首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The murine alpha B-crystallin gene (a member of the small heat shock protein family) is expressed constitutively at high levels in the lens and at lower levels in many other tissues, including skeletal muscle. We have previously used the herpes simplex virus thymidine kinase promoter fused to the human growth hormone gene to identify an alpha B-crystallin enhancer at positions -427 to -259 that has high activity in muscle and low activity in lens cell lines. In the study reported here, we performed DNase I footprinting, transfection, mutagenesis, and electrophoretic mobility shift experiments using the murine C2C12 muscle and alpha TN4-1 lens cell lines and the rabbit N/N1003A lens cell line to identify sequences responsible for activity of this enhancer. Enhancer activity in both the muscle and lens cells was dependent on novel elements called alpha BE-1 (-407 to -397), alpha BE-2 (-360 to -327), and alpha BE-3 (-317 to -306). These elements were also weakly occupied by nuclear proteins in L929 cells, which appear to express the alpha B-crystallin gene at a very low level (detectable only by the polymerase chain reaction). A fourth element containing a consensus muscle regulatory factor-binding site called MRF (-300 to -288) was occupied and used only by the C2C12 muscle cells. Cotransfection in NIH 3T3 cells and antibody-gel shift experiments using C2C12 nuclear extracts indicated that MyoD, myogen, or a similar member of this family can activate the alpha B-crystallin enhancer by interaction with the MRF site. Taken together, we conclude that the alpha BE-1, alpha BE-2, and alpha BE-3 elements are shared by both lens and muscle cells, but the MRF element is used only in muscle cells, providing the first example of a muscle-specific control element in a crystallin gene.  相似文献   

3.
Previous studies have shown that the -661/+44 sequence of the murine alpha B-crystallin gene contains a muscle-preferred enhancer (-426/-257) and can drive the bacterial chloramphenicol acetyltransferase (CAT) gene in the lens, skeletal muscle and heart of transgenic mice. Here we show that transgenic mice carrying a truncated -164/+44 fragment of the alpha B-crystallin gene fused to the CAT gene expressed exclusively in the lens; by contrast mice carrying a -426/+44 fragment of the alpha B gene fused to CAT expressed highly in the lens, skeletal muscle and heart, and slightly in the lung, brain, kidney, spleen and liver. DNase I protection experiments indicated that the -147/-118 sequence is protected by nuclear proteins from alpha TN4-1 lens cell line, but not by nuclear proteins from myotubes of the C2C12 cell line. Site directed mutagenesis of this sequence decreased promoter activity in transiently-transfected lens cells, consistent with this sequence being a lens-specific regulatory region (LSR). We conclude that the -426/-257 enhancer is required for expression in skeletal muscle, heart and possibly other tissues, and that the -164/+44 sequence of the alpha B-crystallin gene is sufficient for expression in the lens of transgenic mice.  相似文献   

4.
The alpha B-crystallin gene is expressed at high levels in lens and at lower levels in some other tissues, notably skeletal and cardiac muscle, kidney, lung, and brain. A promoter fragment of the murine alpha B-crystallin gene extending from positions -661 to +44 and linked to the bacterial chloramphenicol acetyltransferase (CAT) gene showed preferential expression in lens and skeletal muscle in transgenic mice. Transfection experiments revealed that a region between positions -426 and -257 is absolutely required for expression in C2C12 and G8 myotubes, while sequences downstream from position -115 appear to be determinants for lens expression. In association with a heterologous promoter, a -427 to -259 fragment functions as a strong enhancer in C2C12 myotubes and less efficiently in myoblasts and lens. Gel shift and methylation interference studies demonstrated that nuclear proteins from C2C12 myoblasts and myotubes specifically bind to the enhancer.  相似文献   

