首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The ultrastructure of a new type of vascular graft, prepared from a mixture of polyurethane (95 weight %) and poly-L-lactic acid (5 weight %), was examined six weeks after implantation into the abdominal aorta of rats. These microporous, compliant, biodegradable, vascular grafts function as temporary scaffolds for the regeneration of the arterial wall.Smooth muscle cells, covering the grafts, regenerated a neo-media underneath an almost completely regenerated endothelial layer (neo-intima). These smooth muscle cells varied in morphology from normal smooth muscle cells to myofibroblasts. They were surrounded by elastic laminae and collagen fibers.Macrophages, epithelioid cells, multinucleated giant cells, fibroblasts and capillaries were present in the disintegrating graft lattices. The epithelioid cells and multinucleated giant cells engulfed polymer particles of the disintegrating grafts.The regeneration of the endothelial and smooth muscle cells is similar to the natural response of arterial tissue upon injury. The presence of macrophages, epithelioid cells, multinucleated giant cells, fibroblasts and capillaries in the graft lattices resembles the natural response of tissue against foreign body implants. Both of these responses result in the formation of a neo-artery that possesses sufficient strength, compliance and thromboresistance to function as a small caliber arterial substitute.Supported by Grant nr. 82.042 from the Dutch Heart Foundation  相似文献   

2.
A stress-strain relation for a rat abdominal aorta   总被引:1,自引:0,他引:1  
Assuming the arterial wall is homogeneous, incompressible, isotropic and elastic, a stress-strain relation has been presented for a rat's abdominal aorta. As an illustrating example, the problem of simultaneous inflation and the axial stretch of a cylindrical artery under physiological loading has been solved and then the material coefficients are determined by comparing theoretical results with the existing experiments. The result indicates that the maximum deviation between the theory and experiment for various pressure levels is 3.7% which seems to be a good approximation of theory to the experiments. The variation of circumferential stress and the incremental pressure modulus with inner pressure are also depicted in the work.  相似文献   

3.
4.
Sanae F  Miyaichi Y  Kizu H  Hayashi H 《Life sciences》2002,71(21):2553-2562
The effects of eight catechin derivatives on vascular tone in rat thoracic aorta were examined. Catechin derivatives (10 microM) potentiated the contractile response to phenylephrine in endothelium-intact arteries. The potentiations produced by EGCg and EGC were almost absent in endothelium-denuded arteries and abolished by N(G)-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthesis. The catechin derivatives also inhibited endothelium-dependent relaxation in response to acetylcholine. The order of catechin derivatives ranked in terms of both increasing vascular reactivity and impairing endothelium-dependent relaxation was similar; (-)-gallocatechin (GC) >or= (-)-epigallocatechin (EGC) >or= (-)-gallocatechin gallate (GCg) >or= (-)-epigallocatechin gallate (EGCg) >or= (-)-catechin (C) >or= (-)-epicatechin (EC) >or= (-)-catechin gallate (Cg) >or= (-)-epicatechin gallate (ECg). In addition, EGC inhibited the endothelium-independent relaxation evoked by both sodium nitroprusside and NOC-7, a spontanous NO releaser, but EGCg inhibited only that by NOC-7. These findings indicate that catechin derivatives produce a potentiation of the contractile response and an inhibition of the vasorelaxant response, probably through inactivation of endothelium-derived nitric oxide (NO), and that the hydroxyl on C-5 of the B ring together with the stereoscopic structure between the C-3 group and the B ring of flavanols was of importance in mediating the above effects and that the substitution of a gallate group of C-3 attenuated the effects, probably due to a decreased response to solube guanylate cyclase in vascular smooth muscle cells.  相似文献   

5.
Treatment for atherosclerotic vascular disease in human beings ranges from medical management to interventional therapy, such as angioplasty, atherectomy, and bypass grafting. Recently, bypass grafting with a vascular prosthesis has received increased attention and clinical use. In the course of studies to optimize use of a small-caliber vascular prosthesis, five of six rabbits undergoing implantation of a polytetrafluoroethylene vascular prosthesis in the infrarenal abdominal aorta developed hind limb neurologic deficits, which resulted from focal ischemic damage to the spinal cord attributable to temporary vascular occlusion of the abdominal aorta during placement of the vascular prosthesis. In subsequent studies, induction of systemic hypothermia decreased the rate of development of neurologic deficits from 83 to 9% without any apparent perioperative complications associated with decreased body temperature. We determined that mild hypothermia (rectal temperature of 32 to 35 degrees C), combined with aortic occlusion time of < 40 min, is sufficient to afford protection from ischemic injury to the spinal cord in the rabbit.  相似文献   

