首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polyphosphate- and polyhydroxyalkanoate (PHA)-accumulating traits of predominant microorganisms in an efficient enhanced biological phosphorus removal (EBPR) process were investigated systematically using a suite of non-culture-dependent methods. Results of 16S rDNA clone library and fluorescence in situ hybridization (FISH) with rRNA-targeted, group-specific oligonucleotide probes indicated that the microbial community consisted mostly of the alpha- (9.5% of total cells), beta- (41.3%) and gamma- (6.8%) subclasses of the class Proteobacteria, Flexibacter-Cytophaga (4.5%) and the Gram-positive high G+C (HGC) group (17.9%). With individual phylogenetic groups or subgroups, members of Candidatus Accumulibacter phosphatis in the beta-2 subclass, a novel HGC group closely related to Tetrasphaera spp., and a novel gamma-proteobacterial group were the predominant populations. Furthermore, electron microscopy with energy-dispersive X-ray analysis was used to validate the staining specificity of 4,6-diamino-2-phenylindole (DAPI) for intracellular polyphosphate and revealed the composition of polyphosphate granules accumulated in predominant bacteria as mostly P, Ca and Na. As a result, DAPI and PHA staining procedures could be combined with FISH to identify directly the polyphosphate- and PHA-accumulating traits of different phylogenetic groups. Members of Accumulibacter phosphatis and the novel gamma-proteobacterial group were observed to accumulate both polyphosphate and PHA. In addition, one novel rod-shaped group, closely related to coccus-shaped Tetrasphaera, and one filamentous group resembling Candidatus Nostocoidia limicola in the HGC group were found to accumulate polyphosphate but not PHA. No cellular inclusions were detected in most members of the alpha-Proteobacteria and the Cytophaga-Flavobacterium group. The diversified functional traits observed suggested that different substrate metabolisms were used by predominant phylogenetic groups in EBPR processes.  相似文献   

2.
Important channels of communication between mammalian leucocytes have long been recognised. Here, data are reported that suggest similar integrations may occur between snapper leucocytes upon mitogen stimulation. Cell surface immunoglobulin (IgM) expression was used in conjunction with intracellular fluorescence staining and flow cytometry to differentiate proliferating peripheral blood leucocyte subsets (PBLs). Independent activation using phytohaemagglutinin (PHA) or lipopolysaccharide (LPS) drove both mIg(-)and mIg(+)cells into cycle. It is not known if the proliferation of mIg(+)cells was mediated by a mutually exclusive effect of the mitogen on each cell population, cognate cellular interaction or a soluble growth factor. Simultaneous activation of PBLs with PHA and LPS consistently induced significantly more cells to proliferate than the sum of proliferating cells stimulated solely with PHA or LPS. Together, the results suggest that different leucocyte subsets have the capability to influence their respective responses to mitogenic stimulation. Therefore, like in the mammalian immune system, communication may occur between snapper leucocyte subsets.  相似文献   

3.
1. Formycin triphosphate (FTP), a fluorescent analogue of ATP, is a substrate for (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3), with properties similar to those of ATP. 2. FTP and formycin diphosphate (FDP) bind to the enzyme with high affinity and, on binding, the nucleotide fluorescence is enhanced 3-4-fold. It is therefore possible, with a stopped-flow fluorimeter, to measure the rates of binding and release of FTP and FDP under conditions in which turnover does not occur. 3. When the enzyme-FTP complex is exposed to conditions permitting turnover (Mg2+, Na+ +/- K+), changes in fluorescence occur which can be explained by supposing that they reflect the interconversion of states with or without bound nucleotides. A rapid fall in fluorescence, that we attribute to the rapid release of FDP from newly phosphorylated enzyme, is followed by a steady state in which low fluorescence suggests that little nucleotide is bound. Eventually, exhaustion of FTP allows rebinding of FDP to the enzyme, which is signalled by a rise in fluorescence. 4. The estimated rate of FDP release from newly formed phosphoenzyme is unaffected by the presence of K+ (0-2 mM) or the concentration of FTP (1-20 micron). 5. Experiments with [gamma-32P]FTP show that about 1 mol of 32P is incorporated per mol of enzyme. The rate of phosphorylation of the enzyme by [gamma-32P]FTP has been measured with a rapid-mixing-and-quenching apparatus. 6. Kinetic data from the fluorescence and phosphorylation experiments show that the behaviour of the enzyme, at least at the low nucleotide concentrations employed, is consistent with the Albers-Post model, and is difficult to reconcile with models in which K+ acts at or before the step in which FDP is released during turnover.  相似文献   