5.
The murine alpha B-crystallin/small heat shock protein gene is expressed at high levels in the lens and at lower levels in the heart, skeletal muscle, and numerous other tissues. Previously we have found a skeletal-muscle-preferred enhancer at positions -427 to -259 of the alpha B-crystallin gene containing at least four cis-acting regulatory elements (alpha BE-1, alpha BE-2, alpha BE-3, and MRF, which has an E box). Here we show that in transgenic mice, the alpha B-crystallin enhancer directs the chloramphenicol acetyltransferase reporter gene driven by the alpha B-crystallin promoter specifically to myocardiocytes of the heart. The alpha B-crystallin enhancer was active in conjugation with the herpes simplex virus thymidine kinase promoter/human growth hormone reporter gene in transfected rat myocardiocytes. DNase I footprinting and site-specific mutagenesis experiments showed that alpha BE-1, alpha BE-2, alpha BE-3, MRF, and a novel, heart-specific element called alpha BE-4 are required for alpha B-crystallin enhancer activity in transfected myocardiocytes. By contrast, alpha BE-4 is not utilized for enhancer activity in transfected lens or skeletal muscle cell lines. Alpha BE-4 contains an overlapping heat shock sequence and a reverse CArG box [5'-GG(A/T)6CC-3']. Electrophoretic mobility shift assays with an antibody to serum response factor and a CArG-box-competing sequence from the c-fos promoter indicated that a cardiac-specific protein with DNA-binding and antigenic similarities to serum response factor binds to alpha BE-4 via the reverse CArG box; electrophoretic mobility shift assays and antibody experiments with anti-USF antiserum and heart nuclear extract also raised the possibility that the MRF E box utilizes USF or an antigenically related protein. We conclude that the activity of the alpha B-crystallin enhancer in the heart utilizes a reverse CArG box and an E-box-dependent pathway.  相似文献   

6.
7.
A combination of mass spectrometric techniques has been used to investigate the amino acid sequence and post-translational modifications of alpha B-crystallin isolated from bovine lenses by gel filtration chromatography and reversed-phase high performance liquid chromatography. Chromatographic fractions were analyzed by electrospray ionization mass spectrometry to determine the homogeneity and molecular weights of proteins in the fractions. The alpha B-crystallin primary gene product, its mono- and diphosphorylated forms, its N- and C-terminal truncated forms, as well as other lens proteins unrelated to the alpha B-crystallins were identified by their molecular weights. Detailed information about the sites of phosphorylation, as well as evidence supporting reassignment of Asn to Asp at position 80, was obtained by analyzing proteolytic digests of these proteins by fast atom bombardment mass spectrometry. Results of this investigation indicate that alpha B-crystallin is phosphorylated in vivo at Ser 45, Ser 59, and either Ser 19 or 21. From the specificity of phosphorylation of alpha-crystallins, it appears that there may be two different kinases responsible for their phosphorylation.  相似文献   

8.
9.
Rosenthal fibers (RFs) are abnormal inclusions within astrocytes, characteristic of Alexander's disease. We have previously isolated a 22 kd protein component of RFs from Alexander's disease brain. By Western blotting, we detected its equivalent in several rat organs, with the highest level in heart, and in a human astrocytoma cell line (U-373MG). A cDNA library established from U-373MG was screened with an anti-RF protein antibody. A partial cDNA clone encoding the lens protein alpha B-crystallin was isolated. The anti-RF protein antibodies react with lens alpha B-crystallin. Furthermore, the distribution of alpha B-crystallin mRNA in rat organs is consistent with the Western blots. Therefore, alpha B-crystallin is not lens-specific and it can accumulate in large amounts in astrocytes in pathological conditions.  相似文献   

10.
alpha B-crystallin (alpha B) is known to be a cytosolic, small heat shock-like multimeric protein that has anti-aggregation, chaperone-like properties. The expression of the alpha B-crystallin gene is developmentally regulated and is induced by a variety of stress stimuli. Importantly, alpha B-crystallin expression is enhanced during oncogenic transformation of cells, in a number of tumors, and most notably, in many neurodegenerative disorders, including Alzheimer's disease and multiple sclerosis. Other than its perceived role as a structural protein in the ocular lens, the actual function of alpha B-crystallin in cellular physiology remains unknown. We have stably transfected CHO cells with an inducible alpha B-cDNA-MMTV-promoter construct that allows the synthesis of recombinant alpha B-crystallin only upon exposure of these cells to dexamethasone. Using immunostaining and conventional and confocal microscopy, we have examined the subcellular distribution of the ectopically expressed alpha B-crystallin. We find that in addition to being in the cytoplasm, the protein resides in the nuclear interior in the interphase nucleus. Double labeling with anti alpha B-crystallin and anti-tubulin, concanavallin, and wheat germ agglutinin, respectively, revealed that during cell division alpha B-crystallin is excluded from condensed chromatin and the nascent nuclei. However, the protein again appears in the newly formed nuclei after the completion of cytokinesis suggesting a conditional, regulatory role for alpha B-crystallin in the nucleus.  相似文献   