6.
7.
8.
In order to study connections between blood vessels and follicular thyrocytes, the method of modulation (a purposeful change of state in one element with registration of states in other elements of the system) was used. In rats chronic increase of blood stream was produced in the thyroid gland; in 15 days it was 54% as high as in the control. The volume of the vascular bed increased by 28% and that of follicles by 26%. Volumetric ratio between the thyroid epithelium and colloid did not changed. Follicular thyrocytes grew high and the nuclear volumes of these cells increased. Thyrocytes greately varied in their height. The number of mast cells in the thyroid gland remained the same. Iodine absorption by the thyroid gland increased as it is dependent on the volume of the vascular bed of the organism (+0.82). The data obtained demonstrate a significant connection existing between the follicular thyrocytes and blood vessels.  相似文献   

9.
10.
11.
12.
13.
14.
This study aimed to evaluate the role of cystatin C (CysC) in the vascular remodeling of balloon-injured abdominal aorta of rabbits. Forty-eight New Zealand white rabbits were randomly divided into three groups: the balloon-injured injury group (n = 16), the CysC monoclonal antibody group (n = 16), and the sham-operative group (n = 16). Serum CysC levels were detected by enzyme linked immunosorbent assay. Changes in adventitial area, adventitial thickness, lumen area (LA), neointimal area (IA), internal elastic lamina area (IELA), external elastic lamina area (EELA), vascular remodeling index (VRI) and residual stenosis (RS) were measured by the Leica image analysis system. Immunohistochemical analysis of α-smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) were performed. Serum CysC levels of rabbits in the balloon-injured injury group were significantly higher than those in the CysC monoclonal antibody group and the sham-operative group (both P < 0.05). At 6 weeks after balloon injury, the adventitial area and thickness, LA, IA, IELA and EELA in the balloon-injured injury group were also higher than those in the CysC monoclonal antibody and sham-operative groups (all P < 0.05). In addition, the balloon-injured injury group showed higher VRI and RS than those of the CysC monoclonal antibody group (both P < 0.05). The positive expression of α-SMA in the vascular adventitia and media in the balloon-injured group were higher than that of the CysC monoclonal antibody and sham-operative groups. The balloon-injured group also showed a stronger expression of α-SMA in the neointima than that of the CysC monoclonal antibody group. There was a strong positive expression of PCNA in the vascular adventitia and neointima in the balloon-injured and CysC monoclonal antibody groups. However, the number of PCNA-positive cells in the balloon-injured group was higher than that of the CysC monoclonal antibody group (25.45 ± 4.21 vs. 6.75 ± 1.11, P = 0.003). Our findings provide empirical evidence that serum CysC levels may play an important role in the vascular remodeling of balloon-injured abdominal aorta of rabbits.  相似文献   

15.
Rats exposed to 20 Gy whole-body irradiation demonstrated a depressed aortic responsiveness to the thromboxane mimic, U46619, 48 h postirradiation. The mechanism for this observed response was investigated. Shielding the abdominal aorta attenuated this altered vascular reactivity. Since this suggests that radiation exposure induces local changes in the aorta, vascular smooth muscle function was assessed with cumulative concentrations of KCl. Radiation-induced smooth muscle damage was insufficient to account for the decreased reactivity to U46619. Next, calcium availability for vascular smooth muscle function was evaluated and found not to be responsible for the radiation-induced depression in aortic responsiveness. Finally, the role that cyclooxygenase products play in the depressed contractile response was investigated. Indomethacin treatment prior to and for 48 h after irradiation attenuated the altered vascular reactivity to U46619. These data suggest that a radiation-induced increase in cyclooxygenase products may play a role in the decreased aortic reactivity to the thromboxane mimic.  相似文献   

16.
The potency, structure-activity relationship, and mechanism of vasorelaxation of a series of flavonoids, representing different subclasses (flavonols: fisetin, rutin, quercetin; flavones: chrysin, flavone, baicalein; flavanones: naringenin, naringin; isoflavones: diadzein and flavanes: epigallo catechin gallate), were examined in the isolated rat aorta. Most of the flavonoids tested showed concentration dependent relaxant effects against K+ (80 mM) and phenylephrine (PE, 0.1 microM)-induced contractions with a greater inhibition of the responses to the alpha1-adrenoceptor agonist. The relaxant effects of most of the flavonoids involve in part the release of nitric oxide and prostaglandins from the endothelium as pretreatment with L-NAME and indomethacin attenuated the responses. In addition, the relaxant action of the flavonoids includes inhibition of Ca+2 influx and release of Ca+2 from intracellular stores. A structure-activity relationship amongst the flavonoids was suggested.  相似文献   

