首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amyloid beta protein precursor is a mitogen   总被引:4,自引:0,他引:4  
The form of the secreted amyloid beta-protein precursor which contains the protease inhibitor sequence is mitogenic for Swiss 3T3 cells, while the precursor molecule lacking the protease inhibitor domain is not. A ten-fold stimulation of DNA synthesis occurs at 8 x 10(-9) M protein.  相似文献   

2.
The neuroendocrine polypeptide 7B2 is a precursor protein   总被引:4,自引:0,他引:4  
The neuroendocrine protein 7B2 is highly conserved and widely present in neurons and endocrine cells. It is coexpressed with the prohormone proopiomelanocortin (POMC) in the intermediate lobe of the pituitary gland of Xenopus laevis. To study the biosynthesis of 7B2 in this amphibian, an anti-7B2 monoclonal antibody was used in immunoprecipitation analysis of newly synthesized radiolabeled proteins, produced by pulse and pulse-chase-incubated neurointermediate lobes. Following a 15-min pulse incubation, a single immunoprecipitable protein of 25 kDa was synthesized. During subsequent chase incubation, this newly synthesized 7B2 protein was processed to an 18-kDa immunoprecipitable form. Analysis of the chase incubation medium revealed that only the 18-kDa processed product of 7B2, and not 7B2 itself, had been secreted. This secretion is a regulated process because it was blocked completely by the dopamine receptor agonist apomorphine. A study of protein biosynthesis in lobes treated with tunicamycin to prevent N-linked glycosylation showed that in contrast to POMC and an 18-kDa derivative of POMC, neither 7B2 nor its 18-kDa derivative was glycosylated. Chemical and enzymatic peptide mapping showed that processing of 7B2 occurs in the carboxyl-terminal region. The function of the 7B2 protein is unknown; the present results show that 7B2 itself is a precursor molecule and can only have an intracellular function whereas an extracellular function can only be attributed to 7B2-derived peptides.  相似文献   

3.
Alzheimer disease (AD) is associated with extracellular deposition of proteolytic fragments of amyloid precursor protein (APP). Although mutations in APP and proteases that mediate its processing are known to result in familial, early onset forms of AD, the mechanisms underlying the more common sporadic, yet genetically complex forms of the disease are still unclear. Four single-nucleotide polymorphisms within the ubiquilin-1 gene have been shown to be genetically associated with AD, implicating its gene product in the pathogenesis of late onset AD. However, genetic linkage between ubiquilin-1 and AD has not been confirmed in studies examining different populations. Here we show that regardless of genotype, ubiquilin-1 protein levels are significantly decreased in late onset AD patient brains, suggesting that diminished ubiquilin function may be a common denominator in AD progression. Our interrogation of putative ubiquilin-1 activities based on sequence similarities to proteins involved in cellular quality control showed that ubiquilin-1 can be biochemically defined as a bona fide molecular chaperone and that this activity is capable of preventing the aggregation of amyloid precursor protein both in vitro and in live neurons. Furthermore, we show that reduced activity of ubiquilin-1 results in augmented production of pathogenic amyloid precursor protein fragments as well as increased neuronal death. Our results support the notion that ubiquilin-1 chaperone activity is necessary to regulate the production of APP and its fragments and that diminished ubiquilin-1 levels may contribute to AD pathogenesis.  相似文献   

4.
Peptide-hormones are synthesized as higher molecular weight, precursor proteins which must initially undergo limited endoproteolysis to yield the bioactive peptide(s). The ability of two different endoproteinases, gonadotropin-associated peptide (GAP)-releasing enzyme and atrial granule serine proteinase (which are likely to be the physiologically relevant processing enzymes of bovine hypothalamic pro-gonadotropin-releasing hormone/gonadotropin-associated peptide and bovine pro-atrial natriuretic factor precursor proteins, respectively), to act at their own recognition sequences within their relevant pro-hormone proteins has now been contrasted with their ability to act at the recognition sequence for the alternate enzyme or to act at their own recognition sequence when it is placed within the protein framework of the alternate precursor protein. The results show that each enzyme acts with specificity at its own recognition sequence even when it is placed within the framework of the alternate pro-hormone. However, the enzymes fail to act (or act in a non-specific manner) at the alternate recognition sequence even if it is placed within the peptide framework of its own pro-hormone protein. Thus, despite the fact that both recognition sequences are similar in sequence and residue composition and that both contain a doublet of basic amino acids, it appears that sequence and the local conformation assumed by the processing site within the pro-hormone protein are essential for each endoproteinase to act with fidelity. As part of our continuing work, we now also report several newly determined physicochemical properties of hypothalamic GAP-releasing enzyme, the processing enzyme of pro-gonadotropin-releasing hormone/GAP protein.  相似文献   

