首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trisomy 7 and sex chromosome loss in human brain tissue   总被引:8,自引:0,他引:8  
Short-term cultures of nonneoplastic brain tissue from 11 patients, seven of whom had a malignant brain tumor, were cytogenetically examined. In only a single case was a wholly normal chromosome complement detected; the remaining ten cases exhibited mosaicism with clonal numerical aberrations found alongside cells carrying a normal karyotype. The abnormal clones were characterized by trisomy 7, the loss of the Y chromosome in men and an X chromosome in women, or by combinations thereof. No structural aberrations were present. Our findings demonstrate that although -Y, -X, and +7 have in the past repeatedly been associated with brain tumors, these changes presumably reflect normal in vivo organ mosaicism and, thus, should not be accepted as neoplasia-specific in this context.  相似文献   

2.
Summary Cytogenetic analysis of 26 non-Burkitt lymphomas having abnormal clones, revealed non-random involvement of certain chromosomes in numerical and structural changes. In some cases, chromosome structural abnormalities could be correlated with histopathology of the tumours. A combined analysis of cases in the present series, and from the literature, indicates that the most common aberrations in the lymphoproliferative disorders involve structural changes of chromosome 14.To whom offprint requests should be sent  相似文献   

3.
In vivo cytogenetics: mammalian germ cells   总被引:3,自引:0,他引:3  
Russo A 《Mutation research》2000,455(1-2):167-189
This chapter summarizes the most relevant methodologies available for evaluation of cytogenetic damage induced in vivo in mammalian germ cells. Protocols are provided for the following endpoints: numerical and structural chromosome aberrations in secondary oocytes or first-cleavage zygotes, reciprocal translocations in primary spermatocytes, chromosome counting in secondary spermatocytes, numerical and structural chromosome aberrations, and sister chromatid exchanges (SCE) in spermatogonia, micronuclei in early spermatids, aneuploidy in mature sperm. The significance of each methodology is discussed. The contribution of novel molecular cytogenetic approaches to the detection of chromosome damage in rodent germ cells is also considered.  相似文献   

4.
Polycythemia vera (PV) represents an apparent monoclonal stem cell proliferation with a frequent transition to full neoplastic behavior. Up to 26% of untreated PV patients can be expected to have some chromosome abnormalities in the marrow at the time of diagnosis, and 10--15% have an abnormal cell line or clone. Both structural and numerical aberrations occur. Aneuploidy is the most common type of chromosome abnormality, however, with hyperdiploid clones occurring more frequently than hypodiploid clones. Chromosomes 1, 8, 9 and 20 are involved in a non-random pattern, and aberrations of all the F group, or at least the No. 20 chromosome seem to be associated to some extent with diseases involving erythroid hyperplasia. Leukemia develops in a certain percentage of patients regardless of the type of treatment they have received, but the relationship, if any, between the chromosome abnormalities and the development of leukemia is still uncertain. The abnormal clones that occur in PV appear to be quite stable and there is no indication at this time that they correlate with a prognosis of leukemic transformation.  相似文献   

5.
Glioblastoma multiforme (GBM) is characterized by intratumoral heterogeneity as to both histomorphology and genetic changes, displaying a wide variety of numerical chromosome aberrations the most common of which are monosomy 10 and trisomy 7. Moreover, GBM in vitro are known to have variable karyotypes within a given tumor cell culture leading to rapid karyotype evolution through a high incidence of secondary numerical chromosome aberrations. The aim of our study was to investigate to what extent this mitotic instability of glioblastoma cells is also present in vivo. We assessed the spatial distribution patterns of numerical chromosome aberrations in vivo in a series of 24 GBM using two-color in situ hybridization for chromosomes 7/10, 8/17, and 12/18 on consecutive 6-microm paraffin-embedded tissue slides. The chromosome aberration patterns were compared with the histomorphology of the investigated tumor assessed from a consecutive HE-stained section, and with the in vitro karyotype of cell cultures established from the tumors. All investigated chromosomes showed mitotic instability, i.e., numerical aberrations within significant amounts of tumor cells in a scattered distribution through the tumor tissue. As to chromosomes 10 and 17, only monosomy occurred, as to chromosome 7 only trisomy/polysomy, apparently as a result of selection in favor of the respective aberration. Conversely, chromosomes 8, 12, and 18 displayed scattered patterns of monosomy as well as trisomy within a given tumor reflecting a high mitotic error rate without selective effects. The karyotypes of the tumor cell cultures showed less variability of numerical aberrations apparently due to clonal adaptation to in vitro conditions. We conclude that glioblastoma cells in vivo are characterized by an extensive tendency to mitotic errors. The resulting clonal diversity of chromosomally aberrant cells may be an important biological constituent of the well-known ability of glioblastomas to preserve viable tumor cell clones under adaptive stress in vivo, in clinical terms to rapidly recur after antitumoral therapy including radio- or chemotherapy.  相似文献   