4.
An unknown cell subpopulation was observed in mouse and rat thymus, spleen and bone marrow cells, as well as in human peripheral blood mononuclear cells (resting and stimulated by PHA) using equilibrium HCl/acridine orange staining. This subpopulation includes cells with decreased green and unchanged red fluorescence. The staining does not affect cells in S- and G2/M-phases. The mechanism and biological meaning of the effect await further investigation.  相似文献   

5.
The presence of glycogen-accumulating organisms (GAOs) in enhanced biological phosphorus removal (EBPR) plants can seriously deteriorate the biological P-removal by out-competing the polyphosphate-accumulating organisms (PAOs). In this study, uncultured putative GAOs (the GB group, belonging to the Gammaproteobacteria) were investigated in detail in 12 full-scale EBPR plants. Fluorescence in situ hybridization (FISH) revealed that the biovolume of the GB bacteria constituted 2-6% of total bacterial biovolume. At least six different subgroups of the GB bacteria were found, and the number of dominant subgroups present in each plant varied between one and five. Ecophysiological investigations using microautoradiography in combination with FISH showed that, under aerobic or anaerobic conditions, all subgroups of the GB bacteria could take up acetate, pyruvate, propionate and some amino acids, while some subgroups in addition could take up formate and thymidine. Glucose, ethanol, butyrate and several other organic substrates were not taken up. Glycolysis was essential for the anaerobic uptake of organic substrates. Polyhydroxyalkanoates (PHA) but not polyphosphate (polyP) granules were detected in all GB bacterial cells. Polyhydroxyalkanoate formation after anaerobic uptake of acetate was confirmed by measuring the increase in fluorescence intensity of PHA granules inside GB bacterial cells after Nile blue staining. One GB subgroup was possibly able to denitrify, and several others were able to reduce nitrate to nitrite. PAOs were also enumerated by FISH in the same treatment plants. Rhodocyclus-related PAOs and Actinobacteria-related PAOs constituted up to 7% and 29% of total bacterial biovolume respectively. Rhodocyclus-related PAOs always coexisted with the GB bacteria and showed many physiological similarities. Factors of importance for the competition between the three groups of important bacteria in EBPR plants are discussed.  相似文献   

6.
An approach for rapid differentiation between short-chain-length (scl) and medium-chain-length (mcl) polyhydroxyalkanoate (PHA) producers was developed. Polyhydroxyalkanoate-accumulated bacterial cells stained with Nile red were suspended in water and subjected to fluorescence spectroscopy at a fixed excitation wavelength of 488 nm. The scl-PHA-accumulated bacteria revealed a maximum emission wavelength at 590 nm, and for mcl-PHA producers were seen at a wavelength of 575 nm. Combining Nile red staining and fluorescence spectroscopy, the accumulated PHA granules could be rapidly differentiated into scl-PHA and mcl-PHA from the intact cells.  相似文献   

7.
Summary Streptococcus lactis ferments glucose in a homolactic fashion but a heterolactic fermentation pattern is observed when it is grown on maltose. Using in vivo phosphorus-31 and carbon-13 NMR studies of glucose-metabolizing cells we confirmed that fructosediphosphate (FDP) is the major glycolytic intermediate and that the production of lactate causes major changes both in the intra- and extracellular pH values. Starved cells contain mainly 3-phosphoglycerate (3-PGA) and some phosphoenolpyruvate (PEP). Metabolism of maltose also brings about major changes in pH, but it was unclear from the poorly resolved in vivo spectra if FDP was the main glycolytic intermediate present. This question was further studied by analyzing perchloric acid extracts by phosphorus-31 NMR. These studies showed that glucose-metabolizing cells have higher levels of FDP and lower levels of inorganic phosphate (P i ) than maltose-metabolizing cells. 3-PGA always remained present in the latter cells suggesting that these exist in a semi-starved state which is probably the reason for their heterolactic fermentation pattern. In the course of these studies we also examined the effects of the inhibitors 2-deoxyglucose, fluoride and iodoacetate. We could demonstrate that by judicious choice of carbon sources and inhibitors one could completely reduce the intracellular P i pool. This suggests that one should be able to regulate the shift from heterolactic to homolactic fermentation, as P i is considered to be the most potent inhibitor of pyruvate kinase in these cells.Sponsored by grants from the Swedish Natural Sciences Research Council (NFR) (to BHH and HJV), the Biotechnology Research Foundation (SBF) (to BHH) and the Canadian Natural Sciences Research Council (NSERC) (to HJV)  相似文献   

