首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscle atrophy contributes to morbidity and mortality in aging and chronic disease, emphasizing the need to gain understanding of the mechanisms involved in muscle atrophy and (re)growth. We hypothesized that the magnitude of muscle regrowth during recovery from atrophy determines whether myonuclear accretion and myogenic differentiation are required and that insulin-like growth factor (IGF)-I/Akt/glycogen synthase kinase (GSK)-3 signaling differs between regrowth responses. To address this hypothesis we subjected mice to hindlimb suspension (HS) to induce atrophy of soleus (–40%) and plantaris (–27%) muscle. Reloading-induced muscle regrowth was complete after 14 days and involved an increase in IGF-IEa mRNA expression that coincided with Akt phosphorylation in both muscles. In contrast, phosphorylation and inactivation of GSK-3 were observed during soleus regrowth only. Furthermore, soleus but not plantaris regrowth involved muscle regeneration based on a transient increase in expression of histone 3.2 and myosin heavy chain-perinatal, which are markers of myoblast proliferation and differentiation, and a strong induction of muscle regulatory factor (MRF) expression. Experiments in cultured muscle cells showed that IGF-I-induced MRF expression is facilitated by inactivation of GSK-3 and selectively occurs in the myoblast population. This study suggests that induction of IGF-I expression and Akt phosphorylation during recovery from muscle atrophy is independent of the magnitude of muscle regrowth. Moreover, our data demonstrate for the first time that the regenerative response characterized by myoblast proliferation, differentiation, and increased MRF expression in recovering muscle is associated with the magnitude of regrowth and may be regulated by inactivation of GSK-3. glycogen synthase kinase-3; Akt; muscle growth; muscle atrophy  相似文献   

2.
Loss of muscle mass occurs with disease, injury, aging, and inactivity. Restoration of normal muscle mass depends on myofiber growth, the regulation of which is incompletely understood. Cyclooxygenase (COX)-2 is one of two isoforms of COX that catalyzes the synthesis of prostaglandins, paracrine hormones that regulate diverse physiological and pathophysiological processes. Previously, we demonstrated that the COX-2 pathway regulates early stages of myofiber growth during muscle regeneration. However, whether the COX-2 pathway plays a common role in adult myofiber growth or functions specifically during muscle regeneration is unknown. Therefore, we examined the role of COX-2 during myofiber growth following atrophy in mice. Muscle atrophy was induced by hindlimb suspension (HS) for 2 wk, followed by a reloading period, during which mice were treated with either the COX-2-selective inhibitor SC-236 (6 mg·kg–1·day–1) or vehicle. COX-2 protein was expressed and SC-236 attenuated myofiber growth during reloading in both soleus and plantaris muscles. Attenuated myofiber growth in the soleus was associated with both decreased myonuclear addition and decreased inflammation, whereas neither of these processes mediated the effects of SC-236 on plantaris growth. In addition, COX-2–/– satellite cells exhibited impaired activation/proliferation in vitro, suggesting direct regulation of muscle cell activity by COX-2. Together, these data suggest that the COX-2 pathway plays a common regulatory role during various types of muscle growth via multiple mechanisms. cyclooxygenase-2; prostaglandins; myonuclear number; satellite cells; inflammation  相似文献   

3.
In this study, possible mechanisms underlying soleus muscleatrophy after spinal cord transection and attenuation of atrophy withcycling exercise were studied. Adult female Sprague-Dawley rats weredivided into three groups; in two groups the spinal cord was transectedby a lesion at T10. One group wastransected and killed 10 days later, and another group was transectedand exercised for 5 days starting 5 days after transection. The third group served as an uninjured control. All animals received acontinuous-release 5'-bromo-2'-deoxyuridine pellet 10 daysbefore they were killed. Transection alone and transection withexercise lead to activation of satellite cells, but only the exercisegroup showed a trend toward an increase in the number of proliferatingsatellite cells. In all cases the number of activated satellite cellswas significantly higher than the number that divided. Although thenumber of cells undergoing proliferation increased with exercise, noincrease in fusion of satellite cells into muscle fibers was apparent. Spinal cord transection resulted in a 25% decrease in myonuclear number, and exercise was not associated with a restoration of myonuclear number. The number of apoptotic nuclei was increased aftertransection, and exercise attenuated this increase. However, thedecrease in apoptotic nuclei with exercise did not significantly affectmyonuclear number. We conclude that apoptotic nuclear loss likelycontributes to loss of nuclei during muscle atrophy associated withspinal cord transection and that exercise can maintain muscle mass, atleast in the short term, without restoration of myonuclear number.

