首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although both IL-2 and IL-4 can promote the growth of activated T cells, IL-4 appears to selectively promote the growth of those helper/inducer and cytolytic T cells which have been activated via their CD3/TCR complex. The present study examines the participation of CD28 and certain other T cell-surface molecules in inducing T cell responsiveness to IL-4. Purified small high density T cells were cultured in the absence of accessory cells with various soluble anti-human T cell mAb with or without soluble anti-CD3 mAb and their responsiveness to IL-4 was studied. None of the soluble anti-T cell mAb alone was able to induce T cell proliferation in response to IL-4. A combination of soluble anti-CD3 with anti-CD28 mAb but not with mAb directed at the CD2, CD5, CD7, CD11a/CD18, or class I MHC molecules induced T cell proliferation in response to IL-4. Anti-CD2 and anti-CD5 mAb enhanced and anti-CD18 mAb inhibited this anti-CD3 + anti-CD28 mAb-induced T cell response to IL-4. In addition, anti-CD2 in combination with anti-CD3 and anti-CD28 mAb induced modest levels of T cell proliferation even in the absence of exogenous cytokines. IL-1, IL-6, and TNF were each unable to replace either anti-CD3 or anti-CD28 mAb in the induction of T cell responsiveness to IL-4, but both IL-1 and TNF enhanced this response. The anti-CD3 + anti-CD28 mAb-induced response to IL-4 was exhibited only by cells within the CD4+CD29+CD45R- memory T subpopulation, and not by CD8+ or CD4+CD45R+ naive T cells. When individually cross-linked with goat anti-mouse IgG antibody immobilized on plastic surface, only anti-CD3 and anti-CD28 mAb were able to induce T cell proliferation. These results indicate that the CD3 and CD28 molecules play a crucial role in inducing T cell responsiveness to IL-4 and that the CD2, CD5, and CD11a/CD18 molecules influence this process.  相似文献   

2.
The mitogenic activity of anti-CD3 mouse monoclonal antibodies (mAb) in cultures of human peripheral blood mononuclear cells (PBMC) depends on the ability of the mAb to interact with CD3 molecules on the T cells, and with Fc receptors (FcR) on monocytes. Two types of FcR with distinct specificity for murine (m) IgG subclasses are involved: a 72-kDa receptor (FcRI) binds mIgG2a and a 40-kDa receptor (FcRII) binds mIgG1. In this study we examined the mitogenic activity of mIgG3 anti-CD3 mAb RIV9. In cultures of human PBMC, the mAb induced T cell proliferation and interleukin 2 production. We found that subjects, unresponsive to mIgG2a anti-CD3 (e.g., OKT3), were also RIV9 nonresponders. In contrast, nonresponders to mIgG1 anti-CD3 (e.g., anti-Leu4) had a normal response to RIV9. Our results therefore suggested that anti-CD3 mAb of the mIgG2a and mIgG3 subclass bind to the same monocytic FcR. Human monomeric IgG, which has been shown to bind to FcRI only, blocked T cell proliferation induced by mIgG2a and mIgG3 anti-CD3, but had no effect on T cell proliferation induced by mIgG1 anti-CD3. In contrast, a mAb (IV.3) to FcRII, which blocks ligand binding of the receptor, blocked the mitogenic activity of mIgG1 anti-CD3 antibodies, but had no effect on T cell proliferation induced by mIgG3 anti-CD3 or by mIgG2a anti-CD3. Binding of RIV9 to FcR of responder monocytes could be demonstrated in immunofluorescence. Monocytes from the RIV9 nonresponder subjects however were unable to bind the Fc portion of this antibody. The binding of fluorescein (FITC)-conjugated mIgG3 or FITC-conjugated mIgG2a to responder monocytes could be inhibited by human monomeric IgG and by mIgG2a and mIgG3, but not by the mAb to FcRII. The results demonstrate that mIgG3 binds to FcRI on human monocytes and that this binding is needed for the mitogenic activity of mIgG3 anti-CD3.  相似文献   

