首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparison of the isometric forces and levers of the pectoralis muscle in red‐tailed hawks (Buteo jamaicensis) and barred owls (Strix varia) was done to identify differences that may correlate with their different flight styles. The pectoralis consists of two heads, the anterior m. sternobrachialis (SB) and the posterior m. thoracobrachialis (TB). These are joined at an intramuscular tendon and are supplied by separate primary nerve branches. As in other birds, the two heads have distinct fiber orientations in red‐tailed hawks and barred owls. SB's fiber orientation (posterolateral and mediolateral from origin to insertion) provides pronation and protraction of the humerus during adduction. Electromyographic studies in pigeons show that it is active in early downstroke and during level flight. TB is more active during take‐off and landing in pigeons. The anterolateral orientation (from origin to insertion) of its fibers provides a retractive component to humeral adduction used to control the wing during landing. In our study, the maximum isometric force produced by the combined pectoralis heads did not differ significantly between the hawk and owl, however, the forces were distributed differently between the two muscle heads. In the owl, SB and TB were capable of producing equal amounts of force, but in the hawk, SB produced significantly less force than did TB. This may reflect the need for a large TB to control landing in both birds during prey‐strike, with the owl maintaining both protractive (using SB) and retractive (using TB) abilities. Pronation and protraction may be less important in the flight behavior of the hawk, but its prey‐strike behavior may require the maintenance of a substantial TB for braking and controlled stalling, as it initiates strike behavior. J. Morphol. 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
We compared the helminth communities of 5 owl species from Calabria (Italy) and evaluated the effect of phylogenetic and ecological factors on community structure. Two host taxonomic scales were considered, i.e., owl species, and owls vs. birds of prey. The latter scale was dealt with by comparing the data here obtained with that of birds of prey from the same locality and with those published previously on owls and birds of prey from Galicia (Spain). A total of 19 helminth taxa were found in owls from Calabria. Statistical comparison showed only marginal differences between scops owls (Otus scops) and little owls (Athene noctua) and tawny owls (Strix aluco). It would indicate that all owl species are exposed to a common pool of ‘owl generalist’ helminth taxa, with quantitative differences being determined by differences in diet within a range of prey relatively narrow. In contrast, birds of prey from the same region exhibited strong differences because they feed on different and wider spectra of prey. In Calabria, owls can be separated as a whole from birds of prey with regard to the structure of their helminth communities while in Galicia helminths of owls represent a subset of those of birds of prey. This difference is related to the occurrence in Calabria, but not Galicia, of a pool of ‘owl specialist’ species. The wide geographical occurrence of these taxa suggest that local conditions may determine fundamental differences in the composition of local communities. Finally, in both Calabria and Galicia, helminth communities from owls were species-poor compared to those from sympatric birds of prey. However, birds of prey appear to share a greater pool of specific helmith taxa derived from cospeciation processes, and a greater potential exchange of parasites between them than with owls because of phylogenetic closeness.  相似文献   

3.
Keratinophilic fungi were isolated from feathers of most common Indian birds,viz. domestic chicken (Gallus domesticus), domestic pigeon (Columba livia), house sparrow (Passer domesticus), house crow (Corvus splendens), duck (Anas sp.), rose-ringed parakeet (Psittacula krameri). Out of 87 birds, 58 yielded 4 keratinophilic fungal genera representing 13 fungal species and one sterile mycelium. The isolated fungi were cultured on Sabouraud's dextrose agar at 28±2°C.Chrysosporium species were isolated on most of the birds.Chrysosporium lucknowense andChrysosporium tropicum were the most common fungal species associated with these Indian birds. Maximum occurrence of fungi (47%) was recorded on domestic chickens and the least number of keratinophilic fungi was isolated from the domestic pigeon and duck. The average number of fungi per bird was found to be the 0.44.  相似文献   

4.
The presence, location and degree of immunoexpression of various microfilament (MF) and intermediate filament (IF) systems (actin, cytokeratins, desmin, vimentin) were studied in the excurrent ducts of the testis in sexually mature and active galliform (Japanese quail, domestic fowl, turkey) and anseriform (duck) birds. These proteins were variably expressed between the epithelia and periductal tissue (periductal smooth muscle cell layer and interductal connective tissue) types and between species. Variable heterogeneous co-expression of filament systems was also found in the various duct epithelia and periductal tissue types: co-expression of filament systems was the rule rather than the exception. In the duck, neither vimentin nor cytokeratin was present in any of the tissues, whereas actin and desmin (absent in the rete testis) were co-expressed in the efferent ducts and epididymal duct unit (comprising the ductus conjugens, ductus epididymidis and ductus deferens). Actin, desmin and vimentin were generally co-expressed in the rete testis, efferent ducts and epididymal duct unit of the quail, domestic fowl and turkey, with vimentin being more strongly immunoreactive than actin and desmin in the epididymal duct unit, but more weakly immunoexpressed in the efferent ducts. Cytokeratin was present and co-expressed with actin, desmin and vimentin in the rete testis, efferent ducts and epididymal duct unit of the domestic fowl and turkey, but not in the quail and duck. The periductal smooth muscle cell layer and interductal tissue co-expressed actin, desmin and vimentin variably in all birds. Luminal spermatozoa of both the turkey and duck were immunonegative for all protein systems, whereas those of the quail and domestic fowl co-expressed actin, desmin and vimentin moderately or strongly. The tissues of the reproductive tract of male birds thus contain cytoskeletal protein systems that are variably but mostly co-expressed and whose contractile ability appears necessary and sufficient for transportation through the various excurrent ducts of the voluminous testicular fluid and its high sperm content, characteristic features of male avian reproduction.  相似文献   