5.
Cell migration is known to be triggered by constituents of the extracellular matrix such as fibronectin and by soluble mediators commonly summarized as motogens. Many growth factors such as the epidermal growth factor (EGF) have been shown to act as motogens. Recently, the secretory N-terminal portion of the beta-amyloid precursor protein (sAPP) has been identified as a keratinocyte growth factor. Hence, in this study we analysed whether sAPP stimulates also keratinocyte migration employing the stroboscopic cell motility assay. The migration velocity as well as the frequency of lamellipodia protrusion and ruffle formation were increased about two-fold thus corresponding to the effect of EGF. Using a newly developed beta1-integrin migration track assay we observed that sAPP increased the proportion of migrating keratinocytes and their directional persistence. sAPP appeared to operate synergistically with fibronectin with respect to its motogenic effect. Using a modified Boyden chamber assay we showed that sAPP besides its chemokinetic effect functions as a chemoattractant. Like EGF, sAPP exerted its motogenic effect through the activation of Rac kinase but the receptor for sAPP appears to be distinct. The results suggest that sAPP operates as a motogen in the human epidermis, where it may participate in the regulation of reepithelialization during wound healing.  相似文献   

6.
Experimental evidence implicates oxidative free radical reactions as central in the processes of neurodegenerative diseases. In particular, cellular interactions with the beta-amyloid protein have been linked to neuron cell death in Alzheimer's disease. Also, uncharacterized dimeric purine moieties have been detected in oxidized DNAs. It has been suggested that inadequate excision-repair of such products plays a functional role in the neurological degeneration observed in familial Alzheimer's disease, Down's syndrome, and xeroderma pigmentosum. Therefore, in order to obtain a reagent to monitor the presence of such products, the purine dimer 8-8-(2'-deoxyguanosyl)-2'-deoxyguanosine-5'-monophosphate was used as a hapten for elicitation of rabbit anti-purine dimer antiserum. This antiserum specifically recognizes various purified 8-8-bideoxyribonucleosides and 8-8-bideoxyribonucleotides. We found that DNA oxidized by the Fenton reaction is specifically recognized by this antiserum. This reagent can therefore be used to demonstrate formation and excision of DNA purine dimers. Moreover, incubation of cultured rat pheochromocytoma PC-12 cells with the beta-amyloid protein resulted in formation of these purine dimers in cellular DNA. These dimers were subsequently removed from cellular DNA. From these results we conclude that the free radicals generated by A beta cause oxidative DNA alterations including purine dimers. Deficient repair of this type of DNA damage might result in neural cell loss via apoptosis. Our findings suggest mechanisms for the roles of beta-amyloid and oxidative free radicals in neurodegenerative diseases and the role of DNA excision-repair in the prevention of lethal neurotoxicity.  相似文献   

7.
Insulin is susceptible to fibrillation, a misfolding process leading to well ordered cross-beta assembly. Protection from fibrillation in beta cells is provided by sequestration of the susceptible monomer within zinc hexamers. We demonstrate that proinsulin is refractory to fibrillation under conditions that promote the rapid fibrillation of zinc-free insulin. Proinsulin fibrils, as probed by Raman microscopy, are nonetheless similar in structure to insulin fibrils. The connecting peptide, although not well ordered in native proinsulin, participates in a fibril-specific beta-sheet. Native insulin and proinsulin exhibit similar free energies of unfolding as inferred from guanidine denaturation studies: relative amyloidogenicities are thus not correlated with global stability. Strikingly, the susceptibility of proinsulin to fibrillation is increased by scission of the connecting peptide at single sites. We thus propose that the connecting peptide constrains a large scale conformational change in the misfolded protein. A tethering mechanism is proposed based on a model of an insulin protofilament derived from electron-microscopic image reconstruction. The proposed relationship between cross-beta assembly and protein topology is supported by studies of single-chain analogs (mini-proinsulin and insulin-like growth factor I) in which foreshortened connecting peptides further retard fibrillation. In addition to its classic function to facilitate disulfide pairing, the connecting peptide may protect beta cells from toxic protein misfolding in the endoplasmic reticulum.  相似文献   

