首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Azotobacter vinelandii UWD was grown in a fermentor with glucose medium with and without 0.1% fish peptone (FP) in batch and fed-batch cultures for the production of the natural bioplastic poly-beta-hydroxybutyrate (PHB). Strain UWD formed PHB five times faster than cell protein during growth in glucose and NH(4), but PHB synthesis stopped when NH(4) was depleted and nitrogen fixation started. When FP was added to the same medium, PHB accumulated 16 times faster than cell protein, which in turn was inhibited by 40%, and PHB synthesis was unaffected by NH(4) depletion. Thus, FP appeared to be used as a nitrogen source by these nitrogen-fixing cells, which permitted enhanced PHB synthesis, but it was not a general growth stimulator. The addition of FP to the medium led to the production of large, pleomorphic, osmotically sensitive cells that demonstrated impaired growth and partial lysis, with the leakage of DNA into the culture fluid, but these cells were still able to synthesize PHB at elevated rates and efficiency. When FP was continuously present in fed-batch culture, the yield in grams of polymer per gram of glucose consumed was calculated to range from 0.43 g/g, characteristic of nongrowing cells, to an unprecedented 0.65 g/g. Separation of an FP-free growth phase from an FP-containing growth phase in fed-batch culture resulted in better growth of these pleomorphic cells and good production of PHB (yield, 0.32 g/g). The fragility of these cells was exploited in a simple procedure for the extraction of high-molecular-weight PHB. The cells were treated with 1 N aqueous NH(3) (pH 11.4) at 45 degrees C for 10 min. This treatment removed about 10% of the non-PHB mass from the pellet, of which 60 to 77% was protein. The final product consisted of 94% PHB, 2% protein, and 4% nonprotein residual mass. The polymer molecular weight (1.7 x 10 to 2.0 x 10) and dispersity (1.0 to 1.9) were not significantly affected (P = 0.05) by this treatment. In addition, the NH(3) extraction waste could be recycled in the fermentation as a nitrogen source, but it did not promote PHB production like FP. A scheme for improved downstream extraction of PHB as well as the merits of using pleomorphic cells in the production of bioplastics is discussed.  相似文献   

2.
High poly(3-hydroxybutyrate) (PHB) content and volumetric productivity were achieved by fed-batch culture of Halomonas boliviensis using a defined medium. Initial shake flask cultivations in a minimal medium revealed that the growth of H. boliviensis was supported only when the medium was supplemented with aspartic acid, glycine, or glutamine. Addition of 0.1% (w/v) glutamine in the medium resulted in the highest cell dry weight (CDW; 3.9 g l−1). Glutamine was replaced by the less expensive monosodium glutamate (MSG) in the medium without any notable change in the final cell density. Effect of initial concentrations of NH4Cl and K2HPO4 on cell growth and PHB accumulation by H. boliviensis was then analyzed using a fed-batch fermentation system. The best conditions for PHB production by H. boliviensis were attained using 0.4% (w/v) NH4Cl and 0.22% (w/v) K2HPO4 and adding MSG intermittently to the fermentor. Poly(3-hydroxybutyrate) content and CDW reached 90 wt.% and 23 g l−1, respectively, after 18 h of cultivation. In order to increase CDW and PHB content, MSG, NH4Cl, and K2HPO4 were initially fed to the fermentor to maintain their concentrations at 2%, 0.4%, and 0.22% (w/v), respectively, and subsequently their feed was suppressed. This resulted in a CDW of 44 g l−1, PHB content of 81 wt.%, and PHB volumetric productivity of 1.1 g l−1 h−1.  相似文献   

3.
Optimal growth and PHB accumulation in Bacillus megaterium occurred with 5% (w/v) date syrup or beet molasses supplemented with NH4Cl. When date syrup and beet molasses were used alone without an additional nitrogen source, a cell density of about 3gl–1 with a PHB content of the cells of 50% (w/w) was achieved. NH4NO3 followed by ammonium acetate and then NH4Cl supported cell growth up to 4.8gl–1, whereas PHB accumulation was increased with NH4Cl followed by ammonium acetate, NH4NO3 and then (NH4)2SO4 to a PHB content of nearly 42% (w/w). Cultivation of B.megaterium at 30l scale gave a PHB content of 25% (w/w) of the cells and a cell density of 3.4gl–1 after 14h growth.  相似文献   