11.
A hexapeptide, corresponding to the sequence around the glutamine in beta A3-crystallin that functions as amine-acceptor for transglutaminase, was synthesized. This peptide was biotinylated and used as a probe to identify amine-donor substrates for transglutaminase among lens proteins. It was found that Ca(2+)-activated transglutaminase linked this peptide not only to several beta-crystallins but, unexpectedly, also to alpha B-crystallin. The C-terminal lysine residue of alpha B-crystalline could be identified as the site of linkage. This strengthens the notion that, at least in crystallins, all transglutaminase substrate residues are located in terminal extensions of the polypeptides. It was shown that in lens homogenate, alpha B-crystallin can be covalently crosslinked to beta-crystallins by transglutaminase. The transglutaminase-mediated crosslinking of alpha B-crystallin may have implications for its involvement in normal and pathological processes in lens and other tissues.  相似文献   

12.
13.
14.
15.
Lens alpha-crystallin, alpha A- and alpha B-crystallin, and Hsp27 are members of the small heat shock protein family. Both alpha A- and alpha B-crystallin are expressed in the lens and serve as structural proteins and as chaperones, but alpha B-crystallin is also expressed in nonlenticular organs where Hsp27, rather than alpha A-crystallin, is expressed along with alpha B-crystallin. It is not known what additional function Hsp27 has besides as a heat shock protein, but it may serve, as alpha A-crystallin does in the lens, to stabilize alpha B-crystallin. In this study, we investigate aspects on conformation and thermal stability for the mixture of Hsp27 and alpha B-crystallin. Size exclusion chromatography, circular dichroism (CD), and light scattering measurements indicated that Hsp27 prevented alpha B-crystallin from heat-induced structural changes and high molecular weight (HMW) aggregation. The results indicate that Hsp27 indeed promotes stability of alpha B-crystallin.  相似文献   

16.
High levels of alpha B-crystallin are present in the cardiomyocyte, yet little is understood about the function and importance of this protein. Like many other small heat shock proteins, alpha B-crystallin forms large oligomeric complexes whose size can be regulated by posttranslational modifications. The size of these complexes can modify the function of the protein. A naturally occurring COOH-terminal mutant has many detrimental effects in the lens of the eye and altered oligomerization. Therefore, we mutated the two COOH-terminal lysines of alpha B-crystallin to glycines (K174/175G) and adenovirally mounted them to transduce cardiomyocytes. We analyzed the effect of this mutation on oligomerization, microtubular stabilization, and ischemic outcome. A nearly 45% downward shift in complex size was observed with the mutant by native PAGE followed by immunoblotting. The overexpressed protein no longer protected the tubulin cytoskeleton against ischemic stress by confocal analysis. The mutant caused a 30% increase in cytosolic enzyme release with ischemia compared with control, whereas a 33% decrease was associated with wild-type alpha B-crystallin overexpression. We conclude that the COOH terminus of alpha B-crystallin is crucial to its proper function.  相似文献   

17.
Cellular distribution of alpha B-crystallin in non-lenticular tissues   总被引:15,自引:0,他引:15  
alpha B-Crystallin is a subunit of alpha-crystallin, a major protein component of the vertebrate lens. Recently, its expression in various extra-lenticular tissues has been demonstrated by both Western and Northern blotting. In this study, the cellular distribution of alpha B-crystallin in rat organs was examined in detail using immunohistochemistry. Positive reactions were observed in lens, iris, heart, skeletal muscle (type 1 and type 2A fibers), striated muscle in skin and esophagus, Henle's loop and medullary collecting duct of the kidney, Schwann cells of peripheral nerves, glia of the central nervous system, and decidual cells of the placenta. A close correlation with markers of oxidative activity suggests that alpha B-crystallin is expressed in cells that have high levels of oxidative function.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号