8.
Import of the precursor to 5-enolpyruvylshikimate-3-phosphate synthase (pEPSPS) into chloroplasts is inhibited by the herbicide glyphosate. Inhibition of import is maximal at glyphosate concentrations of ≥10 μm and occurs only when pEPSPS is present as a ternary complex of enzyme–shikimate-3-phosphate–glyphosate. Glyphosate alone had no effect on the import of pEPSPS since it is not known to interact with the enzyme in the absence of shikimate-3-phosphate. Experiments with wild-type and glyphosate-resistant mutant forms of pEPSPS show that inhibition of import is directly proportional to the binding constants for glyphosate. Inhibition of import is thus a direct consequence of glyphosate binding to the enzyme–shikimate-3-phosphate complex. The potential for non-specific effects of glyphosate on the chloroplast transport mechanism has been discounted by showing that import of another chloroplast-designated protein was unaffected by high concentrations of glyphosate and shikimate-3-phosphate. The mechanism of import inhibition by glyphosate is consistent with a precursor unfolding/refolding model.  相似文献   

9.
The Euglena precursor to the small subunit of ribulose-15-bisphosphate carboxylase/oxygenase (pSSU) is a polyprotein. To determine the transport route from cytoplasm to chloroplast, Euglena was pulse labeled with 35S-sulfate and the organelles were separated on sucrose gradients. After a pulse, pSSU was found in the endoplasmic reticulum (ER) and Golgi apparatus. During a chase, ER-and Golgi-localized pSSU decreased concomitant with the appearance of SSU in chloroplasts. SSU was not found in pSSU-containing ER and Golgi fractions. Na2CO3 did not remove pSSU from ER or Golgi membranes, indicating that it was an integral membrane protein. pSSU was inserted in vitro into canine microsomes, and Na2CO3 did not remove pSSU from the microsomal membrane. The in vivo and in vitro experiments show that Euglena pSSU is inserted into the ER membrane and transported as an integral membrane protein to the Golgi apparatus before chloroplast import and polyprotein processing.  相似文献   

10.
The protease inhibitor, protease nexin-2 (PN-2), is the secreted form of the amyloid beta-protein precursor (APP) which contains the Kunitz protease inhibitor domain. PN-2/APP is an abundant platelet alpha-granule protein which is secreted upon platelet activation. PN-2/APP mRNA is present in cultured endothelial cells and the protein has been detected in plasma. In the present studies we quantitated PN-2/APP in platelets, plasma and several different cell types of the vasculature to identify the repository of the protein in the circulatory system. We report that PN-2/APP is predominantly a platelet protein in the vascular compartment. Lysates of unstimulated umbilical vein endothelial cells, granulocytes or monocytes contained little PN-2/APP based on sensitive functional protease binding and immunoblotting assays. Quantitative immunoblotting studies demonstrated that normal citrated-plasma contains less than or equal to 60 pM PN-2/APP. In contrast, platelets can contribute up to 30 nM PN-2/APP, indicating that they are the major source of the protein in blood.  相似文献   

11.
The spermatophore or sperm sac of Tenebrio molitor (yellow mealworm beetle) is an acellular structure composed mostly of structural proteins, termed spermatophorins. The proteins are derived from the bean-shaped accessory reproductive glands of the male and are assembled into the multilayered structure within the ejaculatory duct. Homogenates of the secretory plug from this gland were used as immunogens for the production of monoclonal antibodies, including one identified as PL 21.1 which recognizes an antigen in the gland and the spermatophore. With the aid of gel filtration and immunoaffinity chromatography with a PL 21.1, we isolated a glandular secretory protein that is a precursor to a spermatophorin with similar electrophoretic mobility. On native polyacrylamide gels, the antigen from gland homogenates has an apparent molecular mass of 370 kDa. On sodium dodecyl sulfate gels, the antigen from the gland and that from the spermatophore have apparent molecular masses of 23 kDa. According to immunoblots of sodium dodecyl sulfate gels, the 23-kDa glandular antigen is organ-specific and adult-specific. By immunocytochemistry with PL 21.1, we found the antigens to be restricted to secretory vesicles of only one cell type in the gland and to a discrete layer in the outer wall of the spermatophore. The 23-kDa secretory antigen is distinguished by being high in glutamic acid/glutamine (15.4%) and in proline (25.2%).  相似文献   

