首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A previous structure-activity investigation of acetylcholine (ACh) revealed a positive correlation between additional hydrophobic bulk and increased potency for inhibition of active transport of [3H]ACh by synaptic vesicles isolated from the electric organ of Torpedo. In the current study, several ACh analogues that are significantly larger than previously studied "false transmitters" were synthesized in the tritiated form by chemical means and tested for active transport. These are analogue 14 [(+/-)-(cis,trans)-1-benzyl-1-methyl-3-acetoxypyrrolidinium iodide], analogue 15 [(+/-)-1,1-dimethyl-3-benzoyloxypyrrolidinium iodide], and analogue 16/17 [(+/-)-(cis,trans)-1-benzyl-1-methyl-3-benzoyloxypyrrolidinium iodide]. These analogues place significant additional hydrophobic bulk on one or the other (analogues 14 and 15) or both (analogue 16/17) of the two pharmacophores of a small, conformationally constrained analogue of ACh. [3H]Analogue 14 and [3H]analogue 15 are actively transported, with Vmax values the same as or less than that of ACh, depending on the vesicle preparation. The observation that Vmax is the same for an analogue and ACh in some vesicle preparations suggests that the rate-limiting step does not involve ACh bound to the transporter. [3H]Analogue 16/17 is actively transported very poorly. Km values for ACh and for transported ACh analogues vary by up to two- to threefold in different vesicle preparations. The ACh transporter is much less selective for transported substrates than anticipated.  相似文献   

2.
Preincubation in assay mixture for 30 min at 37 degrees C of ATP citrate lyase from rat brain and liver results in 65-70% inhibition in the presence of 10 mM L-glutamate. This inhibition is specific since none of the known brain metabolites of glutamate shows this effect. ATP and ammonium sulphate-suspended, commercially purified malate dehydrogenase are both important in the generation of inhibition; citrate and NADH are not. The ATP citrate lyase activity in desalted crude extracts and 11% polyethylene glycol-precipitated fractions is inhibited but the enzyme purified by dye affinity chromatography is unaffected. Such purification reveals the presence of a factor responsible for the generation of the inhibition shown to be of Mr 380,000. These lines of evidence implicate endogenous glutamine synthetase, and the involvement of this enzyme is established by the use of its inhibitor L-methionine sulphoximine and by the addition of purified glutamine synthetase to restore the glutamate inhibition of purified ATP citrate lyase. The phenomenon probably arises from the production by glutamine synthetase of ADP, a known product inhibitor of ATP citrate lyase. Therefore contrary to previous reports elsewhere, L-glutamate has no role in the regulation of brain ATP citrate lyase and thus the supply of cytoplasmic acetyl groups for biosynthesis.  相似文献   

3.
Mild cerebral anoxic/ischemic/stress insults promote tolerance and thereby protect the brain from subsequent lethal anoxic/ischemic insults. We examined whether specific activation of PKC , , , or isoforms is associated with ischemic preconditioning (IPC) in rat brain. IPC was produced by a 2-minute global cerebral ischemia. Membrane and cytosolic fractions of the hippocampi were immunoblotted using specific antibodies for PKC, , , and . PKC showed a significant translocation to the membrane fraction from 30 min to 4 h and PKC at 4 h following IPC. In contrast, the membrane/cytosol ratio of PKC showed a tendency to decrease at 30 min and 8 h, and the membrane/cytosol ratio of PKC was significantly decreased from 30 min to 24 h following IPC. These findings indicate PKC isoform-specific membrane translocations in the hippocampus after brief global brain ischemia and suggest that activation of PKC and PKC may be associated with IPC-induced tolerance in the rat hippocampus.  相似文献   

4.
To assess the functions of Cl- -dependent glutamate "binding" (Cl- -dependent glutamate uptake) in synaptic membranes, possible effects of depolarization on the uptake were examined. When rat cerebral cortical slices were preincubated with depolarizing agents such as veratrine (7 micrograms/ml), 10 microM aconitine, 56 mM K+, and 50 microM monensin, [3H]glutamate uptake by the crude synaptic membranes, which were subsequently prepared from the pretreated slices, was increased by 60-85%. Stimulation of the glutamate uptake by predepolarization was dependent on Na+ but not on Ca2+. The bindings of gamma-[3H]aminobutyric acid and 5-[3H]hydroxytryptamine were not significantly affected by the predepolarization. Veratrine pretreatment increased the maximal density of the glutamate uptake sites without affecting the affinity for glutamate. Several characteristics of the uptake sites increased by the veratrine pretreatment coincided with those of Cl- -dependent glutamate uptake sites. Na+-dependent glutamate binding (Na+-dependent glutamate uptake) to the membranes was not affected by pretreatment with veratrine. The content of endogenous glutamate and the noninulin space in the membrane fractions were not changed by the predepolarization. The increase in the glutamate uptake induced by pretreatment with high K+ was reversible: it returned to the control level after a second incubation of the slices in control medium. These results suggest that the Cl- -dependent glutamate sequestration system in synaptic membranes is regulated by the membrane potential.  相似文献   