3.
Although resting B cells are poor accessory cells for signals transmitted through the TCR/CD3 complex, we report that these B cells can support T cell proliferation when T cell activating signals are delivered through CD2. This was first suggested when leucine methyl ester treatment of PBMC abolished proliferation induced by anti-CD3, but not by the accessory cell-dependent anti-CD2 mAb combination, GT2 and OKT11. Then we demonstrated that unstimulated, resting B cells could support the proliferation of both CD4+ and CD8+ T cells. Aggregated IgG inhibited proliferation, suggesting that anti-CD2 mAb bound to T cells were cross-linked by attachment to B cell FcR. Two lines of evidence suggested that lymphocyte function-associated Ag-1/intercellular adhesion molecule-1 interaction was crucial for anti-CD2-induced proliferation. First, proliferation was blocked by mAb against these adhesion molecules. Second, intercellular adhesion molecule-1 expression rapidly increased on resting B cells after the addition of anti-CD2, but not anti-CD3. This was of interest because fixed monocytes, but not fixed B cells, were able to support the proliferative response. In contrast to lymphocyte function-associated Ag-1/intercellular adhesion molecule-1, CD28/B7 interaction was not required for anti-CD2-induced proliferation, although ligation of these molecules provided important costimulatory signals for stimulation by anti-CD3. Finally, neutralizing antibodies against IL-1 alpha, IL-1 beta, and IL-6 showed only modest inhibitory effects on T cell proliferation. The addition of IL-1 and/or IL-6 to T cells failed to substitute for accessory cells and were only partially effective with fixed B cells. Further evidence of a linkage between CD2 and CD45 isoforms was obtained. Anti-CD45RA, but not anti-CD45RO, potentiated anti-CD2-induced T cell proliferation. These studies have revealed a novel role for resting B cells as accessory cells and have documented costimulatory signals that are important for this effect. Because Ag-presentation by resting B cells to T cells generally leads to T cell nonresponsiveness, it is possible that this tolerogenic signal may be converted to an activation signal if there is concurrent perturbation of CD2 on T cells.  相似文献   

4.
CD30 is an inducible member of the TNFR superfamily that is expressed on activated T and B cells and some lymphoid malignancies. We have previously shown that human CD30(+) T cells elicited with allogeneic APC are a major source of IFN-gamma and IL-5 production. In the present study we have used alloantigen, as well as anti-CD3 plus anti-CD28 mAb stimulation, to further characterize human CD30(+) T cells with respect to function and the expression of other activation-dependent cell surface molecules, including the related TNFR family members OX-40 and 4-1BB (CD137). Our results indicate that human CD30(+) T cells are a subset of activated T cells that also express CD25 and CD45RO. Moreover, we observed that allogeneic APC consistently induced a greater proportion of CD30(+) cells within the activated T cell population than did stimulation with plate-bound anti-CD3 plus anti-CD28 mAb or stimulation with soluble anti-CD3 plus anti-CD28 and autologous APC. The enhanced induction of CD30 expression by alloantigen was not common to other inducible TNFR family members because anti-CD3 plus anti-CD28 mAbs were far more effective in inducing expression of 4-1BB and OX-40. Furthermore, CD30 expression marked the predominant proliferating T cell population induced by alloantigen as determined by CFSE staining and flow cytometry. These results indicate that CD30, but not 4-1BB or OX-40, is preferentially induced by alloantigen, suggesting that CD30 may be important in human alloimmune responses.  相似文献   

5.
A mAb, 10D1, was obtained by fusing spleen cells from BALB/c mice immunized with a CD3/TCR- human T cell line, P12/ichikawa, to mouse myeloma cells, P3X63-Ag8-653. 10D1 mAb is specific for T cells in that it reacted with all the T cell lines tested, but not with B or myeloid cell lines. A small fraction of normal peripheral blood T cells, preferentially CD4+, was also reactive with 10D1 mAb. Biochemical studies revealed that 10D1 mAb recognizes a disulfide-linked homodimeric molecule composed of 90-kDa polypeptide. 10D1 mAb induced a substantial proliferation of peripheral blood T cells when cross-linked with goat anti-mouse Ig antibody. The elimination of CD4+ cells totally abrogated the proliferative response induced by 10D1 mAb, whereas the elimination of CD8+ cells rather enhanced it. The proliferative response of peripheral blood T cells induced by 10D1 mAb was almost completely inhibited after modulation of the CD3/TCR complex with anti-CD3 mAb. In addition, a prompt increase in intracellular [Ca2+] was observed in a CD3+ T cell line, Jurkat but not in its surface CD3- mutant when 10D1 mAb was added. These results indicate that the 10D1 molecule is involved in a novel pathway of human CD4+ T cell activation, which is associated with the CD3/TCR-mediated pathway.  相似文献   