4.
Summary Vigorously aerated batch cultures of Azotobacter vinelandii UWD formed < 1 g poly--hydroxybutyrate (PHB)/l in media containing pure sugars and 3 g PHB/l in media containing cane molasses, corn syrup or malt extract. However, > 7 g PHB/l was formed when the medium contained 5% beet molasses. Increased yields of PHB were promoted in the media containing pure or unrefined sugars by the addition of complex nitrogen sources. The greatest effect was obtained with 0.05–0.2% fish peptone (FP), proteose peptone no. 3 or yeast extract. Peptones caused a 1.6-fold increase in residual non-PHB biomass and up to a 25-fold increase in PHB content. Hence the increased PHB formation was not simply due to stimulation of culture growth. The amount of PHB per cell protein formed by UWD in media containing FP was greatest in glucose = corn syrup > malt extract > sucrose = fructose = cane molasses > maltose, as carbon sources. The addition of FP to medium containing beet molasses did not stimulate PHB yield. The peptone effect was most significant in well-aerated cultures, which were fixed nitrogen and consuming glucose at a high rate. An explanation for the peptone effect on PHB yield stimulation is proposed.  相似文献   

5.
《Process Biochemistry》1999,34(2):109-114
The effects of phosphate supply and aeration on cell growth and PHB accumulation were investigated in Azotobacter chroococcum 23 with the aim of increasing PHB production. Phosphate limitation favoured PHB formation in Azotobacter chroococcum 23, but inhibited growth. Azotobacter chroococcum 23 cells demonstrated intensive uptake of orthophosphate during exponential growth. At the highest phosphate concentration (1·5 g/litre) and low aeration the amount of intracellular orthophosphate/g residual biomass was highest. Under conditions of fed-batch fermentation the possibility of controlling the PHB production process by the phosphate level in the cultivation medium was demonstrated. A 36 h fed-batch fermentation resulted in a biomass yield of 110 g/litre with a PHB cellular concentration of 75% dry weight, PHB content 82·5 g/litre, PHB yield YP/S = 0·24 g/g and process productivity 2·29 g/litre·h.  相似文献   

6.
A new fermentation strategy using cell recycle membrane system was developed for the efficient production of poly(3-hydroxybutyrate) (PHB) from whey by recombinant Escherichia coli strain CGSC 4401 harboring the Alcaligenes latus polyhydroxyalkanoate (PHA) biosynthesis genes. By cell recycle, fed-batch cultivation employing an external membrane module, the working volume of fermentation could be constantly maintained at 2.3 l. The final cell concentration, PHB concentration and PHB content of 194 g l–1, 168 g l–1 and 87%, respectively, were obtained in 36.5 h by the pH-stat cell recycle fed-batch culture using whey solution concentrated to contain 280 g lactose l–1 as a feeding solution, resulting in a high productivity of 4.6 g PHB l–1 h–1.  相似文献   