8.
A rapid quantitative measurement of accumulated polyhydroxyalkanoate (PHA) is essential for rapid monitoring of PHA production by microorganisms. In the present study, a 96-well microplate was used as a high throughput means to measure the fluorescence intensity of the Nile red stained cells containing PHA. The linear correlation obtained between intracellular PHA concentration and the fluorescence intensity represents the potential of the Nile red method employment to determine PHA concentration. The optimal ranges of excitation and emission wavelengths were determined using bacterial cells containing different types of PHAs, of different co-monomers and compositions. Interestingly, in spite of different co-monomers compositions in each PHA, all tested PHAs fluoresced maximally at excitation wavelength between 520 and 550 nm, and emission wavelength between 590 and 630 nm. The developed staining method also had successfully demonstrated a good correlation between the amount of accumulated PHA based on the fluorescence intensity measurements and that from chromatographic analysis to evaluate poly(3-hydroxybutyrate) [P(3HB)], poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)], poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)], using the same calibration curve, despite of different co-monomers that the PHA consist. Strongly supported by these experimental results, it can therefore be concluded that the developed staining method can be efficiently applied for rapid monitoring of PHA production.  相似文献   

9.
A monoclonal antibody (3C5) isolated from a mouse immunized with human chromatin stained the nuclei of all cultured cell types tested by indirect immunofluorescence. Experiments with HeLa and PtK1 cells demonstrated striking cell-cycle-related changes in the staining properties of the target antigen. A rapid increase in nuclear fluorescence was seen in prophase, with antigen located between the condensing chromosomes. In metaphase and anaphase cells antigen was present throughout the cytoplasm with the chromosomes apparently unstained. However, isolated metaphase chromosomes showed intense, peripheral staining. In telophase cells immunofluorescent staining was most intense among the decondensing chromosomes and by early G1 staining was predominantly nuclear. Nuclear fluorescence faded as cells progressed through interphase. By protein blotting and immunostaining, 3C5 recognized protein bands with subunit molecular weights of 130, 73, 50, 38, 32 and 22 to 25 kDa. These bands were present in all human and rodent cultured cell types tested. All bands were extracted by 6 M urea or 1% sodium dodecyl sulfate (SDS) but not by Triton X-100. Our results provide evidence against the involvement of a common carbohydrate moiety, in vitro proteolysis or non-specific cross reaction in this multi-banded pattern. The same family of proteins was detected in mitotic and interphase cells, suggesting that the changes in immunofluorescent staining through mitosis are due to changes in antigen accessibility. Subcellular fractionation experiments showed that all major bands were present in the nuclear fraction. Only two (50 and 32 kDa) were detected also in the post-nuclear membrane fraction and none were present in the soluble cytoplasmic fraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Phytohaemagglutinin (PHA)-responsive lymphocytes from human peripheral blood samples, either irradiated or un-irradiated, showed increased frequency of first division metaphase cells (detected by fluorescence plus Giemsa (FPG) staining) as a function of duration of storage. Irradiated and subsequently stored samples showed small but significant increase for the yield of dicentrics. The yield of aberrant metaphases and deletions (excess acentrics) remained unchanged. Increasing Bromodeoxyuridine (BrdU) concentrations slowed down the cell cycle progression but did not influence the yield of aberrations including that of dicentrics.  相似文献   

11.
Acridine orange staining of exfoliated cells from epithelial tissues facilitates discrimination between normal and abnormal cells: abnormal cells develop highly elevated nuclear fluorescence. Comparisons of acridine orange (AO) staining with propidium iodide (PI) or Feulgen staining have shown that: (a) PI staining also provides highly elevated nuclear fluorescence from abnormal cells; (b) the distributions of nuclear fluorescence following AO or PI staining were usually not significantly different as judged by the Kolmogorov-Smirnov test; (c) fluorescence emission spectra from AO and PI stained cells are consistent with the hypothesis that both fluorochromes bind to DNA within cell nuclei; (d) DNAse treatment of AO stained normal cells eliminates the nuclear fluorescence peak from slit-scan contours; RNAse treatment has no effect on nuclear fluorescence; (e) the distribution of abnormal cell nuclear fluorescence after AO staining is usually, but not always, significantly different from the distribution of abnormal cell nuclear absorbance after Feulgen staining, with relative nuclear fluorescence being greater than relative nuclear absorbance. The hypothesis currently most consistent with these results is that elevated Feulgen DNA content can account for only part of the discrimination provided by AO staining, and that the chromatin within abnormal cells is altered so as to increase accessibility of DNA to intercalating dyes.  相似文献   