6.
We investigated the effect of polymorphonuclear neutrophils (PMN) on anti-CD3 mAb (OKT3 and anti-Leu4)-mediated T cell activation. In the absence of monocytes, purified E-rosette-positive cells (further referred to as "T cells") require either solid-phase bound anti-CD3 or the combination of both a high concentration of soluble anti-CD3 and exogenous recombinant interleukin 2 (rIL-2) to proliferate. PMN cannot sustain T cell proliferation with soluble anti-CD3, but they markedly boost proliferation in the presence of soluble anti-CD3 and rIL-2. When PMN were added to T cell cultures stimulated with anti-CD3, this resulted in IL-2 receptor (IL-2R) expression and CD3 modulation. The mechanism of enhancement of anti-CD3-induced IL-2-responsiveness by PMN was further analyzed. A cellular T cell-PMN interaction was found to play a critical role and this was mediated through PMN Fc receptors (FcR). PMN bear two types of low-affinity FcR (FcRII and FcRIII). FcRII is known to bind mIgG1 (e.g., anti-Leu4) and FcRIII binds mIgG2a (e.g., OKT3). FcR involvement was demonstrated by two observations. Anti-FcRII mAb IV.3 inhibited the PMN signal for T cell activation with anti-Leu4. PMN bearing the second variant of FcRII which is unable to bind mIgG1 failed to promote anti-Leu4/IL-2-mediated T cell proliferation. Thus, PMN potentiate T cell responsiveness to IL-2 in the presence of anti-CD3 mAb and this potentiation by PMN requires interaction of anti-CD3 with PMN-FcR.  相似文献   

7.
T cell activation induced by mouse anti-CD3 mAb has shown to be dependent on the Ig isotype of these antibodies. A study of isotype dependency of human antibodies, however, seems more relevant to human effector systems, especially in view of the availability of humanized antibodies for clinical applications. We constructed a panel of mouse and mouse/human chimeric anti-CD3 mAb, which differ only in their CH region and hence have identical binding sites and affinity. By using these antibodies, we now studied their ability to induce T cell proliferation in human PBMC and analyzed the classes of IgG FcR involved in these responses. The human (h)IgG1, hIgG3, and hIgG4, as well as mouse (m)IgG2a and mIgG3 anti-CD3 mAb induced an Fc gamma RI (CD64)-dependent T cell proliferation in all donors. Activation with hIgG2 and mIgG1 anti-CD3 mAb was observed to be mediated via the low affinity Fc gamma RII (CD32). It was found that leukocytes in a normal donor population display a functional polymorphism with respect to hIgG2 anti-CD3 responsiveness. This polymorphism was found to be inversely related to the previously defined Fc gamma RII-polymorphism to mIgG1 anti-CD3 mAb. Monocytes expressing the Fc gamma RII mIgG1 low responder (LR) allele support hIgG2 anti-CD3 induced T cell proliferation efficiently, whereas cells homozygous for the Fc gamma RII mIgG1 high responder (HR) allele do not. This observation could be confirmed in T cell activation studies using hFc gamma RIIa-transfected mouse fibroblasts, expressing either the mIgG1 anti-CD3 HR or LR Fc gamma RII-encoding cDNA.  相似文献   