7.
The paper reports a study involving the use of Halomonas boliviensis, a moderate halophile, for co-production of compatible solute ectoine and biopolyester poly(3-hydroxybutyrate) (PHB) in a process comprising two fed-batch cultures. Initial investigations on the growth of the organism in a medium with varying NaCl concentrations showed the highest level of intracellular accumulation of ectoine (0.74 g L−1) at 10–15% (w/v) NaCl, while at 15% (w/v) NaCl, the presence of hydroxyectoine (50 mg L−1) was also noted. On the other hand, the maximum cell dry weight and PHB concentration of 10 and 5.8 g L−1, respectively, were obtained at 5–7.5% (w/v) NaCl. A process comprising two fed-batch cultivations was developed—the first culture aimed at obtaining high cell mass and the second for achieving high yields of ectoine and PHB. In the first fed-batch culture, H. boliviensis was grown in a medium with 4.5% (w/v) NaCl and sufficient levels of monosodium glutamate, NH4+, and PO43−. In the second fed-batch culture, the NaCl concentration was increased to 7.5% (w/v) to trigger ectoine synthesis, while nitrogen and phosphorus sources were fed only during the first 3 h and then stopped to favor PHB accumulation. The process resulted in PHB yield of 68.5 wt.% of cell dry weight and volumetric productivity of about 1 g L−1 h−1 and ectoine concentration, content, and volumetric productivity of 4.3 g L−1, 7.2 wt.%, and 2.8 g L−1 day−1, respectively. At salt concentration of 12.5% (w/v) during the second cultivation, the ectoine content was increased to 17 wt.% and productivity to 3.4 g L−1 day−1.  相似文献   

8.
Two inexpensive substrates, starch and whey were used to produce poly(3-hydroxybutyrate) (PHB) in fed-batch cultures of Azotobacter chroococcum and recombinant Escherichia coli, respectively. Oxygen limitation increased PHB contents in both fermentations. In fed-batch culture of A. chroococcum, cell concentration of 54 g l−1 with 46% PHB was obtained with oxygen limitation, whereas 71 g l−1 of cell with 20% PHB was obtained without oxygen limitation. The timing of PHB biosynthesis in recombinant E. coli was controlled using the agitation speed of a stirred tank fermentor. A PHB content of 80% could be obtained with oxygen limitation by increasing the agitation speed up to only 500 rpm.  相似文献   

9.
Utilization of yeast extract and formation of byproduct metabolite were investigated for hyperthermophilic archaeonSulfolobus solfataricus (DSM 1617). In both batch and fed-batch cultivations ofS. solfataricus, maximal cell density, NH4 + ion production and pH change were highly dependent on the ratio of yeast extract to glucose in the medium. Variation of NH4 + ion level was identified as a major cause of pH change during cultivation, and acidification of culture broth was attributed to consumption of NH4 + ions rather than formation of acid byproducts. It was also observed that increase of NH4 + ion concentrations in the medium resulted in greater degree of growth inhibition.  相似文献   

10.
Mortierella alpina was grown in a fed-batch culture using a 12-l jar fermenter with an initial 8-l working volume containing 20 g glucose l−1 and 10 g corn-steep powder l−1. Glucose was intermittently fed to give 32 g l−1 at each time. The pH of culture was maintained using 14% (v/v) NH4OH, which also acted as a nitrogen source. A final cell density of 72.5 g l−1 was reached after 12.5 days with a content of arachidonic acid (ARA) at 18.8 g l−1. These values were 4 and 1.8 times higher than the respective values in batch culture. Our results suggest that the combined feeding of glucose and NH4+ to the growth of M. alpina could be applied for the industrial scale production of ARA.  相似文献   

11.
Poly(3-hydroxybutyrate) (PHB) was produced by fed-batch cultures of Ralstonia eutropha with phosphate limitation under different glucose concentrations. When glucose was kept at 2.5 g l–1, cell growth and PHB synthesis were limited due to the shortage of carbon source but a higher PHB content occurred in the cell-growth stage. This shows that a low glucose concentration is favorable for PHB accumulation in R. eutropha. PHB obtained with glucose at 9 g l–1 is 1.6 times that obtained with 40 g l–1. When glucose was in the range of 9 to 40 g l–1, PHB concentration and productivity decreased significantly with the increase of glucose concentration. The highest PHB productivity was obtained with glucose at 9 g l–1.  相似文献   