5.
《Molecular membrane biology》2013,30(1-2):155-168
Plasma membrane vesicles isolated from Ehrlich ascites tumor cells have been used to investigate the role of the transmembrane potential in the energetics of Systems A and L. As expected, Na+-dependent System A was responsive to changes in membrane potential. System L activity, as measured by transport of 2-aminonorbornane-2-carboxylic acid (BCH), was shown to be Na+-independent and was not altered by changes in the membrane potential. The combination of valinomycin and nigericin decreased accumulation of MeAIB but not that of BCH. The presence of nigericin alone caused a significant decrease in uptake by System A and a decrease in uptake by System L to a lesser degree. The inhibitory action of nigericin might reflect its ability to dissipate the Na+ gradient rather than an effect on K+ or H+ flows. The results indicate that modes of energization not produced through the transmembrane potential must account for any uphill operation of System L.  相似文献   

6.
Dynamic Storage of Dopamine in Rat Brain Synaptic Vesicles In Vitro   总被引:2,自引:0,他引:2  
Abstract: The dynamics of catecholamine storage were studied in highly purified, small synaptic vesicles from rat brain both during active uptake or after inhibiting uptake with reserpine, tetrabenazine, or removal of external dopamine. To assess turnover during active uptake, synaptic vesicles were allowed to accumulate [3H]dopamine ([3H]DA) for ~10 min and then diluted 20-fold into a solution containing unlabeled DA under conditions such that active uptake could continue. After dilution, [3H]DA was lost with single exponential kinetics at a half-time of ~4 min at 30°C in 8 mM Cl? medium, in which both voltage and H+ gradients are present in the vesicles. In 90 mM Cl? medium, in which high H+ and Cl? gradients but no voltage gradient are present, [3H]DA escaped at a half-time of ~7 min. In both high and low Cl? media, ~40% of [3H]DA efflux was blocked by reserpine or tetrabenazine. The residual efflux also followed first-order kinetics. These results indicate that two efflux pathways were present, one dependent on DA uptake (and thus on the presence of external DA) and the other independent of uptake, and that both pathways function regardless of the type of electrochemical H+ gradient in the vesicles. The presence of both uptake-dependent and -independent efflux was observed in experiments using DA-free medium, instead of uptake inhibitors, to prevent uptake. Uptake-independent efflux showed molecular selectivity for catecholamines; [14C]DA was lost about three times faster than [3H]norepinephrine after adding tetrabenazine directly (without dilution) to vesicles that had taken up comparable amounts of each amine. In addition, the first-order rate constant for uptake-independent efflux showed little change over a 60-fold range of internal DA concentrations, which suggests that this pathway had a high transport capacity. All efflux was blocked at 0°C, suggesting that efflux did not occur through a large pore. There was little or no change in the proton gradient in synaptic vesicles, monitored by [14C]methylamine equilibration, during the experimental manipulations used here. Thus, the driving force for catecholamine uptake remained approximately constant. The physiological role of uptake-independent efflux could be to allow the monoamine content of synaptic vesicles to be regulated over a time range of minutes and, thereby, control the amount released by exocytosis. These results imply that catecholamines turn over with a half-time of minutes during active uptake by brain synaptic vesicles in vitro.  相似文献   

7.
Folate Transport by Prawn Hepatopancreas Brush-Border Membrane Vesicles   总被引:1,自引:0,他引:1  
The transport system of folic acid (Pte-Glu) by brush-border membrane vesicles (BBMV) isolated from prawn (Penaeus japonicm) hepatopancreas, was studied by measuring the uptake of Pte-Glu. This uptake was found to have two components, intravesicular transport and membrane binding. Membrane binding was not affected by the presence of a transmembrane pH-gradient at a short incubation period. However, a transmembrane pH-gradient increased membrane binding at 60 min. The transport of Pte-Glu appeared to be carrier-mediated, was stimulated by an inwardly proton gradient (pH 5.5 outside, 7.4 inside) and was unaffected by a sodium-gradient. The relationship between pH gradient-driven Pte-Glu uptake and medium Pte-Glu concentration followed saturating Michaelis–Menten kinetics. Eadie–Hofstee representation of the pH gradient-driven Pte-Glu uptake indicated a single transport system with a Km of 0.37 M and Vmax of 1.06 pmol/mg protein/15 s. These findings indicate that BBMV isolated from prawn hepatopancreas possesses a Pte-Glu transport system similar to that described in mammalian intestine.  相似文献   

