite template G, and it is approximately 25-, 40-, and 400-fold less efficient at inserting a C residue opposite an abasic site, an O(6)-methylguanine, and an 8-oxoguanine lesion, respectively. Rev1 misincorporates G, A, and T residues opposite template G with a frequency of approximately 10(-3) to 10(-4). Consistent with this finding, Rev1 replicates DNA containing a string of Gs in a template-specific manner, but it has a low processivity incorporating 1.6 nucleotides per DNA binding event on the average. From these observations, we infer that Rev1 is a G template-specific DNA polymerase.  相似文献   

4.
Assembly of replication complexes at the replication origins is strictly regulated. Cdc45p is known to be a part of the active replication complexes. In Xenopus egg extracts, Cdc45p was shown to be required for loading of DNA polymerase alpha onto chromatin. The fission yeast cdc45 homologue was identified as a suppressor for nda4 and named sna41. Nevertheless, it is not known how Cdc45p facilitates loading of DNA polymerase alpha onto chromatin, particularly to prereplicative complexes. To gain novel insight into the function of this protein in fission yeast, we characterized the fission yeast Cdc45 homologue, Sna41p. We have constructed C-terminally epitope-tagged Sna41p and Pol alpha p and replaced the endogenous genes with the corresponding tagged genes. Analyses of protein-protein interactions in vivo by the use of these tagged strains revealed the following: Sna41p interacts with Pol alpha p throughout the cell cycle, whereas it interacts with Mis5p/Mcm6p in the chromatin fractions at the G(1)-S boundary through S phase. In an initiation-defective sna41 mutant, sna41(goa1), interaction of Pol alpha p with Mis5p is not observed, although Pol alpha p loading onto the chromatin that occurs before G(1) START is not affected. These results show that fission yeast Sna41p facilitates the loading of Pol alpha p onto minichromosome maintenance proteins. Our results are consistent with a model in which loading of Pol alpha p onto replication origins occurs through two steps, namely, loading onto chromatin at preSTART and association with prereplicative complexes at G(1)-S through Sna41p, which interacts with minichromosome maintenance proteins in a cell cycle-dependent manner.  相似文献   

5.
6.
Specialized chromatin exists at centromeres and must be precisely transmitted during DNA replication. The mechanisms involved in the propagation of these structures remain elusive. Fission yeast centromeres are composed of two chromatin domains: the central CENP-A(Cnp1) kinetochore domain and flanking heterochromatin domains. Here we show that fission yeast Mcl1, a DNA polymerase alpha (Pol alpha) accessory protein, is critical for maintenance of centromeric chromatin. In a screen for mutants that alleviate both central domain and outer repeat silencing, we isolated several cos mutants, of which cos1 is allelic to mcl1. The mcl1-101 mutation causes reduced CENP-A(Cnp1) in the central domain and an aberrant increase in histone acetylation in both domains. These phenotypes are also observed in a mutant of swi7(+), which encodes a catalytic subunit of Pol alpha. Mcl1 forms S-phase-specific nuclear foci, which colocalize with those of PCNA and Pol alpha. These results suggest that Mcl1 and Pol alpha are required for propagation of centromere chromatin structures during DNA replication.  相似文献   

7.
A DNA polymerase alpha-primase complex, which had been purified by means of immunoaffinity column chromatography, showed little activity in a reaction mixture composed of Tris-HCl buffer, but showed full activity in potassium phosphate buffer. It was found that potassium ion is required for the reaction by the immunoaffinity-purified enzyme. On the other hand, the DNA polymerase alpha purified by the orthodox biochemical method showed full activity in both buffer systems. A protein factor, which could restore the activity of immunoaffinity-purified DNA polymerase alpha-primase complex in the potassium-free reaction mixture, was separated from biochemically purified DNA polymerase alpha. The factor, designated as factor T, was stable to heat up to 70 degrees C, but was sensitive to trypsin. It sedimented at about 4S through a glycerol gradient. SDS-polyacrylamide gel electrophoresis revealed two polypeptide bands at 56 and 54 kDa. By immunoprecipitation, the factor T was shown to be physically associated with DNA polymerase alpha-primase complex. The stimulation was also observed with poly[d(A-T)], primed M13 DNA, and heat-denatured DNA.  相似文献   