12.
Early events in phytohaemagglutinin (PHA) stimulation of mouse splenocytes have been quantitated by using flow cytometry and supravital staining with acridine orange (AO). Increasing percentages of single cells with increased metachromatic (red) AO staining were demonstrated in cultures stimulated by PHA for up to 24 hr. These differences in staining could be eliminated by fixation with 1:1 ethanol/acetone before staining. Stimulated cells showed an increase in nonspecific esterase activity as measured by flow cytometry after supravital staining with fluorescein diacetate (FDA). The data reported show a heterogeneity in the per cell response of mouse splenocytes to PHA. The relationship between these data and the mechanism of mitogen stimulation is discussed.  相似文献   

13.
Microorganisms containing short-chain-length (scl-) or medium-chain-length (mcl-) poly(hydroxyalkanoates) (PHAs) are commonly screened by applying rapid staining methods using lipophilic reagents. These methods provide powerful means for general screening of organisms actively producing and accumulating PHAs. The Southern blot hybridization method additionally allows the identification of potential PHA-producing microorganisms. Polymerase chain reaction (PCR)-based detection methods further afford rapid and sensitive means to screen for PHA biosynthesis genes. Specific PCR assays had been developed for the simultaneous or individual detection of the class II mcl-PHA synthase genes of Pseudomonas. The amplicons (approximately 0.54 kb) can be directly sequenced or used as probes for hybridization studies. The sequence information can further be used to initiate chromosome walking for an eventual cloning of the complete PHA biosynthesis operon. In addition, the amplification pattern and sequence data can be used to differentiate subgroups of organisms, as demonstrated for P. corrugata and P. mediterranea. Other researchers reported PCR methods for the detection of scl-PHA synthase genes and those of Bacillus spp., thus greatly expanding the types of PHA synthase gene and the organisms that can be characterized by this approach. The vast sequence information obtainable through PCR-based studies of various PHA synthase operons should facilitate the identification or construction of new PHA synthases capable of synthesizing novel PHAs.  相似文献   

14.
Nucleolar activity in differentiated cells after stimulation   总被引:2,自引:0,他引:2  
Initiation of nucleolar organizer region (NOR) activity was observed by using the silver staining method at various times after activation or stimulation of differentiated cells. Two methods were used: (1) activation of human lymphocytes by treatment with phytohemagglutinin (PHA), and (2) cell-cell fusion of chick erythrocytes with squirrel monkey cells. An increase in NOR activity in lymphocytes was seen as early as 4 h after PHA treatment and between 10 and 22 h in the chick erythrocytes after fusion. In both systems, as the size of the dormant cell nucleus increased, the amount of silver staining increased until the silver-stained area approached that of cycling cells.  相似文献   

15.
Fructose-1,6-diphosphate (FDP) is a glycolytic intermediate which has been used an intervention in various ischemic conditions for two decades. Yet whether FDP can enter the cell is under constant debate. In this study we examined membrane permeability of FDP in artificial membrane bilayers and in endothelial cells. To examine passive diffusion of FDP through the membrane bilayer, L-a-phosphatidylcholine from egg yolk (Egg PC) (10 mM) multi-lamellar vesicles were created containing different external concentrations of FDP (0, 0.5, 5 and 50 mM). The passive diffusion of FDP into the vesicles was followed spectrophotometrically. The results indicate that FDP diffuses through the membrane bilayer in a dose-dependent fashion. The movement of FDP through Egg PC membrane bilayers was confirmed by measuring the conversion of FDP to dihydroxyacetone-phosphate and the formation of hydrozone. FDP (0, 0.5, 5 or 50 mM) was encapsulated in Egg PC multilamellar vesicles and placed in a solution containing aldolase. In the 5 and 50 mM FDP groups there was a significant increase in dihydroxyacetone/hydrazone indicating that FDP crossed the membrane bilayer intact. We theorized that the passive diffusion of FDP might be due to disruption of the membrane bilayer. To examine this hypothesis, small unilamellar vesicles composed of Egg PC were created in the presence of 60 mM carboxyfluorescein, and the leakage of the sequestered dye was followed upon addition of various concentrations of FDP, fructose, fructose-6-phosphate, or fructose-1-phosphate (0, 5 or 50 mM). These results indicate that increasing concentrations of FDP increase the leakage rate of carboxyfluorescein. In contrast, no concentration of fructose, fructose-6-phosphate, or fructose-1-phosphate resulted in any significant increase in membrane permeability to carboxyfluorescein. To examine whether FDP could pass through cellular membranes, we examined the uptake of 14C-FDP by endothelial cells cultured under hypoxia or normoxia for 4 or 16 h. The uptake of FDP was dose-dependent in both the normoxia and hypoxia treated cells, and was accompanied by no significant loss in endothelial cell viability. Our results demonstrate that FDP can diffuse through membrane bilayers in a dose-dependent manner.  相似文献   