8.
The mAb Tm 1 was obtained from a fusion of SP2/O tumor cells with spleen cells from CF1 mouse immunized with T cells modulated by an IgM anti-CD3 mAb.mAb Tm 1 reacted with IgM anti-CD3 modulated T cells (66.6%) but not with unmodulated T cells (4.4%). Tm 1 was not expressed on T cells modulated with either IgG2a or IgG1 anti-CD3 mAb. Immunoprecipitation from 125I-labeled CD3-modulated T cells showed that Tm 1 Ag is a single polypeptide of 33 kDa under reducing and nonreducing conditions. Kinetic studies revealed that Tm 1 was detectable on T cells 10 min after incubation and maximally expressed after 4 h of incubation with IgM anti-CD3 mAb. CD3 expression was markedly modulated by this anti-CD3 mAb after the same period of incubation. Studies with cycloheximide revealed that Tm 1 expression on T cells does not require new protein synthesis. Tm 1 expression persisted long after CD3-reexpression 24 h later. Tm 1 was present on a small fraction of circulating T cells, B cells, and monocytes and absent from granulocytes, platelets, E, and thymocytes. Tm 1 was not expressed on T cells after various activation stimuli but was expressed on B cells upon activation. Additional studies indicate that IgM mAb against other T cell differentiation Ag and IgM mAb against B cell Ag also lead to the expression of Tm 1 on these cells. Thus, modulation of surface Ag by IgM mAb externalizes this cytoplasmic Ag. However, one exception has been noted. Purified mAb Tm 1 was not mitogenic and was unable to block either the T cell proliferation induced by 12-O-tetradecanoyl phorbol-13-acetate plus anti-CD3 mAb and other T cell stimuli, or the B cell proliferation induced by B cell mitogens. The role of Tm 1 on lymphocyte function remains to be determined.  相似文献   

9.
Anti-CD3 antibodies are directed to the nonpolymorphic part of the T cell receptor complex and may activate human peripheral T cells. Under some circumstances crosslinked anti-CD3 has been described to augment the proliferative response. Here we demonstrate that crosslinking of stimulatory anti-CD3 antibodies by anti-IgG in cell suspension abolishes their effect on proliferation of human resting peripheral T cells in the presence of PMA and/or IL-2. This effect was observed within a wide range of anti-CD3 concentrations (1 ng/ml to 1 microgram/ml) independent of the presence of monocytes. The inhibition was not due to the induction of cell death, since cells remained propidium iodide-negative after treatment. Protein-tyrosine phosphorylation after anti-CD3 crosslinking was more pronounced than in the presence of noncrosslinked anti-CD3. This indicates that the signal was transmitted after anti-CD3 crosslinking, however, it was unable to induce T cell proliferation. Reduced IL-2 receptor expression after anti-CD3 crosslinking and the inability of exogenous IL-2 to restore the proliferative response might indicate a reduced susceptibility to IL-2 as a reason for the described phenomenon.  相似文献   

10.
In this study the effect of anti-cluster designation (CD) 2 monoclonal antibodies (mAb) on the activation of a cloned human T cell line, HY837, after triggering the CD3/T cell receptor (TcR) complex by anti-CD3 or anti-TcR mAb is described. HY837, which reacts with a series of mAb directed at different epitopes on the TcR, could be induced to proliferation and interleukin 2 (IL-2) production by soluble mAb directed at the CD3/TcR complex in the absence of accessory cells. mAb directed at the CD2 epitope T11-1 were shown to block the IL-2 production by HY837, as well as the expression of the IL-2 receptor, induced by anti-CD3 mAb, resulting in the inhibition of the proliferative response. The effect of anti-CD2 mAb on the proliferative response of HY837, induced by anti-CD3 mAb, was not due to a competition for Fc binding sites. In contrast, the proliferative responses and IL-2 production of HY837, induced by mAb directed at the TcR, were shown to be enhanced by the action of the anti-CD2 mAb. These results indicate that effects mediated by anti-CD3/TcR mAb cannot always be extrapolated to antigen-mediated effects and show that anti-CD2 mAb may regulate the T cell response, induced by mAb directed at the CD3/TcR complex, depending on which part of this complex is triggered during activation.  相似文献   