8.
Abstract: Transport of GABA by a high-affinity transport system ( K m≃ 10−5 M) is thought to terminate the action of this postulated neurotransmitter. 2,4-Diaminobutyric acid (DABA), a structural analogue, is taken up by neuronal elements and inhibits GABA uptake. Localization of [3H]DABA by auto-radiography has been used to identify neurons with the GABA high-affinity transport system. After reconstitution of lysed synaptosomal fractions in potassium salts, transfer of these membrane vesicles to sodium salts produces sodium and potassium ion gradients which drive [3H]GABA and [3H]DABA transport. For each, transport requires external sodium, is abolished by ionophores that dissipate the Na+ gradient, and is enhanced by conditions which make the intravesicular electromotive force more negative. Some characteristics of the transport of these substances, however, differ. For example, external chloride is required for GABA, but not DABA, transport. Internal potassium is required for DABA, but not GABA, transport. DABA is a competitive inhibitor ( K i≃ 0.6 MM) of GABA transport into membrane vesicle and synaptosomes. GABA, however, is a feeble inhibitor of DABA uptake into the membrane vesicles. These differences suggest that the two substances are transported by different mechanisms and possibly by different carriers. In addition to these experiments, using enzymatic-fluorometric techniques, it was shown that the artificially imposed ion gradients drive net chemical transport of GABA into the vesicles.  相似文献   

9.
Abstract: The effect of l -phenylalanine on the transport of tyrosine was studied using membrane vesicles from rat brain synaptosomes. Phenylalanine, which is accumulated in phenylketonuria, competitively inhibits tyrosine uptake at concentrations similar to those found in phenylketonuric patients, with a K 1 of the same order of the K m for tyrosine. This inhibition could be responsible for the depletion of catecholamines observed in phenylketonuria.  相似文献   

10.
Na+/K+-ATPase plays a key role in the transport of Na+ throughout the nephron, but ageing appears to be accompanied by changes in the regulation and localization of the pump. In the present study, we examined the effect of in vitro cell ageing on the transport of Na+ and K+ ions in opossum kidney (OK) cells in culture. Cells were aged by repeated passing, and Na+/K+-ATPase activity and K+ conductance were evaluated using electrophysiological methods. Na+K+-ATPase α1– and β1-subunit expression was quantified by Western blot techniques. Na+/H+ exchanger activity, changes in membrane potential, cell viability, hydrogen peroxide production and cellular proliferation were determined using fluorimetric assays. In vitro cell ageing is accompanied by an increase in transepithelial Na+ transport, which results from an increase in the number of Na+/K+-ATPase α1- and β1-subunits, in the membrane. Increases in Na+/K+-ATPase activity were accompanied by increases in K+ conductance as a result of functional coupling between Na+/K+-ATPase and basolateral K+ channels. Cell depolarization induced by both KCl and ouabain was more pronounced in aged cells. No changes in Na+/H+ exchanger activity were observed. H2O2 production was increased in aged cells, but exposure for 5 days to 1 and 10 μM of H2O2 had no effect on Na+/K+-ATPase expression. Ouabain (100 nM) increased α1-subunit, but not β1-subunit, Na+/K+-ATPase expression in aged cells only. These cells constitute an interesting model for the study of renal epithelial cell ageing.  相似文献   

11.
The transport of taurine into membrane vesicles prepared from neuroblastoma x glioma hybrid cells 108CC5 was studied. A great part of the taurine uptake by the membrane preparation is due to the transport into an osmotically sensitive space of membrane vesicles. Taurine uptake by membrane vesicles is an active transport driven by the concentration gradient of Na+ across the membrane (outside concentration greater than inside). The Km value of 36 microM for Na+-dependent taurine uptake indicates a high-affinity transport system. The rate of taurine transport by the membrane vesicles is enhanced by the K+ gradient (inside concentration greater than outside) and the K+ ionophore valinomycin. Taurine transport is inhibited by several structural analogs of taurine: hypotaurine, beta-alanine, and taurocyamine. All these results indicate that the taurine transport system of the membrane vesicles displays properties almost identical to those of intact neuroblastoma X glioma hybrid cells.  相似文献   