12.
A large body of evidence has implicated amyloid precursor protein (APP) and its proteolytic derivatives as key players in the physiological context of neuronal synaptogenesis and synapse maintenance, as well as in the pathology of Alzheimer's Disease (AD). Although APP processing and release are known to occur in response to neuronal stimulation, the exact mechanism by which APP reaches the neuronal surface is unclear. We now demonstrate that a small but relevant number of synaptic vesicles contain APP, which can be released during neuronal activity, and most likely represent the major exocytic pathway of APP. This novel finding leads us to propose a revised model of presynaptic APP trafficking that reconciles existing knowledge on APP with our present understanding of vesicular release and recycling.  相似文献   

13.
The aim of this study was to determine whether amyloid precursor protein (APP) is expressed in human adipose tissue, dysregulated in obesity, and related to insulin resistance and inflammation. APP expression was examined by microarray expression profiling of subcutaneous abdominal adipocytes (SAC) and cultured preadipocytes from obese and nonobese subjects. Quantitative real-time PCR (QPCR) was performed to confirm differences in APP expression in SAC and to compare APP expression levels in adipose tissue, adipocytes, and stromal vascular cells (SVCs) from subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) specimens. Adipose tissue samples were also examined by western blot and immunofluorescence confocal microscopy. Microarray studies demonstrated that APP mRNA expression levels were higher in SAC (approximately 2.5-fold) and preadipocytes (approximately 1.4) from obese subjects. Real-time PCR confirmed increased APP expression in SAC in a separate group of obese compared with nonobese subjects (P=0.02). APP expression correlated to in vivo indices of insulin resistance independently of BMI and with the expression of proinflammatory genes, such as monocyte chemoattractant protein-1 (MCP-1) (R=0.62, P=0.004), macrophage inflammatory protein-1alpha (MIP-1alpha) (R=0.60, P=0.005), and interleukin-6 (IL-6) (R=0.71, P=0.0005). Full-length APP protein was detected in adipocytes by western blotting and APP and its cleavage peptides, Abeta40 and Abeta42, were observed in SAT and VAT by immunofluorescence confocal microscopy. In summary, APP is highly expressed in adipose tissue, upregulated in obesity, and expression levels correlate with insulin resistance and adipocyte cytokine expression levels. These data suggest a possible role for APP and/or Abeta in the development of obesity-related insulin resistance and adipose tissue inflammation.  相似文献   

14.
APP, amyloid beta precursor protein, is linked to the onset of Alzheimer's disease (AD). We have here found that transforming growth factor beta2 (TGFbeta2), but not TGFbeta1, binds to APP. The binding affinity of TGFbeta2 to APP is lower than the binding affinity of TGFbeta2 to the TGFbeta receptor. On binding to APP, TGFbeta2 activates an APP-mediated death pathway via heterotrimeric G protein G(o), c-Jun N-terminal kinase, NADPH oxidase, and caspase 3 and/or related caspases. Overall degrees of TGFbeta2-induced death are larger in cells expressing a familial AD-related mutant APP than in those expressing wild-type APP. Consequently, superphysiological concentrations of TGFbeta2 induce neuronal death in primary cortical neurons, whose one allele of the APP gene is knocked in with the V642I mutation. Combined with the finding indicated by several earlier reports that both neural and glial expression of TGFbeta2 was upregulated in AD brains, it is speculated that TGFbeta2 may contribute to the development of AD-related neuronal cell death.  相似文献   

15.
T Endo  G Schatz 《The EMBO journal》1988,7(4):1153-1158
We have purified milligram amounts of an importable mitochondrial precursor protein [the presequence of yeast cytochrome oxidase subunit IV fused to mouse dihydrofolate reductase (DHFR)]. This has made it possible, for the first time, to perform detailed studies on the conformation of a precursor protein and its interaction with lipid membranes. The precursor protein closely resembled authentic mouse DHFR with respect to secondary structure (measured by CD spectra) and stability towards urea (measured by tryptophan fluorescence and enzyme activity). With this precursor protein, the presequence thus does not significantly alter the folding of the attached 'passenger protein'. In contrast to the corresponding presequence peptide, the native precursor exhibited only weak ability to disrupt vesicles with a low mol% of negatively charged lipids, suggesting that the passenger protein masks the amphiphilic properties of the presequence. The membrane-perturbing properties of the precursor were greatly enhanced by increasing the vesicles' content of negatively charged lipid or by denaturing the precursor in 5 M urea. Interaction with vesicles rich in acidic phospholipid was accompanied by partial unfolding of the precursor, suggesting that such a conformational change may also be involved in the interaction of the precursor with the mitochondrial membranes.  相似文献   