11.
We have recently developed a mAb, anti-1F7, which defines a family of structures found to include the molecule recognized by anti-Ta1 (CD26). In this paper, we demonstrated that binding of 1F7 by solid-phase immobilized anti-1F7 mAb but not anti-Ta1 mAb has a comitogenic effect by inducing proliferation of human CD4+ T lymphocytes in conjunction with submitogenic doses of anti-CD3 or anti-CD2. The proliferative response induced via the CD3-1F7 or CD2-1F7 pathways is associated with the IL-2 autocrine pathway, including IL-2 production. IL-2R expression and anti-IL-2R (Tac) inhibition. Furthermore, solid-phase immobilization of anti-1F7 but not anti-Ta1 acts in conjunction with submitogenic doses of PMA to mediate a comitogenic effect in the absence of anti-CD3 or anti-CD2, leading to CD4+ T cell proliferation. PMA treatment, in the meantime, leads to enhanced expression of 1F7 on the T cell surface. Despite its functional association with both pathways of activation, however, the 1F7 structure is not comodulated with the CD3/TCR complex nor the CD2 molecule. These findings thus suggest that the CD26 Ag is involved in CD3 and CD2-induced human CD4+ T cell activation.  相似文献   

12.
Induction of peripheral T cell anergy associated with stimulation through the TCR complex in vivo has been described in mice using chemically modified APC, staphylococcal enterotoxin B, and intact anti-CD3 mAb. In the latter two models, T cell proliferation, IL-2R expression, and lymphokine production have been demonstrated before subsequent induction of hyporesponsiveness, whereas in the former model, these events have not been observed. To further investigate the relationship between mitogenicity and induction of peripheral hyporesponsiveness, mice were treated with either mitogenic intact anti-CD3 mAb or nonmitogenic F(ab')2 fragments of anti-CD3 mAb. T cells from F(ab')2-treated mice demonstrated a selective decrease in helper functions, with minimal effect on CTL function. Specifically, a marked reduction in ability of Th cells to secrete IL-2 when challenged in vitro with mitogen or alloantigen was observed, which persisted for at least 2 mo after mAb administration and which was independent of T cell depletion. Proliferative function was decreased in CD4+ T cells and could not be fully restored with addition of exogenous IL-2. A helper defect was also evident in vivo, in that F(ab')2-treated mice were deficient in their ability to reject MHC-disparate skin grafts, and in vivo administration of IL-2 reconstituted their ability to reject skin grafts normally. In contrast, T cells from mice treated with intact mAb demonstrated a significant decrease in both CTL and helper functions. A long term reduction in TCR expression on CD4+ cells from F(ab')2-treated mice, and on both CD4+ and CD8+ cells from intact mAb-treated mice was observed. These findings demonstrate that peripheral T cell hyporesponsiveness can be induced in vivo by binding an identical epitope on the TCR complex in the presence or absence of initial proliferation, lymphokine secretion, or IL-2R expression, and that binding to the same epitope can result in varying long term effects on T cell function.  相似文献   

13.
IL-10 inhibits human T cell proliferation and IL-2 production.   总被引:44,自引:0,他引:44  
Human IL-10 has been reported previously to inhibit the secretion of IFN-gamma in PBMC. In this study, we have found that human IL-10 inhibits T cell proliferation to either mitogen or anti-CD3 mAb in the presence of accessory cells. Inhibited T cell growth by IL-10 was associated with reduced production of IFN-gamma and IL-2. Studies of T cell subset inhibition by human IL-10 showed that CD4+, CD8+, CD45RA high, and CD45RA low cells are all growth inhibited to a similar degree. Dose response experiments demonstrated that IL-10 inhibits secretion of IFN-gamma more readily than T cell proliferation to mitogen. In addition, IL-2 and IL-4 added exogenously to IL-10 suppressed T cell cultures reversed completely the inhibition of T cell proliferation, but had little or no effect on inhibition of IFN-gamma production. Thus, in addition to its previously reported biologic properties, IL-10 inhibits human T cell proliferation and IL-2 production in response to mitogen. Inhibition of IFN-gamma production by IL-10 appears to be independent of the cytokine effect of IL-2 production.  相似文献   