  相似文献   

4.
Maintenance of muscle mass is not dependent on the calcineurin-NFAT pathway   总被引:3,自引:0,他引:3  
In this study, the role of the calcineurinpathway in skeletal muscle atrophy and atrophy-reducing interventionswas investigated in rat soleus muscles. Because calcineurin has beensuggested to be involved in skeletal and cardiac muscle hypertrophy, we hypothesized that blocking calcineurin activity would eliminate beneficial effects of interventions that maintain muscle mass in theface of atrophy-inducing stimuli. Hindlimb suspension and spinal cordtransection were used to induce atrophy, and intermittent reloading andexercise were used to reduce atrophy. Cyclosporin (CsA, 25 mg · kg1 · day1) wasadministered to block calcineurin activity. Soleus muscles were studied14 days after the onset of atrophy. CsA administration did not inhibitthe beneficial effects of the two muscle-maintaining interventions, nordid it change muscle mass in control or atrophied muscles, suggestingthat calcineurin does not play a role in regulating muscle size duringatrophy. However, calcineurin abundance was increased in atrophiedsoleus muscles, and this was associated with nuclear localization ofNFATc1 (a nuclear factor of activated T cells). Therefore, resultssuggest that calcineurin may be playing opposing roles during skeletalmuscle atrophy and under muscle mass-maintaining conditions.

  相似文献   

5.

Background

Chronic obstructive pulmonary disease (COPD) is accompanied by pulmonary inflammation and associated with extra-pulmonary manifestations, including skeletal muscle atrophy. Glycogen synthase kinase-3 (GSK-3) has been implicated in the regulation of muscle protein- and myonuclear turnover; two crucial processes that determine muscle mass. In the present study we investigated the effect of the selective GSK-3 inhibitor SB216763 on muscle mass in a guinea pig model of lipopolysaccharide (LPS)-induced pulmonary inflammation-associated muscle atrophy.

Methods

Guinea pigs were pretreated with either intranasally instilled SB216763 or corresponding vehicle prior to each LPS/saline challenge twice weekly. Pulmonary inflammation was confirmed and indices of muscle mass were determined after 12 weeks. Additionally, cultured skeletal muscle cells were incubated with tumor necrosis factor α (TNF-α) or glucocorticoids (GCs) to model the systemic effects of pulmonary inflammation on myogenesis, in the presence or absence of GSK-3 inhibitors.

Results

Repeated LPS instillation induced muscle atrophy based on muscle weight and muscle fiber cross sectional area. Intriguingly, GSK-3 inhibition using SB216763 prevented the LPS-induced muscle mass decreases and myofiber atrophy. Indices of protein turnover signaling were unaltered in guinea pig muscle. Interestingly, inhibition of myogenesis of cultured muscle cells by TNF-α or synthetic GCs was prevented by GSK-3 inhibitors.

Conclusions

In a guinea pig model of LPS-induced pulmonary inflammation, GSK-3 inhibition prevents skeletal muscle atrophy without affecting pulmonary inflammation. Resistance to inflammation- or GC-induced impairment of myogenic differentiation, imposed by GSK-3 inhibition, suggests that sustained myogenesis may contribute to muscle mass maintenance despite persistent pulmonary inflammation. Collectively, these results warrant further exploration of GSK-3 as a potential novel drug target to prevent or reverse muscle wasting in COPD.  相似文献   