12.
A practical fed-batch culture, in which consumed amounts of methanol and other nutrients were supplied in response to a direct signal of the gas production of CH4 and CO2, was carried out for the cell production of methanol-utilizing Methanosarcina barkeri. In this fed-batch culture system equipped with level sensors to detect the gas production, a high cell concentration of 24.4 g/l was attained in 175-h cultivation maintaining the optimized nutrient concentrations of methanol, NH4+, PO43−, Na+, Mg2+, Ca2+, Fe2+, Ni2+, Co2+ and cysteine (S source) throughout the culture.  相似文献   

13.
Summary Pseudomonas 135, a facultative methylotroph, was cultivated on methanol as a sole carbon and energy source for the accumulation of poly--hydroxybutyric acid (PHB). The cells grew fairly well on minimal synthetic medium containing 0.5% (v/v) of methanol at pH 7.0 and 30° C. The maximum specific growth rate was determined to be 0.26–0.28 h–1 with a growth yield of 0.38 in the optimized growth medium. For stimulation of PHB accumulation in the cells, deficiency of nutrients such as NH inf4 sup+ , Mg2+ and PO inf4 sup3– was crucial even though cell growth was significantly suppressed. The PHB content of a 40-h culture was determined to be 37% of the total cell mass in NH inf4 sup+ -limited medium, 42.5% on Mg2+-deficient medium, and 34.5% on PO inf4 sup3– -deficient medium. The maximum content of PHB in the cells could reach 55% in NH inf4 sup+ -limited fed-batch culture. The average relative molecular eight determined by gel permeation chromatography was 3.7 × 105 in NH inf4 sup+ -limited culture, 2.5 × 105 in Mg2+-deficientmedium, and 3.1 × 105 in PO inf4 sup3– -deficient medium. Polydispersity determined in each culture was relatively high (about 10–11). The solid PHB had a melting temperature of 173° C. Correspondence to: J. M. Lebeault  相似文献   

14.
A strain of Bacillus sp. coded JMa5 was isolated from molasses contaminated soil. The strain was able to grow at a temperature as high as 45°C and in 250 g/l molasses although the optimal growth temperature was 35–37°C. Cell density reached 30 g/l 8 h after inoculation in a batch culture with an initial concentration of 210 g/l molasses. Under fed-batch conditions, the cells grew to a dry weight of 70 g/l after 30 h of fermentation. The strain accumulated 25–35%, (w/w) polyhydroxybutyrate (PHB) during fermentation. PHB accumulation was a growth-associated process. Factors that normally promote PHB production include high ratios of carbon to nitrogen, and carbon to phosphorus in growth media. Low dissolved oxygen supply resulted in sporulation, which reduced PHB contents and dry weights of the cells. It seems that sporulation induced by reduced supply of nutrients is the reason that PHB content is generally low in the Bacillus strain.  相似文献   

15.
Summary Mass production of Poly(-hydroxybutyrate) (PHB) from Methylobacterium organophilum under potassium-limited condition was carried out using a microcomputeraided automatic fed-batch culture system. The concentration of methanol was kept within the range of 2 – 3 g/l which did not show any inhibitory effect on cell growth. The PHB accumulation was stimulated when potassium concentration in the culture broth fell below 25 mg/l. After 70 hours of cultivation, the concentrations of cell mass and PHB were obtained to be 250 g/l and 130 g/l, respectively, which corresponded to a volumetric productivity of 1.8 – 2.0 g-PHB/1-hr. PHB contents ranged from 52% to 56% of dry cell weight with a yield factor (YP/S) of 0.19 g-PHB/g-methanol.  相似文献   

16.
Changes in the concentrations of NH4+ and amides during the growth of suspension cultures of rose (Rosa cv. Paul's Scarlet) cells were examined. When cells were grown in medium possessing only NO3 as a nitrogen source, the concentrations of NH4+ and amides increased to 4.0 × 10−1 and 5.9 micromoles per gram fresh weight, respectively. The amounts of both constituents declined during the later stages of growth. When a trace amount of NH4+ was added to the NO3 base starting medium, the concentration of NH4+ in the cells was increased to 7.0 × 10−1 micromoles per gram fresh weight.  相似文献   