12.
Antibodies (Abs) raised against the L-glutamate-binding protein (GBP) purified from bovine brain were used to define the possible physiologic activity of GBP in synaptic membranes. Three processes were examined for their sensitivity to the Abs: the excitatory amino acid stimulation of thiocyanate (SCN-) flux, the transport of L-glutamic acid across the synaptic membrane, and the depolarization-induced release of L-glutamate. Only the amino acid-induced changes in ion flux were inhibited by the anti-GBP Abs. The change in membrane potential produced by exposure of synaptic membranes to excitatory amino acids was measured as the increase in the uptake of the lipophilic anion SCN-. The L-glutamate-induced SCN- influx was 40 times more sensitive to inhibition by the anti-GBP Abs than the stimulation of ion flux by kainate, and 60 times more sensitive than that produced by quisqualate. The anti-GBP Abs did not inhibit the activation of ion flux produced by N-methyl-D-aspartate. The inhibition of glutamate-stimulated ion fluxes by the Abs was complete, whereas the inhibition of L-glutamate binding to either the rat or bovine brain GBP was not. The results obtained indicated that although the majority of the anti-GBP Abs were not directed against the glutamate recognition site of the GBP and of presumed synaptic membrane receptors, they were effective in blocking the activation of receptor-associated ion channels. Thus, the GBP may be considered a component of some excitatory amino acid receptor complexes.  相似文献   

13.
The effects of chronic ethanol treatment on the membrane order of synaptosomes from the cerebral cortex, striatum, cerebellum, brainstem, and hippocampus of rats were determined by measuring the fluorescence polarization of diphenylhexatriene (DPH) that had been incorporated into the synaptosomal membranes. Fischer-344 rats either were fed a nutritionally complete ethanol-containing liquid diet for 5 months or pair-fed with a diet that contained sucrose substituted isocalorically for ethanol. Polarization values for synaptosomes from all the brain regions studied were similar except for those from cerebral cortical synaptosomal membranes, which were significantly less ordered. Ethanol in vitro (30-500 mM) decreased the polarization values in synaptosomes from sucrose-control rats for all brain regions, although the sensitivity of cerebellar synaptosomes to the membrane disordering effects of ethanol in vitro was significantly greater that of synaptosomes from other brain regions. Chronic ethanol treatment did not alter baseline polarization for any brain region. Cerebellar and brainstem synaptosomes from the ethanol-fed rats were significantly less susceptible to the membrane disordering effects of ethanol in vitro compared to their sucrose controls, suggesting that chronic ethanol administration results in tolerance to ethanol's membrane effects. Striatal synaptosomes exhibited intermediate tolerance, whereas the sensitivities of cortical and hippocampal synaptosomes to membrane disordering by ethanol in vitro were not significantly affected by the chronic ethanol treatment. These results suggest that synaptosomal membranes have different membrane order requirements depending on the brain region from which they are prepared. Variations in brain regional neuronal membrane sensitivity to ethanol and differential tolerance development may contribute to some of the acute and chronic behavioral effects of ethanol.  相似文献   

14.
Abstract: The effects of moderate and severe degrees of iron deficiency on brain and liver nonhaem iron levels and 5-hydroxytryptamine (serotonin; 5-HT) uptake by synaptic vesicles in vitro were investigated in experimental rats. Data obtained suggested that in both moderate and severe forms of iron deficiency, 5-HT uptake by brain synaptic vesicles is decreased and is accompanied by a reduction in brain and liver nonhaem iron levels. On repletion with iron for 4 weeks, the deficient group of rats showed a normalisation of 5-HT uptake by synaptic vesicles and liver nonhaem iron content, whereas the brain nonhaem iron concentration still showed a significant deficit. The data thus suggest that changes in the uptake of 5-HT by brain synaptic vesicles that accompany iron depletion and repletion are more rapid than changes in the total nonhaem iron concentration in the brain. The observation that 5-HT uptake by brain synaptic vesicles is decreased in iron deficiency suggests a probable role for iron in 5-HT storage in rat brain.  相似文献   

15.
The effect of cycloheximide, a protein synthesis inhibitor, was studied on the axonal transport of noradrenergic synaptic vesicles and presynaptic muscarinic receptors, identified by in vitro binding of [3H]dihydrotetrabenazine and [3H]quinuclidinylbenzilate, respectively, in rat sciatic nerve. Cycloheximide (1.5 mg/kg) administered subcutaneously 2 h before ligation decreased by approximately 50% the accumulation of vesicles and receptors in the proximal segment above the ligature placed on the nerve; its action was detectable after a lag period of 10 h and disappeared 96 h after administration. Double ligatures were placed on the nerve at various time intervals between the first (distal) and the second (proximal) ligature, and the accumulation of vesicles and receptors proximal to the second ligature was measured; the first ligature diminished the accumulation above the second ligature. At an interval of 96 h between the first and the second ligature, cycloheximide completely prevented the accumulation of vesicles and receptors proximal to the second ligature. The effects of double ligatures and the response to cycloheximide treatment can best be explained on the assumption that an important proportion of synaptic vesicles and presynaptic receptors is being recycled in the nerve cell bodies after retrograde transport.  相似文献   