8.
The Swi5-Sfr1 heterodimer protein stimulates the Rad51-promoted DNA strand exchange reaction, a crucial step in homologous recombination. To clarify how this accessory protein acts on the strand exchange reaction, we have analyzed how the structure of the primary reaction intermediate, the Rad51/single-stranded DNA (ssDNA) complex filament formed in the presence of ATP, is affected by Swi5-Sfr1. Using flow linear dichroism spectroscopy, we observe that the nucleobases of the ssDNA are more perpendicularly aligned to the filament axis in the presence of Swi5-Sfr1, whereas the bases are more randomly oriented in the absence of Swi5-Sfr1. When using a modified version of the natural protein where the N-terminal part of Sfr1 is deleted, which has no affinity for DNA but maintained ability to stimulate the strand exchange reaction, we still observe the improved perpendicular DNA base orientation. This indicates that Swi5-Sfr1 exerts its activating effect through interaction with the Rad51 filament mainly and not with the DNA. We propose that the role of a coplanar alignment of nucleobases induced by Swi5-Sfr1 in the presynaptic Rad51/ssDNA complex is to facilitate the critical matching with an invading double-stranded DNA, hence stimulating the strand exchange reaction.  相似文献   

9.
Swi6/HP1, an evolutionarily conserved protein, is critical for heterochromatin assembly in fission yeast and higher eukaryotes. In fission yeast, histone deacetylation by histone deacetylases is thought to be followed by H3-Lys-9 methylation by the histone methyltransferase Clr4/Suv39H1. H3-Lys-9-Me2 interacts with the chromodomain of Swi6/HP1. Swi6/HP1 is thought to act downstream of Clr4/Suv39, and further self-association of Swi6/HP1 is assumed to stabilize the heterochromatin structure. Here, we show that the self-association-defective mutant of Swi6 does not interact with Clr4. It not only fails to localize to heterochromatin loci but also interferes with heterochromatic localization of H3-Lys-9-Me2 (and thereby Clr4) and the endogenous Swi6 in a dominant negative manner. Thus, self-association of Swi6/HP1 helps in binding to and recruitment of Clr4 and thereby in establishment and maintenance of heterochromatin by a concerted rather than a sequential mechanism.  相似文献   

10.
The actin-related proteins (Arps), which are subdivided into at least eight subfamilies, are conserved from yeast to humans. A member of the Arp6 subfamily in Drosophila, Arp4/Arp6, co-localizes with heterochromatin protein 1 (HP1) in pericentric heterochromatin. Fission yeast Schizosaccharomyces pombe possesses both an HP1 homolog and an Arp6 homolog. However, the function of S.pombe Arp6 has not been characterized yet. We found that deletion of arp6+ impaired telomere silencing, but did not affect centromere silencing. Chromatin immunoprecipitation assays revealed that Arp6 bound to the telomere region. However, unlike Drosophila Arp4/Arp6, S.pombe Arp6 was distributed throughout nuclei. The binding of Arp6 to telomere DNA was not affected by deletion of swi6+. Moreover, the binding of Swi6 to telomere ends was not affected by deletion of arp6+. These results suggest that Arp6 and Swi6 function independently at telomere ends. We propose that the Arp6-mediated repression mechanism works side by side with Swi6-based telomere silencing in S.pombe.  相似文献   

11.
Imbalances of gene expression in aneuploids, which contain an abnormal number of chromosomes, cause a variety of growth and developmental defects. Aneuploid cells of the fission yeast Schizosaccharomyces pombe are inviable, or very unstable, during mitotic growth. However, S. pombe haploid cells bearing minichromosomes derived from the chromosome 3 can grow stably as a partial aneuploid. To address biological consequences of aneuploidy, we examined the gene expression profiles of partial aneuploid strains using DNA microarray analysis. The expression of genes in disomic or trisomic cells was found to increase approximately in proportion to their copy number. We also found that some genes in the monosomic regions of partial aneuploid strains increased their expression level despite there being no change in copy number. This change in gene expression can be attributed to increased expression of the genes in the disomic or trisomic regions. However, even in an aneuploid strain that bears a minichromosome containing no protein coding genes, genes located within about 50 kb of the telomere showed similar increases in expression, indicating that these changes are not a secondary effect of the increased gene dosage. Examining the distribution of the heterochromoatin protein Swi6 using DNA microarray analysis, we found that binding of Swi6 within ~50 kb from the telomere occurred less in partial aneuploid strains compared to euploid strains. These results suggest that additional chromosomes in aneuploids could lead to imbalances in gene expression through changes in distribution of heterochromatin as well as in gene dosage.  相似文献   