14.
We have recently shown that engagement of the human monocytic Ag CD14 by murine mAb induces lymphocyte function-associated antigen-1/intercellular adhesion molecule-1-dependent homotypic adhesion. To determine whether CD14 plays a role in monocyte-T cell interactions, we tested the effect of anti-CD14 mAb on the proliferation of human T cells. Our results show that anti-CD14 mAb strongly inhibited T cell proliferation induced by Ag, anti-CD3 mAb, and mitogenic lectins. Inhibition by anti-CD14 mAb was epitope-dependent and required physical contact between monocytes and T cells. CD14 engagement did not affect IL-2R expression or IL-2 synthesis but induced a state of unresponsiveness that was not IL-2 specific; proliferation of anti-CD3-activated T cell blasts in response to both IL-2 and IL-4 was abrogated by addition of monocytes preincubated with anti-CD14 mAb. Inhibition of T cell proliferation after engagement of CD14 on monocytes was likely to result from delivery of a negative signal to T cells, rather than from disruption of a costimulatory monocyte-derived signal, because incubation of monocytes with anti-CD14 mAb also inhibited monocyte-independent T cell proliferation induced by PMA and ionophore. These results, together, point to a role of CD14 in the monocyte-dependent regulation of T cell proliferation.  相似文献   

15.
Resting murine T cell activation induced by either CD3 complexes or Thy1 molecules was investigated in vitro, using surface-bound anti-CD3 mAb as the stimulus. One mitogenic anti-Thy 1 mAb (G7) lost mitogenicity when presented to T cells immobilized on a plastic surface, even in the presence of phorbol ester. Moreover, T cell activation induced by immobilized anti-CD3 was potently blocked by coimmobilized anti-Thy 1 mAb. Nonmitogenic anti-Thy 1 mAb also blocked CD3-induced activation when coimmobilized with anti-CD3. Control experiments showed that anti-Thy 1 specifically blocked T cell activation, even in the presence of measurable and functional concentrations of plastic-bound anti-CD3. Coimmobilized anti-Thy 1 potently blocked IL2 secretion stimulated by anti-CD3. Addition of exogenous rIL2 completely prevented anti-Thy 1-mediated blockade. On the other hand, while completely blocking T cell proliferation, immobilized anti-Thy 1 only partially blocked secretion of IL3-like activity by the T cells. One IgM anti-Thy 1 mAb (2A3) induced secretion of IL3-like activity by T cells when immobilized in the absence of bound anti-CD3. These results indicate that extensive aggregation of Thy 1 molecules delivers a potent negative signal which antagonizes CD3-mediated T cell activation and growth.  相似文献   

16.
Accessory cell function of Th2 clones   总被引:2,自引:0,他引:2  
We have investigated the ability of T helper clones to serve as accessory cells and in the presence of mitogen activate freshly-isolated, splenic T cells. In this type of costimulatory assay, the Th cells that secrete IL-4 but not the Th cells that secrete IL-2 function as AC to induce T cell proliferation in the presence of various T cell mitogens (Con A, anti-CD3 mAb, anti-TCR mAb, and anti-Thy-1 mAb). The signal provided by the accessory Th2 cells occurred independently of MHC restriction, and the analysis of dose-response curves showed the involvement of a single stimulator cell. CD4, as well as CD8 expressing splenic T cells were induced to proliferate by the Th2 clones and mitogen, but mAb specific for CD4 or CD8 failed to affect the response. These findings indicate that cloned Th2 cells functioned as accessory cells and induced naive T cells to proliferate in the presence of mitogen.  相似文献   

17.
Two monoclonal antibodies (mAb) recognizing different CD2 epitopes each inhibited anti-CD3-induced proliferation and anti-CD3-induced increase in surface CD2 expression. The magnitude of inhibition by either anti-CD2 mAb was dependent upon which anti-CD3 mAb was used as the stimulus, being more pronounced when the anti-CD3 mAb 454 was used as the stimulus than when either anti-CD3 mAb 147 or 446 was the stimulus. The effects of neuraminidase-treated sheep erythrocytes (which bind to CD2) were also more pronounced on mAb 454-induced proliferation than on mAb 147- or 446-induced proliferation. Furthermore, the effects of preincubation with anti-CD2 mAb depended upon the responder status of the donor to IgG1 anti-CD3 mAb. Preincubation of high-responder cells with anti-CD2 mAb had little effect on subsequent IgG1 anti-CD3-induced proliferation. In contrast, preincubation of low-responder cells with anti-CD2 mAb usually augmented the otherwise small proliferative response to IgG1 anti-CD3 mAb. Taken together, these observations suggest that interaction of surface CD2 with ligand alters the response of T cells to anti-CD3 mAb, but these effects depend upon the individual anti-CD3 mAb used for stimulation. These studies raise the possibility that perturbation of different parts of the CD3-T cell antigen receptor complex may lead to different sequelae, and, as a result, the T cell may respond to a given immunomodulator in different ways.  相似文献   