6.
The cross-sectional area (CSA), myonuclear number per mm of fiber length, and myonuclear domain (cytoplasmic volume/myonucleus) of mechanically isolated single fibers from biopsies of the soleus muscle of 5 vivarium control, 3 flight simulation and 2 flight (BION 11) Rhesus monkeys (Macaca [correction of Macacca] mulatta) were determined using confocal microscopy before and after a 14-day experimental period. Simulation monkeys were confined in chairs placed in capsules identical to those used during the flight. Fibers were classified as type I, type II or hybrid (containing both types I and II) based on myosin heavy chain (MHC) gel electrophoresis. A majority of the fibers sampled contained only type I MHC, i.e. 89, 62 and 68% for the control, simulation and flight groups, respectively. Most of the remaining fibers were hybrids, i.e. 8, 36 and 32% for the same groups. There were no significant pre-post differences in the fiber type composition for any of the experimental groups. There also were no significant pre-post differences in fiber CSA, myonuclear number or myonuclear domain. There was, however, a tendency for the fibers in the post-flight biopsies to have a smaller mean CSA and myonuclear domain (approximately 10%, p=0.07) than the fibers in the pre-flight biopsy. The combined mean cytoplasmic volume/myonucleus for all muscle fiber phenotypes in the Rhesus soleus muscle was approximately 25,000 micrometers3 and there were no differences in pre-post samples for the control and simulated groups. The cytoplasmic domains tended to be lower (p=0.08) after than before flight. No phenotype differences in cytoplasmic domains were observed. These data suggest that after a relatively short period of actual spaceflight, modest fiber atrophy occurs in the soleus muscle fibers without a concomitant change in myonuclear number.  相似文献   

7.
It has been suggested that the number of myonuclei in a muscle fibre changes in proportion to the change in fibre size, resulting in a constant myonuclear domain size, defined as the cytoplasmic volume per myonucleus. The myonuclear domain size varies, however, between fibre types and is inversely related with the oxidative capacity of a fibre. Overall, the observations of an increase in myonuclear domain size during both maturational growth and overload-induced hypertrophy, and the decrease in myonuclear domain size during disuse- and ageing-associated muscle atrophy suggest that the concept of a constant myonuclear domain size needs to be treated cautiously. It also suggests that only when the myonuclear domain size exceeds a certain threshold during growth or overload-induced hypertrophy acquisition of new myonuclei is required for further fibre hypertrophy.  相似文献   

8.
The effects of long-term hindlimb unweighting by tail suspension on postnatal growth of 20-day rat extensor digitorum longus (EDL) and soleus muscles were studied. Morphological assay indicated that radial growth of soleus myofibers was completely inhibited between 3 and 10 days of suspension and reduced thereafter, leading to a severe attenuation (-76% from control) over the total experimental period. Longitudinal growth rate, however, was accelerated 40% over weight-bearing controls. In addition, myofibers were arranged parallel to the long axis of the muscle, an orientation associated with chronologically younger muscles, suggesting morphological maturation of the soleus muscle had been delayed by suspension. In contrast, radial and longitudinal growth of EDL myofibers were minimally affected under similar conditions and remained within approximately 5% of control at all times. Suspension also influenced the normal changes that occur in satellite cell and myonuclear populations during postnatal growth. Both the number and proliferative activity of satellite cells were severely reduced in individual myofibers after only 3 days in both soleus and EDL muscles. The reduced number of satellite cells within 3 days of initiating hindlimb suspension appeared to be the result of their incorporation into myofibers while the long-lasting reduction appeared to be the added effects of decreased proliferative activity. In the soleus, this reduction in number and proliferation of satellite cells persisted throughout the experimental period and resulted in an overall 43% fewer myonuclei and 45% fewer satellite cells than control at 50 days of age. In contrast, both the total number and mitotic activity of satellite cells in the EDL rapidly returned to weight-bearing control levels by day 10 of suspension, resulting in no overall reduction in myonuclear accretion.  相似文献   

9.
10.
Molecular mechanisms modulating muscle mass   总被引:8,自引:0,他引:8  
Skeletal muscle atrophy occurs in multiple clinical settings, including cancer, AIDS and sepsis, and is caused in part by an increase in the rate of ATP-dependent ubiquitin-mediated proteolysis. The expression of two recently identified genes encoding ubiquitin-protein ligases, MAFbx/Atrogin-1 and MuRF1, has been shown to increase during muscle atrophy. Mouse knockout studies have demonstrated that MAFbx and MuRF1 are required for muscle atrophy, and thus might be targets for clinical intervention. A second strategy for blocking atrophy involves the stimulation of pathways leading to skeletal muscle hypertrophy. Insulin-like growth factor 1 (IGF-1) is a protein growth factor that can induce skeletal muscle hypertrophy by activating the phosphatidylinositol 3-kinase (PI3K)-Akt pathway. The pathways modulating hypertrophy and atrophy will be further discussed, to highlight potential targets for clinical intervention.  相似文献   