17.
18.
Previous studies showed that 20 Gy whole-body gamma irradiation results in a decreased response of the abdominal aorta to the stable thromboxane A2 (TXA2) mimic, U46619. The present study evaluated the effect of WR2721 on this radiation-induced decrease in vascular responsiveness. Rats receiving WR2721 (200 mg/kg, i.p.) 20 min before irradiation showed no depression in vascular reactivity to U46619 compared to control. The abolition of the radiation-induced decrease in vascular responsiveness was not caused by a direct vasoconstrictor action of WR2721 or its metabolites. The vascular response of rat abdominal aortic rings to KCl was unchanged after in vivo exposure to ionizing radiation. WR2721 did not alter the vascular response to KCl. These studies confirm that exposure to whole-body ionizing radiation decreased abdominal aortic vascular responsiveness to U46619. This depressed vascular reactivity can be abolished by pretreatment with the radioprotectant, WR2721. These observations may provide a rapid initial screening method for evaluating the in vivo efficacy of radioprotectant drugs.  相似文献   

19.
Previous studies have shown that hindlimb unweighting of rats, a model of microgravity, reduces evoked contractile tension of peripheral conduit arteries. It has been hypothesized that this diminished contractile tension is the result of alterations in the mechanical properties of these arteries (e.g., active and passive mechanics). Therefore, the purpose of this study was to determine whether the reduced contractile force of the abdominal aorta from 2-wk hindlimb-unweighted (HU) rats results from a mechanical function deficit resulting from structural vascular alterations or material property changes. Aortas were isolated from control (C) and HU rats, and vasoconstrictor responses to norepinephrine (10(-9)-10(-4) M) and AVP (10(-9)-10(-5) M) were tested in vitro. In a second series of tests, the active and passive Cauchy stress-stretch relations were determined by incrementally increasing the uniaxial displacement of the aortic rings. Maximal Cauchy stress in response to norepinephrine and AVP were less in aortic rings from HU rats. The active Cauchy stress-stretch response indicated that, although maximum stress was lower in aortas from HU rats (C, 8.1 +/- 0.2 kPa; HU, 7.0 +/- 0.4 kPa), it was achieved at a similar hoop stretch. There were also no differences in the passive Cauchy stress-stretch response or the gross vascular morphology (e.g., medial cross-sectional area: C, 0.30 +/- 0.02 mm(2); HU, 0.32 +/- 0.01 mm(2)) between groups and no differences in resting or basal vascular tone at the displacement that elicits peak developed tension between groups (resting tension: C, 1.71 +/- 0.06 g; HU, 1.78 +/- 0.14 g). These results indicate that HU does not alter the functional mechanical properties of conduit arteries. However, the significantly lower active Cauchy stress of aortas from HU rats demonstrates a true contractile deficit in these arteries.  相似文献   

20.
While propolis is known to have abundant bioactive constituents and a variety of biological activities, it is not clear whether propolis has beneficial effects on high glucose-mediated vascular endothelial impairment. The aim of the present study was to investigate the potential protective effect of propolis extract against the acute vascular endothelial dysfunction resulting from exposure to high glucose load and to elucidate its underlying mechanism. Rat aortic rings were incubated with normal glucose (11 mM), high glucose (44 mM), or mannitol (44 mM) for 3 h with or without propolis extract (400 μg/ml). Contraction to phenylephrine (Phe, 10?9–10?5 M) and relaxation to acetylcholine (ACh, 10?9–10?5 M) and sodium nitroprusside (SNP, 10?9–10?5 M) were measured before and after incubation. Changes in malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase (SOD) were also measured. Phe-induced contraction was impaired by high glucose as the E max decreased from 138.87?±?11.43 to 103.65?±?11.5 %. In addition, ACh-induced relaxation was impaired as the E max decreased from 99.80?±?7.25 to 39.20?±?6.5 %. SNP-induced relaxation was not affected. Furthermore, high glucose decreased the levels of both SOD (by 6 U/ml) and GSH (by 68 %) and increased levels of MDA (by 85 %). Propolis extract prevented high glucose-induced impairment of Phe and ACh responses and increased both SOD and GSH, leading to decreased MDA levels. In conclusion, propolis can protect against high glucose-induced vascular dysfunction by reducing oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号