16.
The effect of maternal dietary iron deficiency on brain synaptic vesicle [3H]serotonin (5-HT) uptake and iron content in the offspring was examined in rats. Pups born to iron-deficient mothers revealed significant deficits in vesicular [3H]5-HT uptake and iron concentration at 21 days of age. These changes were, however, found to be reversible with postweaning iron repletion.  相似文献   

17.
Abstract: The release of radiolabeled material from regenerating frog sciatic nerves was studied using a multicom- partment chamber, in which the ganglia and the outgrowth region, respectively, were separated from the rest of the nerve. The nerves were incubated with radioactive amino acids in the ganglionic compartment, and the material transported to and released at the outgrowth region was collected and analyzed. Approximately 10% of the transported radioactivity was released over a 24-h incubation period. Of the released materials, 84% had a molecular mass of < 1,000 daltons [the low-molecular-mass (LM) fraction] as determined by exclusion chromatography. The presence of LM material could not be explained by leakage, nor was it due to intracellular or extracellular degradation of radiolabeled, transported proteins. It was reduced by cold and was shown by the use of vinblastine to be dependent on axonal transport. According to TLC, both the original precursor and metabolites thereof could be detected among the released LM material. The present results demonstrate the existence of a transport system for LM material in peripheral axons. The preferential release of LM over high-molecular-mass material at the outgrowth region suggests that it could serve specific functions during regeneration.  相似文献   

18.
植物钾营养高效与膜运系统的关系   总被引:1,自引:0,他引:1  
HKT1和HAK1等转运子介导钾离子的高亲和吸收以及K^ /Na^ 共运转,从而可能增强Na^ 替代K^ 能力,KAT1和KST1等离子通道介导钾离子的累积和转运,从而调节气孔细胞的渗透压,控制气孔运动,阐述了植物生物膜上离子转运机制和钾营养高效机理的某种可能的关系,这些转运子和通道的高效表达可能与植物钾营养高效有很大的相关性。  相似文献   

19.
Using histochemical methods offering high topographical resolution for evaluation of changes in the ischemic focus and the penumbra, the mitochondrial electron transport chain (ETC) complexes I, II, and IV were examined in rats subjected to 2 h of proximal occlusion of the middle cerebral artery (MCAO) followed by no reperfusion, 1 h reperfusion, 4 h reperfusion, or 4 h reperfusion plus treatment with the free radical scavenger -PBN. Serial brain cryosections were histochemically stained to visualize activity of complexes I, II, and IV, and the volumes of tissue with reduced activity in the ipsilateral cortex and caudate putamen were measured by densitometric image analysis. Reductions in complex I, II, and IV activity were restricted to areas in the ischemic foci in cortex and caudate putamen, which microscopically displayed signs of early morphological damage. In cortex, the tissue volume with reduced activity did not change significantly during reperfusion but progressively increased in the caudate putamen, possibly reflecting a faster maturation of morphological damage in this region. Treatment with -PBN did not affect the observed reductions in activities. We deduce that inhibition of mitochondrial ETC complex activity does not play a critical role for recruitment of the penumbra in the infarction process.  相似文献   

20.
Retrograde transport from the Golgi to the ER is an essential process. Resident ER proteins that escape the ER and proteins that cycle between the Golgi and the ER must be retrieved. The interdependence of anterograde and retrograde vesicle trafficking makes the dissection of both processes difficult in vivo. We have developed an in vitro system that measures the retrieval of a soluble reporter protein, the precursor of the yeast pheromone α-factor fused to a retrieval signal (HDEL) at its COOH terminus (Dean, N., and H.R.B Pelham. 1990. J. Cell Biol. 111:369–377). Retrieval depends on the HDEL sequence; the α-factor precursor, naturally lacking this sequence, is not retrieved. A full cycle of anterograde and retrograde transport requires a simple set of purified cytosolic proteins, including Sec18p, the Lma1p complex, Uso1p, coatomer, and Arf1p. Among the membrane-bound v-SNAP receptor (v-SNARE) proteins, Bos1p is required only for forward transport, Sec22p only for retrograde trafficking, and Bet1p is implicated in both avenues of transport. Putative retrograde carriers (COPI vesicles) generated from Golgi-enriched membranes contain v-SNAREs as well as Emp47p as cargo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号