6.
7.
The L-428 cell line derived from nodular sclerosing Hodgkin's disease was verified to be a human female cell line with surface marker and morphologic characteristics similar to native Hodgkin's cells. Single cells were cloned and subcloned twice to determine the characteristics of the clonogenic L-428 Hodgkin's cell (resulting in a 10% cloning efficiency). Both mononuclear L-428 cells and classical Reed-Sternberg cells arose from solitary cells. The clonogenic cell was the mononuclear Hodgkin's cell, although small abortive colonies sometimes arose from classical binucleate Reed-Sternberg cells. Cytogenetic and phenotypic analysis supported the clonality of three subclones and indicated, among many findings, consistent abnormalities of the long arm of chromosome 7 (beta-chain of the T cell receptor) and 14q32 (Ig heavy chain). Distinctive abnormalities of cytogenetics, phenotyping and transforming growth factor-beta production were exhibited for each clone as well. These observations demonstrate the relationship of the continuum of malignant mononuclear and multinuclear Reed-Sternberg cells in this cell culture from nodular sclerosing Hodgkin's disease and suggest that a similar relationship exists in native Hodgkin's disease tissue. These observations also support the theory of clonality in Hodgkin's disease and suggest that in vivo contiguous metastasis in the L-428 Hodgkin's disease patient was most likely accomplished by a Ki-1 positive small mononuclear cell.  相似文献   

8.
De novo aberrations in chromosome structure represent important categories of paternally transmitted genetic damage. Unlike numerical abnormalities, the majority of de novo structural aberrations among human offspring are of paternal origin. We report the development of a three-color fluorescence in situ hybridization (FISH) assay (CT8) to detect mouse sperm carrying structural and numerical chromosomal abnormalities. The CT8 assay uses DNA probes for the centromeric and telomeric regions of chromosome 2, and a probe for the subcentromeric region of chromosome 8. The CT8 assay was used to measure the frequencies of sperm carrying certain structural aberrations involving chromosome 2 (del2ter, dup2ter, del2cen, dup2cen), disomy 2, disomy 8, and sperm diploidy. Analysis of approximately 80,000 sperm from eight B6C3F1 mice revealed an average baseline frequency of 2.5 per 10,000 sperm carrying partial duplications and deletions of chromosome 2. Extrapolated to the entire haploid genome, approximately 0.4% of mouse sperm are estimated to carry structural chromosomal aberrations, which is more than fivefold lower than the spontaneous frequencies of sperm with chromosome structural aberrations in man. We validated the CT8 assay by comparing the frequencies of abnormal segregants in sperm of T(2;14) translocation carriers detected by this assay against those detected by chromosome painting cytogenetic analysis of meiosis II spermatocytes. The CT8 sperm FISH assay is a promising method for detecting structural chromosome aberrations in mouse sperm with widespread applications in genetics, physiology, and genetic toxicology.  相似文献   