18.
Previously we reported that 10 mM ornithine (Orn) selectively inhibits the development of CD8+ CTL in MLC. Herein we show that induction by alpha-CD3 mAb of CD8+ killer cells which manifest antibody-redirected cytotoxicity (ARC) of FcR+ targets is not Orn sensitive. Orn resistance was independent of activation kinetics or alpha-CD3 mAb concentration. alpha-CD3 mAb added to the cytotoxicity assay did not reveal a cytolytic potential in CTL from an Orn-treated MLC when the target cells bore both the inducing alloantigen and FcR. Addition of alpha-CD3 mAb to MLC failed to overcome Orn inhibition of CTL and yet induced ARC activity in the same culture. Expression of mRNA for pore-forming proteins (PFP) and granzyme B was inhibited by Orn in CTL but not in ARC killer cells. Our results demonstrate differences in the T cell activation process stimulated by alloantigen or alpha-CD3 mAb.  相似文献   

19.
The role of leukocyte function-associated Ag-1 (LFA-1) in intercellular adhesion is well documented. Previously, we demonstrated that the LFA-1 molecule (CD11a/CD18) can also regulate the induction of proliferation of peripheral blood T cells. In these studies, we observed opposite effects of antibodies against CD11a (LFA-1-alpha-chain) or CD18 (LFA-1-beta-chain). Here, we determined the effects of anti-CD11a and anti-CD18 mAb on proliferation of cloned influenza virus-specific T cells. Anti-CD18 mAb had similar inhibiting effects on the proliferative response of T cell clones induced by immobilized anti-CD3 mAb as it had on the response of peripheral blood T cells. In contrast to its costimulatory effect on resting peripheral blood T cells, anti-CD11a mAb did not increase the proliferation of cloned T cells. Similar differences in effects of anti-CD11a and anti-CD18 mAb were observed when proliferation of the T cell clones was induced by immobilized anti-TCR mAb. When proliferation was induced by influenza virus presented by monocytes as APC, both anti-CD11a and anti-CD18 mAb inhibited T cell proliferation. However, when EBV-transformed B cells were used as APC, neither anti-CD11a nor anti-CD18 mAb inhibited proliferation. These results demonstrate that the effects of antibodies against CD11a (LFA-1-alpha) or CD18 (LFA-1-beta) on T cell proliferation depend on 1) the stage of activation of the T cells, 2) the activation stimulus and its requirement for intercellular adhesion involving LFA-1, and 3) the type of cell used to present Ag.  相似文献   

20.
Recent studies have demonstrated that IL-1 and IL-6 are synergistic accessory signals for activation of T cells. In this study, highly purified human T cells were cultured with either a stimulating pair of anti-CD2 mAb or with immobilized anti-CD3 mAb. Monocytes, a cellfree monocyte culture supernatant or IL-1 were required for anti-CD2-stimulated T cell proliferation, and they each strongly enhanced anti-CD3-induced T cell growth. IL-6 was synergistic with IL-1 as a helper factor for T cell growth after activation via CD2, but we could not demonstrate any effect of IL-6 in the CD3 pathway. The mechanism of the synergistic helper activity of IL-1 and IL-6 on T cell activation in the CD2 pathway was further examined. IL-1 (but not IL-6) was required for induction of IL-2 production. Both IL-1 and IL-6 enhanced IL-2R (p55) expression and the proliferative response to IL-2. T cell proliferation after stimulation with anti-CD2 and IL-1 or IL-1/IL-6 proceeded through an autocrine IL-2-dependent pathway. Moreover we found that, in the absence of IL-1, IL-6 still supported a transient and limited proliferation of anti-CD2- (but not of anti-CD3-) stimulated T cells, which apparently was independent of the autocrine growth factors IL-2 or IL-4. Our data suggest that IL-6 is important as an accessory signal for T cell growth in the CD2 pathway of T cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号