11.
Muscle mass is decreased with advancing age, likely due to altered regulation of muscle fiber size. This study was designed to investigate cellular mechanisms contributing to this process. Analysis of male Fischer 344 X Brown Norway rats at 6, 20, and 32 mo of age demonstrated that, even though significant atrophy had occurred in soleus muscle by old age, myofiber nuclear number did not change, resulting in a decreased myonuclear domain. Also, the number of centrally located nuclei was significantly elevated in soleus muscle of 32-mo-old rats, correlating with an increase in gene expression of MyoD and myogenin. Whereas total 5'-bromo-2'deoxyuridine (BrdU)-positive nuclei were decreased at older ages, BrdU-positive myofiber nuclei were increased. These results suggest that, with age, loss of muscle mass is accompanied by increased myofiber nuclear density that involves fusion of proliferative satellite cells, resembling ongoing regeneration. Interestingly, centrally located myofiber nuclei were not BrdU labeled. Rats were subjected to hindlimb suspension (HS) for 7 or 14 days and intermittent reloading during HS for 1 h each day (IR) to investigate how aging affects the response of soleus muscle to disuse and an atrophy-reducing intervention. After 14 days of HS, soleus muscle size was decreased to a similar extent at all three ages. However, myofiber nuclear number and the total number of BrdU-positive nuclei decreased with HS only in the young rats. IR was associated with an attenuation of atrophy in soleus muscles of 6- and 20- but not 32-mo-old rats. Furthermore, IR was associated with an increase in BrdU-positive myofiber nuclei only in young rats. These data indicate that altered satellite cell function with age contributes to the impaired response of soleus muscle to an intervention that attenuates muscle atrophy in young animals during imposed disuse.  相似文献   

12.
Atrophy of skeletal muscle leads to decreases in myofiber size and nuclear number; however, the effects of atrophic conditions on muscle precursor cells (MPC) are largely unknown. MPC lie outside myofibers and represent the main source of additional myonuclei necessary for muscle growth and repair. In the present study, we examined the properties of MPC after hindlimb suspension (HS)-induced atrophy and subsequent recovery of the mouse hindlimb muscles. We demonstrated that the number of MPC in atrophied muscles was decreased. RT-PCR analysis of cells isolated from atrophied muscles indicated that several mRNA characteristic of the myogenic program in MPC were absent. Cells isolated from atrophied muscles failed to properly proliferate and undergo differentiation into multinucleated myotubes. Thus atrophy led to a decrease in MPC and caused dysfunction in those MPC that remained. Upon regrowth of the atrophied muscles, these deleterious effects were reversed. Our data suggest that preventing loss or dysfunction of MPC may be a new pharmacological target during muscle atrophy. satellite cells; hindlimb suspension; proliferation; differentiation; myotubes  相似文献   

13.
Interleukin-15 (IL-15) mRNA is constitutively expressed in skeletal muscle. Although IL-15 has proposed hypertrophic and anti-apoptotic roles in vitro, its role in skeletal muscle cells in vivo is less clear. The purpose of this study was to determine if skeletal muscle aging and unloading, two conditions known to promote muscle atrophy, would alter basal IL-15 expression in skeletal muscle. We hypothesized that IL-15 mRNA expression would increase as a result of both aging and muscle unloading and that muscle would express the mRNA for a functional trimeric IL-15 receptor (IL-15R). Two models of unloading were used in this study: hindlimb suspension (HS) in rats and wing unloading in quail. The absolute muscle wet weight of plantaris and soleus muscles from aged rats was significantly less when compared with muscles from young adult rats. Although 14 days of HS resulted in reduced muscle mass of plantaris and soleus muscles from young adult animals, this effect was not observed in muscles from aged animals. A significant aging times unloading interaction was observed for IL-15 mRNA in both rat soleus and plantaris muscles. Patagialis (PAT) muscles from aged quail retained a significant 12 and 6% of stretch-induced hypertrophy after 7 and 14 days of unloading, respectively. PAT muscles from young quail retained 15% hypertrophy at 7 days of unloading but regressed to control levels following 14 days of unloading. A main effect of age was observed on IL-15 mRNA expression in PAT muscles at 14 days of overload, 7 days of unloading, and 14 days of unloading. Skeletal muscle also expressed the mRNAs for a functional IL-15R composed of IL-15R, IL-2/15R-, and -c. Based on these data, we speculate that increases in IL-15 mRNA in response to atrophic stimuli may be an attempt to counteract muscle mass loss in skeletal muscles of old animals. Additional research is warranted to determine the importance of the IL-15/IL-15R system to counter muscle wasting. atrophy; interleukins; sarcopenia; gene signaling  相似文献   