9.
Chromosome abnormalities are common causes of congenital malformations and spontaneous abortions. They include structural abnormalities, polyploidy, trisomy, and mosaicism. In in vitro fertilization (IVF) programs, preimplantation genetic diagnosis (PGD) of oocytes and embryos has become the technique of choice to select against abnormal embryos before embryo transfer. For diagnosis of structural abnormalities, we developed case-specific breakpoint-spanning DNA probes. Screening of an in-house yeast artificial chromosome (YAC) library is facilitated by information from publicly available databases and published articles. Most numerical chromosome abnormalities, on the other hand, are detrimental to early embryonic development and increase with maternal age. We therefore developed a multichromosome screening technique based on spectral imaging to simultaneously detect and score as many as 10 different chromosome types. The probe set was chosen to detect more than 70% of all numerical chromosome aberrations responsible for spontaneous abortions. Detecting structural and numerical abnormalities in single interphase cells using spectral imaging is a powerful technique for multilocus genetic screening.  相似文献   

10.
Multiple numerical and structural chromosome abnormalities were found in cultured lymphocytes of four patients with Werner's syndrome. The proportion of metaphases with structural and/or numerical aberrations varied from 30 to 44% and several of them were clonal. These results confirm definitively that Werner's syndrome is a chromosome rearrangement syndrome and that these non-constitutional chromosome changes are not exclusive of cultured fibroblasts but present also in lymphocytes.  相似文献   

11.
Cultures of 31 breast tumors, being 20 carcinomas and 11 benign lesions, were cytogenetically analysed. Clonal chromosome aberrations were detected in 16 carcinomas and in 4 benign lesions. Nine carcinomas and 2 benign lesions had multiple cytogenetically unrelated and related clones, whereas a single abnormal clone was observed in 7 carcinomas and in 2 benign lesions. Polyploid clones were found in 7 carcinomas and in 2 benign lesions. The presence of clonal chromosome aberrations and polyploid cells was not associated with the clinicopathologic parameters tested. Carcinomas had more clonal changes than benign lesions (p = 0.031), showing that cytogenetic features are of diagnostic value and that different chromosome anomalies might have different pathogenetic and prognostic significance.  相似文献   

12.
An important question nowadays is whether chromosome aberrations are random events or arise from an internal deterministic mechanism, which leads to the delicate task of quantifying the degree of randomness. For this purpose, we have defined several Shannon information functions to evaluate disorder inside a tumor and between tumors of the same kind. We have considered 79 different kinds of solid tumors with 30 or more karyotypes retrieved from the Mitelman Database of Chromosome Aberrations in Cancer. The Kaplan–Meier cumulative survival was also obtained for each solid tumor type in order to correlate data with tumor malignance. The results here show that aberration spread is specific for each tumor type, with high degree of diversity for those tumor types with worst survival indices. Those tumor types with preferential variants (e.g. high proportion of a given karyotype) have shown better survival statistics, indicating that aberration recurrence is a good prognosis. Indeed, global spread of both numerical and structural abnormalities demonstrates the stochastic nature of chromosome aberrations by setting a signature of randomness associated to the production of disorder. These results also indicate that tumor malignancy correlates not only with karyotypic diversity taken from different tumor types but also taken from single tumors. Therefore, by quantifying aberration spread, we could confront diverse models and verify which of them points to the most likely outcome. Our results suggest that the generating process of chromosome aberrations is neither deterministic nor totally random, but produces variations that are distributed between these two boundaries.  相似文献   

13.
Sperm chromosome analysis offers the opportunity to gather information about the origin of chromosome aberrations in human germ cells. Over the last 20 years more than 20 000 sperm chromosome complements from normal donors and almost 6000 spermatozoa from men with constitutional chromosome aberrations (inversions, translocations) have been analyzed for structural and numerical chromosome abnormalities, as well as for segregation of the constitutional chromosome aberrations after the sperm had penetrated hamster oocytes. On the other hand, it took only 6 years to screen more than 3 million mature spermatozoa from healthy probands for disomy rates of 20 autosomes (chromosomes 19 and 22 not evaluated) and the sex chromosomes, and for diploidy rates by in situ hybridization techniques. In the present paper the results arising from both methods are compiled and compared. Received: 29 January 1997 / Accepted: 5 March 1997  相似文献   