17.
Gluconate and glucose were selected as the carbon substrates in the production of poly-3-hydroxybutyrate (PHB). Gluconate was utilized to maximize the specific growth rate during the first stage of cell growth, whereas glucose was used to maximize PHB biosynthesis during the second stage of PHB accumulation. The sequential feeding of gluconate and glucose resulted in a 50% enhancement of PHB productivity as compared to the cultures cultivated on glucose alone. In conjunction with secondary glucose uptake, the presence of a trace amount of ammonium increased the rate of PHB biosynthesis during the stage of PHB accumulation. Via the feeding of 0.03 mmol/h of NH4Cl solution prior to the exhaustion of the initial amount of NH4Cl, PHB productivity was significantly enhanced as compared to the cultures raised on glucose alone. The glucose-grown culture evidenced a higher level of NADPH during the NH4Cl-exausted PHB accumulation stage than was observed in the gluconate-grown culture, which reflects that the reason of higher PHB production observed when glucose was used as a carbon source. NH4Cl feeding following the depletion of initial NH4Cl resulted in elevated levels of both ATP and NADPH, which increased the PHB biosynthesis rate, and also in a decrease in the level of NADH, which reflected the alleviation of the inhibitory effects on the cells caused by nitrogen depletion. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

18.
The behaviour of Halomonas boliviensis during growth in fed-batch culture under different kind of nutrient restrictions was examined. The metabolic switch between growth and accumulation phase is determined by the limitation in one or more essential nutrient for bacterial growth. The aim of this study was to test the effect of applying limitations of a essential nutrient, such as nitrogen, and the influence of different O2 concentrations on poly(3-hydroxybutyrate) (PHB) production during the accumulation phase. Single limitations of nitrogen and oxygen provoke PHB accumulations of 45 and 37 % (g g?1), respectively, while N limitation with low O2 supply causes the highest PHB accumulation of 73 %. The characterization of the PHB production with the strain H. boliviensis would allow a better optimization of the process and enrich the knowledge about the PHB production from strains different than Cupriavidus necator.  相似文献   

19.
Fed-batch culture of Alcaligenes latus, ATCC 29713, was investigated for producing the intracellular bioplastic poly(β–hydroxybutyric acid), PHB. Constant rate feeding, exponentially increasing feeding rate, and pH-stat fed batch methods were evaluated. pH-stat fed batch culture reduced or delayed accumulation of the substrate in the broth and led to significantly enhanced PHB productivity relative to the other modes of feeding. Presence of excessive substrate appeared to inhibit PHB synthesis, but not the production of cells. In fed-batch culture, the maximum specific growth rate (0.265?h?1) greatly exceeded the value (0.075?h?1) previously observed in batch culture of the same strain. Similarly, the maximum PHB production rate (up to 1.15?g?·?l?1?·?h?1) was nearly 8-fold greater than values observed in batch operations. Fed-batch operation was clearly superior to batch fermentation for producing PHB. A low growth rate was not a prerequisite for PHB accumulation, but a reduced or delayed accumulation of substrate appeared to enhance PHB accumulation. Under the best conditions, PHB constituted up to 63% of dry cell mass after 12?h of culture. The average biomass yield coefficient on sucrose was about 0.35, or a little less than in batch fermentations. The highest PHB concentrations attained were about 18?g?·?l?1.  相似文献   

20.
The halobacterium Haloferax mediterranei accumulates poly(β-hydroxybutyrate) (PHB) as intracellular granules. The conditions for PHB production in batch and continuous cultures have been studied and optimized. Phosphate limitation is essential for PHB accumulation in large quantities. Glucose and starch are the best carbon sources. With 2% starch, 0.00375% KH2PO4, and 0.2% NH4Cl in batch culture, a production of ca. 6 g of PHB per liter was reached, being 60% of the total biomass dry weight, and giving a yield over the carbon source of 0.33 g/g. The PHB production in continuous cultures was stable over a 3-month period. Our results demonstrate that H. mediterranei is an interesting candidate for industrial production of biological polyesters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号