16.
Ruth K  de Roo G  Egli T  Ren Q 《Biomacromolecules》2008,9(6):1652-1659
Pseudomonas putida GPo1 is able to accumulate polyhydroxyalkanoates (PHA) in the form of intracellular granules as storage materials. PHA granules were isolated and analyzed for protein activities. An acyl-CoA-synthetase (ACS1) activity was detected from the purified PHA granules. The corresponding gene acs1 was then cloned from P. putida GPo1. With the genomic walking technique, a homologue acs2 located upstream of acs1 was discovered and cloned. Fusions of both acs1 and acs2 with the gene encoding the green fluorescent protein (GFP) were constructed and expressed in GPo1. In vivo fluorescence microscopy studies showed that the fluorescence generated from the ACS1-GFP was mainly associated with the PHA granules, whereas that from ACS2-GFP was mainly with the membrane of the cells. In the control strain (containing GFP alone) fluorescence was distributed evenly in the cytoplasm. We concluded that ACS1 is located on the PHA granules and may play a central role in mobilization of PHA, for example, conversion of hydroxycarboxylic acid monomers to hydroxycarboxyl-CoA, which can be further utilized by the cells.  相似文献   

17.
BACKGROUND: Telomeres shorten during DNA replication; extensive erosion of telomeres likely promotes replicative senescence and chromosomal instability. Telomere length in individual cells has been quantified by flow cytometric analysis of fluorescence in situ hybridization (flow-FISH). To determine the rate of telomere attrition (telomere erosion per cell division), we combined flow-FISH with dye dilution and DNA staining (flow-FISH-DDD) and measured telomere-specific fluorescence in proliferating cells identified by cell generation and cell cycle phase. METHODS: Peripheral blood mononuclear cells (PBMC) were stained with the cell division tracking dye carboxyfluorescein diacetate succinimidyl ester (CFSE), stimulated with phytohemagglutinin (PHA), grown for 5-6 days, hybridized with a telomere sequence-specific peptide nucleic acid fluorescent probe (PNA-Cy5), counterstained with DAPI, and analyzed by flow cytometry. The cell cycle distribution and cell division generations were respectively identified by analysis of DAPI emission and deconvolution of CFSE emission, and Cy5 emission was used to determine telomere-specific fluorescence, an indicator of telomere length, in each cell. RESULTS: In stimulated PBMC, in each cell cycle phase, the telomere-specific fluorescence diminished with increasing cell generation. The rate of decline of the telomere-specific fluorescence per cell generation did not significantly differ between cell cycle phases. CONCLUSIONS: Application of flow-FISH-DDD to measure mean telomere length and the rate of telomere attrition in proliferating cells may find use in studies of ageing and disease, the effects of telomere-modifying agents, and variability between individuals.  相似文献   

18.
M Kubbies 《Cytometry》1990,11(3):386-394
Changes in chromatin structure were induced in human peripheral blood lymphocytes. Resting G0/G1 cells were exposed to either X-rays, mitomycin C, or bleomycin and stimulated with PHA. Exposure to such agents provokes an increase in the non-cycling cell fraction; and a distinctive, non-cycling G-/G1 subpopulation appears which is characterized by a 23% reduced Hoechst fluorescence intensity. This novel subpopulation was found as early as 24 h after PHA stimulation; it was still present in 72 h cultures. Bromodeoxyuridine (BrdUrd/Hoechst 33258-ethidium bromide (EB) flow cytometric analysis revealed increments of this subpopulation from 2% of the non-cycling cell fraction in the control culture to 29% (X-rays), 15% (mitomycin C), and 24% (bleomycin) after clastogen exposure. In the presence of the ligase inhibitor 3-aminobenzamide, this aberrant cell population increased significantly after X-ray treatment. With the aid of a viable BrdUrd/Hoechst staining assay, the newly identified non-cycling subpopulation with decreased Hoechst 33258 binding was identified as a distinctive signal cluster. Other than the regular non-cycling and cycling cell fractions, this subpopulation with non-stoichiometric Hoechst dye binding showed progressive uptake of ethidium bromide; however, by such criteria 44% of the subpopulation was still viable. It is concluded that the clastogen induced subpopulation of non-cycling cells represents damaged cells with altered dye binding properties.  相似文献   