16.
We have probed the environment of a precursor protein stuck in mitochondrial import sites using cleavable bifunctional crosslinking reagents. The stuck precursor was crosslinked to a 70 kd protein which, by immunological techniques, was shown to be a matrix protein. The protein was purified to homogeneity by ATP-Sepharose chromatography and partially sequenced. Fourteen of its 15 N-terminal amino acids were identical to residues 24-38 of the protein encoded by the nuclear gene SSC1, which had been proposed to encode a dnaK-like 70 kd mitochondrial stress protein. Our data imply that this mitochondrial hsp70 is made with a cleavable matrix-targeting sequence composed of 23 residues. The complex containing stuck precursor, mitochondrial hsp70, and ISP42 could be solubilized from mitochondria by the non-ionic detergent Triton X-100 even without crosslinking, suggesting tight association of these three components. As the stuck precursor is arrested at an early stage of translocation, mitochondrial hsp70 may initiate the events that lead to refolding of imported precursors in the matrix space.  相似文献   

17.
Recently, it has been suggested that Alzheimer's disease is associated with a duplication of the amyloid precursor protein gene localized to chromosome 21q21. In this study, a cloned DNA probe (B2.3), complementary to the sequence coding the beta-amyloid peptide, and DNA polymorphisms adjacent to this sequence were used to determine the number of copies of the beta-amyloid gene in DNA isolated from human blood and brain. Individuals with trisomy 21 (Down syndrome) who were heterozygous for the polymorphisms showed a gene-dosage effect, with one allele exhibiting twice the autoradiographic intensity as the other. Heterozygous individuals with Alzheimer's disease and controls showed equal intensities of the two allelic bands, suggesting that there are only two copies of the beta-amyloid gene in these individuals. In individuals with Alzheimer's disease and in controls who were homozygous for these polymorphisms, the number of copies of the beta-amyloid gene was determined by comparing the autoradiographic intensity of beta-amyloid alleles to that of DNA fragments detected by a reference probe. No difference was detected between these two groups.  相似文献   

18.
《The EMBO journal》1988,7(6):1915
[This corrects the article on p. 1153 in vol. 7, PMID: 2841114.].  相似文献   

19.
Alzheimer's beta-amyloid precursor protein (APP) is normally processed by an unidentified alpha-secretase. A unique feature of this protease is its high sensitivity to phorbol esters, yet the mechanism involved is unclear. We have previously reported that phorbol 12,13-dibutyrate (PDBu) activates calpain, a Ca2+-dependent protease, and PDBu-induced release of APPs (secreted APP) is sensitive to calpain inhibitors, suggesting that calpain is involved in APP alpha-processing. In the present study, we found that PDBu markedly promoted the expression of both mu- and m-calpains in cultured fibroblasts. Dose-response and time course studies revealed that mu-calpain was more sensitive to PDBu than m-calpain and the temporal course of the mu-calpain change coincides better with that of APPs release. Moreover, the stimulatory effect of PDBu on mu-calpain was selectively blocked by mu-calpain-specific siRNA (small interference RNA) and the blockage was accompanied by a concomitant decrease in APPs release. In contrast, m-calpain siRNA did not affect APPs release significantly. Measurement of amyloid beta protein (Abeta) release in the mu-calpain siRNA-treated cells indicated that Abeta40 and Abeta42 levels inversely changed in relation to APPs, and the changes in Abeta42 were more prominent than in Abeta40. Together, these data suggest that calpain, particularly mu-calpain, is a potential candidate for alpha-secretase in the regulated APP alpha-processing, and that changes in this protease can affect the outcome of the overall APP processing.  相似文献   

20.
Amyloid precursor protein (APP) has been a focus of intense investigation because of its role in Alzheimer's disease (AD), however, its biological function remains uncertain. Loss of APP and APP-like proteins results in postnatal lethality in mice, suggesting a role during embryogenesis. Here we show that in a zebrafish model system, knock down of APP results in the generation of fish with dramatically reduced body length and a short, curly tail. In situ examination of gene expression suggests that the APP morphant embryos have defective convergent-extension movements. We also show that wild-type human APP rescues the morphant phenotype, but the Swedish mutant APP, which causes familial AD (fAD), does not rescue the developmental defects. Collectively, this work demonstrates that the zebrafish model is a powerful system to define the role of APP during embryonic development and to evaluate the functional activity of fAD mutant APP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号