14.
Essential role of satellite cells in the growth of rat soleus muscle fibers   总被引:1,自引:0,他引:1  
Effects of gravitational loading or unloading on the growth-associated increase in the cross-sectional area and length of fibers, as well as the total fiber number, in soleus muscle were studied in rats. Furthermore, the roles of satellite cells and myonuclei in growth of these properties were also investigated. The hindlimb unloading by tail suspension was performed in newborn rats from postnatal day 4 to month 3 with or without 3-mo reloading. The morphological properties were measured in whole muscle and/or single fibers sampled from tendon to tendon. Growth-associated increases of soleus weight and fiber cross-sectional area in the unloaded group were approximately 68% and 69% less than the age-matched controls. However, the increases of number and length of fibers were not influenced by unloading. Growth-related increases of the number of quiescent satellite cells and myonuclei were inhibited by unloading. And the growth-related decrease of mitotically active satellite cells, seen even in controls (20%, P > 0.05), was also stimulated (80%). The increase of myonuclei during 3-mo unloading was only 40 times vs. 92 times in controls. Inhibited increase of myonuclear number was not related to apoptosis. The size of myonuclear domain in the unloaded group was less and that of single nuclei, which was decreased by growth, was larger than controls. However, all of these parameters, inhibited by unloading, were increased toward the control levels generally by reloading. It is suggested that the satellite cell-related stimulation in response to gravitational loading plays an essential role in the cross-sectional growth of soleus muscle fibers.  相似文献   

15.
Summary Seven proteases assumed to be aminopeptidases A, B and M, dipeptidyl peptidases II and IV, esteroproteinase and -glutamyltransferase were localized histochemically, using semipermeable membrane simultaneous coupling techniques, in unfixed cryostat sections of skeletal muscle removed from one healthy volunteer, six patients with disuse muscle atrophy, and 15 patients with some form of muscle disease. Normal muscle fibres showed weak reactions for aminopeptidases A and M and for the dipeptidyl peptidases, but no reactivity for -glutamyltransferase or esteroproteinase. No change was detected in diseased muscle fibres except that low -glutamyltransferase and esteroproteinase activities appeared in some cases. The activities of the seven enzymes were stronger in the intermysial connective tissue than in the muscle fibres, but were also unchanged in disease. The strongest reactions were found in some interstitial cells (mast cells and macrophages) and these were much increased in diseased muscle, particularly for dipeptidyl peptidases II and IV. The findings are interpreted in terms of the release of proteases from such cells and their subsequent involvement in the breakdown of myofibrillar proteins in muscle disease.  相似文献   

16.
Skeletal muscle regeneration following injury is a complex multi-stage process involving the recruitment of inflammatory cells, the activation of muscle resident fibroblasts, and the differentiation of activated myoblasts into myocytes. Dysregulation of these cellular processes is associated with ineffective myofiber repair and excessive deposition of extracellular matrix proteins leading to fibrosis. PI3K/Akt signaling is a critical integrator of intra- and intercellular signals connecting nutrient availability to cell survival and growth. Activation of the PI3K/Akt pathway in skeletal muscle leads to hypertrophic growth and a reversal of the changes in body composition associated with obesity and advanced age. Though the molecular mechanisms mediating these effects are incompletely understood, changes in paracrine signaling are thought to play a key role. Here, we utilized modified RNA to study the biological role of the transient translocation of Akt to the myonuclei of maturing myotubes. Using a conditioned medium model system, we show that ectopic myonuclear Akt suppresses fibrogenic paracrine signaling in response to oxidative stress, and that interventions that increase or restore myonuclear Akt may impair fibrosis.  相似文献   

17.
IL-4 acts as a myoblast recruitment factor during mammalian muscle growth   总被引:10,自引:0,他引:10  
Horsley V  Jansen KM  Mills ST  Pavlath GK 《Cell》2003,113(4):483-494
  相似文献   