19.
In the present study we have analyzed the in vitro activation requirements of freshly isolated CD4-CD8- "double-negative" (DN) human peripheral blood T cells. DN cells were isolated from E+ cells by removal of CD4+, CD8+, and CD16+ cells through consecutive steps of C'-mediated lysis and panning. While the majority (79.0 +/- 12.0%) of DN cells were TCR gamma delta+ as shown by staining with mAb TCR delta-1, a minor fraction (6.7 +/- 4.7%) expressed TCR alpha beta as revealed by staining with mAb BMA031. Within the gamma delta+ DN fraction, most cells reacted with mAb Ti gamma A which delineates a V gamma 9JPC gamma 1 epitope, whereas a minor fraction stained with mAb delta TCS-1 which identifies a V delta 1J delta 1 epitope. Functional studies performed at low cell number (1000) per microculture indicated that DN cells can be activated by anti-CD3 mAb, PHA and allogeneic stimulator cells, provided that exogenous growth factors are supplied. Both rIl-2 and rIl-4 acted as efficient growth factors for DN cells, and a synergistic stimulatory effect of rIl-2 and rIl-4 was observed when DN cells were cocultured with allogeneic LCL stimulator cells. As compared to unseparated E+ cells, isolated DN responder cells had a reduced capacity to secrete Il-2 upon PHA stimulation in the presence of LCL feeder cells. The majority of DN cells maintained their CD3+ CD4-CD8- phenotype upon coculture with allogeneic LCL stimulator cells. These data demonstrate that CD3+ DN cells in human peripheral blood are heterogeneous with respect to TCR expression. In addition, they show that freshly isolated DN cells are deficient in Il-2 production but may be normally stimulated by anti-CD3, PHA, or alloantigen if exogenous growth factors (rIL-2 and/or rIl-4) are provided.  相似文献   

20.
Extracts of Acetobacter xylinum catalyze the phosphorylation of glycerol and dihydroxyacetone (DHA) by adenosine 5'-triphosphate (ATP) to form, respectively, L-alpha-glycerophosphate and DHA phosphate. The ability to promote phosphorylation of glycerol and DHA was higher in glycerol-grown cells than in glucose- or succinate-grown cells. The activity of glycerol kinase in extracts is compatible with the overall rate of glycerol oxidation in vivo. The glycerol-DHA kinase has been purified 210-fold from extracts, and its molecular weight was determined to be 50,000 by gel filtration. The glycerol kinase to DHA kinase activity ratio remained essentially constant at 1.6 at all stages of purification. The optimal pH for both reactions was 8.4 to 9.2. Reaction rates with the purified enzyme were hyperbolic functions of glycerol, DHA, and ATP. The Km for glycerol is 0.5 mM and that for DHA is 5 mM; both are independent of the ATP concentration. The Km for ATP in both kinase reactions is 0.5 mM and is independent of glycerol and DHA concentrations. Glycerol and DHA are competitive substrates with Ki values equal to their respective Km values as substrates. D-Glyceraldehyde and l-Glyceraldehyde were not phosphorylated and did not inhibit the enzyme. Among the nucleotide triphosphates tested, only ATP was active as the phosphoryl group donor. Fructose diphosphate (FDP) inhibited both kinase activities competitively with respect to ATP (Ki= 0.02 mM) and noncompetitively with respect to glycerol and DHA. Adenosine 5'-diphosphate (ADP) and adenosine 5'-monophosphate (AMP) inhibited both enzymic activities competitively with respect to ATP (Ki (ADP) = 0.4 mM; Ki (AMP) =0.25 mM). A. xylinum cells with a high FDP content did not grow on glycerol. Depletion of cellular FDP by starvation enabled rapid growth on glycerol. It is concluded that a single enzyme from A. xylinum is responsible for the phosphorylation of both glycerol and DHA. This as well as the sensitivity of the enzyme to inhibition by FDP and AMP suggest that it has a regulatory role in glycerol metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号