14.
Chromosome analysis of human sperm   总被引:10,自引:6,他引:4  
Summary A modified technique has been developed for the visualization of the chromosomes in human sperm. The cytogenetic analysis of 129 G-banded human sperm metaphases of 6 normal donors showed an incidence of structural and numerical chromosome abnormalities of 7.8%. Two out of 129 spermatozoa were aneuploid (1.6%). The frequency of sperms with chromatid-type aberrations was 2.3% (3/129). Chromosome-type aberrations were found in 5 out of 129 (3.9%) spermatozoa. X to Y ratio did not differ significantly from the expected one-to-one ratio. Twenty-six sperm complements from a patient 18–20 months after testes exposure to 30 Gy were examined. A significant increase of numerical and structural chromosome abnormalities was not observed. Chromatidtype aberrations were found in two sperm complements (7.7%) and chromosome-type aberrations in one sperm complement (3.9%). The cytogenetic analysis of 15 human sperms from a cancer patient 26 months after chemotherapy showed an increased frequency of aberrant sperm complements (33.4%). One chromatid-type (6.7%), three chromosometype aberrations (20.0%) and one (6.7%) hyperploid sperm complement could be observed. The sample size is still too small to answer the question whether chemical mutagens may increase the frequency of chromosomal abnormalities in human sperm.  相似文献   

15.
Clinical applications of fluorescence in situ hybridization   总被引:10,自引:0,他引:10  
We review here the application of fluorescence in situ hybridization with chromosome-specific probes to chromosome classification and to detection of changes in chromosome number or structure associated with genetic disease. Information is presented on probe types that are available for disease detection. We discuss the application of these probes to detection of numerical aberrations important for prenatal diagnosis and to detection and characterization of numerical and structural aberrations in metaphase spreads and in interphase nuclei to facilitate tumor diagnosis.  相似文献   

16.
Histopathological features, in vitro growth, and cytogenetic characteristics of tissue samples from molar placentae were studied. Tissue from complete moles is often degenerate, making them more difficult to establish in culture. However, if viable stromal cells are present, complete moles can be cultured as easily as other placental tissue. Longitudinal cytogenetic studies of molar cultures showed the emergence of clonal chromosome abnormalities to be a common feature in both complete and partial moles. The distribution of chromosome abnormalities among these clones was nonrandom, with a high proportion having an additional chromosome 20; among the complete moles, 9 of the 14 clones studied were trisomic for chromosome 20.  相似文献   

17.
This study reviews the frequency and distribution of numerical and structural chromosomal abnormalities in spermatozoa from normal men obtained by the human-hamster system and by multicolor-FISH analysis on decondensed sperm nuclei. Results from large sperm karyotyping series analyzed by chromosome banding techniques and results from multicolor FISH in sperm nuclei (of at least 10(4) spermatozoa per donor and per probe) were reviewed in order to establish baseline values of the sperm chromosome abnormalities in normal men. In karyotyping studies, the mean disomy frequency in human sperm is 0.03% for each of the autosomes, and 0.11% for the sex chromosomes, lower than those reported in sperm nuclei by FISH studies using a similar methodology (0.09% and 0.26%, respectively). Both types of studies coincide in that chromosome 21 and sex chromosomes have a greater tendency to suffer segregation errors than the rest of the autosomes. The mean incidence of diploidy, only available from multicolor FISH in sperm nuclei, is 0.19%. Inter-donor differences observed for disomy and diploidy frequencies among FISH studies of decondensed sperm nuclei using a similar methodology could reflect real differences among normal men, but they could also reflect the subjective application of the scoring criteria among laboratories. The mean frequency of structural aberrations in sperm karyotypes is 6.6%, including all chromosome types of abnormalities. Chromosome 9 shows a high susceptibility to be broken and 50% of the breakpoints are located in 9q, between the centromere and the 9qh+ region. Structural chromosome aberrations for chromosomes 1 and 9 have also been analyzed in human sperm nuclei by multicolor FISH. Unfortunately, this assay does not allow to determine the specific type of structural aberrations observed in sperm nuclei. An association between advancing donor age and increased frequency of numerical and structural chromosome abnormalities has been reported in spermatozoa of normal men.  相似文献   