18.
The aims of this study were (1) to determine the relationship between muscle fibre cross-sectional area and cytoplasmic density of myonuclei in high- and low-oxidative Xenopus muscle fibres and (2) to test whether insulin and long-term high fibre length caused an increase in the number of myonuclei and in the expression of α-skeletal actin and of myogenic regulatory factors (myogenin and MyoD) in these muscle fibres. In high- and low-oxidative muscle fibres from freshly frozen iliofibularis muscles, the number of myonuclei per millimetre fibre length was proportional to muscle fibre cross-sectional area. The in vivo myonuclear density thus seemed to be strictly regulated, suggesting that the induction of hypertrophy required the activation of satellite cells. The effects of muscle fibre length and insulin on myonuclear density and myonuclear mRNA content were investigated on high-oxidative single muscle fibres cultured for 4–5 days. Muscle fibres were kept at a low length (~15% below passive slack length) in culture medium with a high insulin concentration (~6 nmol/l: “high insulin medium”) or without insulin, and at a high length (~5% above passive slack length) in high insulin medium. High fibre length and high insulin medium did not change the myonuclear density of isolated muscle fibres during culture. High insulin increased the myonuclear α-skeletal actin mRNA content, whereas fibre length had no effect on α-skeletal actin mRNA content. After culture at high fibre length in high insulin medium, the myonuclear myogenin mRNA content was 2.5-fold higher than that of fibres cultured at low length in high insulin medium or in medium without insulin. Myonuclear MyoD mRNA content was not affected by fibre length or insulin. These in vitro experiments indicate that high muscle fibre length and insulin enhance muscle gene expression but that other critical factors are required to induce adaptation of muscle fibre size and performance.This work was partially supported by a research grant from the Haak Bastiaanse Kuneman Stichting.  相似文献   

19.
Skeletal muscle inactivity is associated with a loss of muscle protein and reduced force-generating capacity. This disuse-induced muscle atrophy results from both increased proteolysis and decreased protein synthesis. Investigations of the cell signaling pathways that regulate disuse muscle atrophy have increased our understanding of this complex process. Emerging evidence implicates oxidative stress as a key regulator of cell signaling pathways, leading to increased proteolysis and muscle atrophy during periods of prolonged disuse. This review will discuss the role of reactive oxygen species in the regulation of inactivity-induced skeletal muscle atrophy. The specific objectives of this article are to provide an overview of muscle proteases, outline intracellular sources of reactive oxygen species, and summarize the evidence that connects oxidative stress to signaling pathways contributing to disuse muscle atrophy. Moreover, this review will also discuss the specific role that oxidative stress plays in signaling pathways responsible for muscle proteolysis and myonuclear apoptosis and highlight gaps in our knowledge of disuse muscle atrophy. By presenting unresolved issues and suggesting topics for future research, it is hoped that this review will serve as a stimulus for the expansion of knowledge in this exciting field.  相似文献   

20.
Muscle fibers are the cells in the body with the largest volume, and they have multiple nuclei serving different domains of cytoplasm. A large body of previous literature has suggested that atrophy induced by hindlimb suspension leads to a loss of "excessive" myonuclei by apoptosis. We demonstrate here that atrophy induced by hindlimb suspension does not lead to loss of myonuclei despite a strong increase in apoptotic activity of other types of nuclei within the muscle tissue. Thus hindlimb suspension turns out to be similar to other atrophy models such as denervation, nerve impulse block, and antagonist ablation. We discuss how the different outcome of various studies can be attributed to difficulties in separating myonuclei from other nuclei, and to systematic differences in passive properties between normal and unloaded muscles. During reload, after hindlimb suspension, a radial regrowth is observed, which has been believed to be accompanied by recruitment of new myonuclei from satellite cells. The lack of nuclear loss during unloading, however, puts these findings into question. We observed that reload led to an increase in cross sectional area of 59%, and fiber size was completely restored to the presuspension levels. Despite this notable growth there was no increase in the number of myonuclei. Thus radial regrowth seems to differ from de novo hypertrophy in that nuclei are only added during the latter. We speculate that the number of myonuclei might reflect the largest size the muscle fibers have had in its previous history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号