12.
K L Collins  A A Russo  B Y Tseng    T J Kelly 《The EMBO journal》1993,12(12):4555-4566
DNA polymerase alpha is the only enzyme in eukaryotic cells capable of starting DNA chains de novo and is required for the initiation of SV40 DNA replication in vitro. We have cloned the 70 kDa subunit of human DNA polymerase alpha (hereafter referred to as the B subunit) and expressed it as a fusion protein in bacteria. The purified fusion protein forms a stable complex with SV40 T antigen, both in solution and when T antigen is bound to the SV40 origin of DNA replication. Analysis of mutant forms of the B subunit indicates that the N-terminal 240 amino acids are sufficient to mediate complex formation. The B subunit fusion protein promotes formation of a complex containing T antigen and the catalytic subunit (subunit A) of DNA polymerase alpha, suggesting that it serves to tether the two proteins. These physical interactions are functionally significant, since the ability of T antigen to stimulate the activity of the catalytic subunit of DNA polymerase alpha is highly dependent upon the B subunit. We suggest that the interactions mediated by the B subunit play an important role in SV40 DNA replication by promoting DNA chain initiation at the origin and/or facilitating the subsequent priming and synthesis of DNA chains on the lagging strand template. The protein may play similar roles in cellular DNA replication.  相似文献   

13.
Phosphatidylinositol-dependent activation of DNA polymerase alpha   总被引:1,自引:0,他引:1  
DNA polymerase alpha was activated in vitro by cAMP-independent, phospholipid-dependent, protein kinase catalytic subunit. Of the phospholipids examined, phosphatidylinositol showed the greatest potential for interaction with protein kinase and ATP to activate DNA polymerase alpha in vitro. DNA polymerase alpha was directly activated by phosphorylated phosphatidylinositol in the absence of protein kinase and ATP. Activation of DNA polymerase alpha as a function of phosphorylation was demonstrated using 32P-ATP as the phosphate donor. In vitro treatment of the enzyme with phosphatidylinositol produced Linweaver-Burk plots showing noncompetitive kinetics of enzyme activation, suggesting that activation occurs prior to binding of the enzyme to DNA template/primer. These data indicate that DNA polymerase alpha may be activated in vitro in the presence of protein kinase, ATP, and phosphatidylinositol, and suggest that phosphorylation of the enzyme may constitute an intracellular mechanism of enzyme activation.  相似文献   

14.
15.
Swi1 is required for programmed pausing of replication forks near the mat1 locus in the fission yeast Schizosaccharomyces pombe. This fork pausing is required to initiate a recombination event that switches mating type. Swi1 is also needed for the replication checkpoint that arrests division in response to fork arrest. How Swi1 accomplishes these tasks is unknown. Here we report that Swi1 copurifies with a 181-amino-acid protein encoded by swi3(+). The Swi1-Swi3 complex is required for survival of fork arrest and for activation of the replication checkpoint kinase Cds1. Association of Swi1 and Swi3 with chromatin during DNA replication correlated with movement of the replication fork. swi1Delta and swi3Delta mutants accumulated Rad22 (Rad52 homolog) DNA repair foci during replication. These foci correlated with the Rad22-dependent appearance of Holliday junction (HJ)-like structures in cells lacking Mus81-Eme1 HJ resolvase. Rhp51 and Rhp54 homologous recombination proteins were not required for viability in swi1Delta or swi3Delta cells, indicating that the HJ-like structures arise from single-strand DNA gaps or rearranged forks instead of broken forks. We propose that Swi1 and Swi3 define a fork protection complex that coordinates leading- and lagging-strand synthesis and stabilizes stalled replication forks.  相似文献   

16.
17.
A panel of murine hybridoma cell lines which produce antibodies against polypeptides present in human placental DNA polymerase delta preparations was developed. Eight of these antibodies were characterized by virtue of their ability to inhibit DNA polymerase delta activity and immunoblot the 170-kDa catalytic polypeptide. Six of these eight antibodies inhibit DNA polymerase delta but not DNA polymerase alpha, showing that the two proteins are distinct. However, the other two monoclonal antibodies inhibited both DNA polymerase delta and alpha activities, providing the first evidence that these two proteins have a structural relationship. In addition to antibodies against the catalytic polypeptide we also identified 11 antibodies which recognize 120-, 100-, 88-, 75-, 62-, 36-, and 22-kDa polypeptides in DNA polymerase delta preparations, suggesting that these proteins might be part of a replication complex. The antibody to the 36-kDa polypeptide was shown to be directed against proliferating cell nuclear antigen/cyclin. These antibodies should prove useful for studies aimed at distinguishing between DNA polymerases alpha and delta and for the investigation of the functional roles of DNA polymerase delta polypeptides.  相似文献   

18.
19.
The acetylated, deacetylated and nonacetylated forms of HMG1 proteins from Guerin ascites tumour cells and calf thymus were separated and their in vitro interactions with homologous and heterologous DNA polymerases were studied. It has been found that only the acetylated form of HMG1 proteins forms a specific complex with homologous DNA polymerase alpha and stimulates its activity in vitro. The acetylation therefore is necessary for their possible function in DNA replication. This finding represents an evidence for a relationship between the acetylation of HMG1 proteins and their biological role.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号