18.
Report of the committee on structural chromosome changes in neoplasia   总被引:19,自引:0,他引:19  
An enormous amount of data on neoplasia-associated chromosome aberrations has accumulated over the past two years. More than 4,000 tumors with a chromosome anomaly identified by banding have been published since HGM9, and the total number of cases contained in the registry on which the Catalog of Chromosome Aberrations in Cancer (Mitelman, 1988) is based is now well above 12,000. The information presently available is, however, still in many respects incomplete. First, the data is heavily biased in favor of hematologic disorders. Solid tumors comprise only 20% of the total data base, which is totally disproportionate to the relative contribution of these disorders to human cancer morbidity and mortality. For example, malignant epithelial tumors (carcinomas), which cause almost 80% of all cancer deaths in man, comprise only 7% of the total. Second, our knowledge about early stage tumors is very limited. For example, the great majority of the solid tumors that have been studied cytogenetically have been metastatic lesions or effusions (advanced tumors usually have a large number of complex structural and numerical chromosome aberrations). Obviously, many more such neoplasms will have to be studied before the primary (pathogenetically essential) changes can be distinguished from the confusing variety of secondary abnormalities that may dominate the karyotype. It should be noted that secondary changes may also be nonrandom, and may be important for tumor progression. Therefore, no attempt has been made in this report to distinguish between primary and secondary changes. All nonrandomly occurring abnormalities that met the criteria for inclusion are listed in Table 1 irrespective of their presumed pathogenetic significance. Results of molecular genetic studies (e.g. the demonstration of loss of heterozygosity or gene amplification) were not considered, although they may be included in the HGM10.5 report. A total of 149 nonrandom chromosome changes were identified (Table 1) in 43 different types of neoplastic disorders, including hematologic diseases and malignant lymphomas, as well as tumors of epithelial, mesenchymal, neurogenic, germ cell, and melanocytic origin. The aberrations comprise a variety of structural chromosome rearrangements (translocations, inversions, insertions, deletions, duplications and isochromosomes), and all chromosomes, except the Y chromosome are involved. The great majority (121 of the 149 identified aberrations) represent well-defined, specific structural changes. More than half of them are consistently associated with a particular morphologic disease characteristic. Twenty-eight of the aberrations, although nonrandom, are not characterized as well. Most are deletions or translocations that only affect a certain chromosome region, often spanning several bands.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Genomic instability in the human lymphoblast cell line TK6 was studied in clones surviving 36 generations after exposure to accelerated 56Fe ions. Clones were assayed for 20 characteristics, including chromosome aberrations, plating efficiency, apoptosis, cell cycle distribution, response to a second irradiation, and mutant frequency at two loci. The primary effect of the 56Fe-ion exposure on the surviving clones was a significant increase in the frequency of unstable chromosome aberrations compared to the very low spontaneous frequency, along with an increase in the phenotypic complexity of the unstable clones. The radiation-induced increase in the frequency of unstable chromosome aberrations was much greater than that observed previously in clones of the related cell line, WTK1, which in comparison to the TK6 cell line expresses an increased radiation resistance, a mutant TP53 protein, and an increased frequency of spontaneous unstable chromosome aberrations. The characteristics of the unstable clones of the two cell lines also differed. Most of the TK6 clones surviving exposure to 56Fe ions showed unstable cytogenetic abnormalities, while the phenotype of the WTK1 clones was more diverse. The results underscore the importance of genotype in the characteristics of instability after radiation exposure.  相似文献   

20.
A cytogenetic analysis of blood and bone marrow cells of 15 polycythemia vera patients was carried out at different stages of disease during the G-banding technique. Chromosome aberrations of single character were noted before treatment only in one case, i.e. with the patient at stage II of disease. Cell clones with marker chromosomes were revealed in 6 of 9 patients examined in the course of treatment at stages II and III. The cytogenetic analysis was applied to the terminal stage of polycythemia (blast crisis) in one case, when 3 aberrant clones with multiple quantitative and structural chromosome rearrangements were discovered in blood cell cultures with and without PHA. No preferential involvement of definite chromosomes in aberrations was noticed in all the cases examined, no deletion of the 20q --chromosome being discovered. The role of the treatment in the induction of chromosome aberrations is discussed in addition to its dependence on the stage of disease. It is possible that all the clones of pathological character may appear during the long-termed course of polycythemia in patients treated at more serious stages of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号