5.
6.
7.
Birds of the British Upper Eocene   总被引:2,自引:1,他引:1  
The fossil birds of the British Upper Eocene are re-examined, further species are described, and additional material referred to existing species. Seeley's Macrornis tanaupus appears to be non-avian. Of the nine species listed by Lydekker (1891), the supposed cormorant, Actiornis anglicus, and the supposed flamingo, Elornis anglicus, appear referable to a single species of ibis under the former name; and Ibidopsis is transferred to the rails. The total number of forms now recognized consists of a diver, a cormorant, two ibises, a flamingo (based on limb shafts and unnamed), a telmabatid, a duck, a probable cathartid vulture, a hawk, an osprey, a rail and four waders. Seven new genera and seven new species are named.  相似文献   

8.
Summary Previous authors have suggested that in certain aquatic birds a transparent nictitating membrane of high refractive index could compensate for the refractive loss of the cornea in water. Measurements of refractive indices, refractive state and curvature carried out on a number of aquatic birds indicate that the nictitating membrane does not have a refractive function; the refractive indices of the cornea and nictitating membrane are very similar (approximately 1.37), the nictitating membrane does not alter the refractive state of the eye, and its curvature, when it is in place in front of the globe, is virtually the same as that of the cornea.This research was supported by grants from the National Research Council of Canada and the Canadian National Sportsmen's Fund. The assistance of Mote Marine Laboratory, The Mount Desert Island Biological Laboratory, the Niska Wildlife Foundation and the Felicadades Wildlife Foundation is gratefully acknowledged. The herring gulls and black guillemots were provided by Dr. W.B. Kinter. In addition, the authors are grateful for the assistance provided by Drs. J.L. Lincer and D. Peakall and Mr. R. Orleib.  相似文献   

9.
Twisting and bending deformities of the long limb bones of growing birds are common. In domestic poultry they are associated with rapid growth. In order to examine the variation in bone growth rates amongst the Class Aves as a step towards learning about the aetiology of growth deformities, we collected data on this and several other variables from a large sample of species. Adult tarsometatarsal length (ATL) was proportional to adult weight (W)0.36. The exponent did not differ significantly from 1/3. Mean legginess (L), defined as ATL/W1/3 (i.e. ATL.W-1/3), was 80 mm.kg-1/3 but varied according to the habitat occupied; terrestrial and arboreal birds had relatively longer legs than aquatic and aerial ones. ATL growth rate (GR) averaged 20 mm.d-1 and was not correlated with W. It was highly influenced by pattern of development, being on average about three times greater in altricial compared with precocial birds of the same adult weight. Amongst birds of the same developmental pattern, GR was linearly related to L. Tarsometatarsal growth rate varied from 0.35 to 60 mm.d-1 in the Class Aves and there was no evidence of intrinsic limits to GR from our results. How rapidly such bone growth rates are achieved remains to be determined.  相似文献   

10.
Allometry of the leg muscles of birds   总被引:2,自引:0,他引:2  
The musculoskeletal components of the hindlimbs of 20 species of birds, considered non-runners, were examined. Allometry was used to compare these data with previously published information on the limbs of running birds. In non-runners the digital flexor muscle and tendon areas scaled approximately isometrically, in contrast to running birds where tendon areas had a lower exponent. Non-running birds had muscle fibre areas approximately half that of runners of equal mass. In both groups, the muscle:tendon area ratio for m. gastrocnemius increased as M0.13, suggesting factors other than elastic energy storage are important. Runners exhibited relatively longer tibiotarsi and tarsometatarsi and shorter toes. With very few exceptions, the linear dimensions of bones, tendon cross-sectional areas, and muscle masses and fibre areas in the legs of the non-running birds scaled closely according to the requirements for geometric similarity, but the confidence limits are often wide. Deviations from geometric similarity in birds reflect differences in locomotor behaviours and abilities.  相似文献   

11.
We assessed the ability of southern house wrens (Troglodytes aedon musculus) to recognize and discriminate different birds of prey. We exposed nesting birds to stuffed specimens of two sympatric predator species, the chimango caracara (Milvago chimango, a nest predator) and the roadside hawk (Buteo magnirostris, a predator of adults and nests), and to a dummy of a non-sympatric predator, the double-toothed kite (Harpagus bidentatus, a predator of adults). Nesting wrens avoided going into their nest or took a longer time to resume their parental duties when exposed to the predators than when they were exposed to a control dummy (Chrysomus ruficapillus, a sympatric blackbird). Nest avoidance was higher when birds were exposed to the roadside hawk but no differences were detected when exposed to the chimango caracara or the double-toothed kite. The results indicate that southern house wrens are able to recognize a predator, responding in a graded manner. Our findings support the hypothesis that southern house wrens exhibit a threat-sensitive response during breeding. Also, individuals were able to recognize the unknown predator but failed to correctly assess the threat level represented by it. We propose that correct assessment of threat level by house wrens requires direct experience with the predator, which might mediate in the modulation of the response.  相似文献   

12.
13.
The response of precocial birds to configurational stimuli has been a source of controversy for decades. In this experiment we measured cardiac response of domestic chicks to “hawk” and “goose” silhouettes. The chicks' heart rates varied more in response to the hawk model than to the goose model, suggesting that the hawk silhouette is a more fearful stimulus than that of the goose. Our data document the recognition of a configurational stimulus without prior, pertinent experience.  相似文献   

14.
Blood films and sera samples from wild Oklahoma raptors (Strigiformes--36 birds, 3 species; Falconiformes--50 birds, 7 species) were examined for hematozoa and tested for serologic antibody response to Newcastle Disease Virus (NDV), encephalitis (EEE and WEE), ornithosis, and influenza. Twenty-nine of 36 (80.5) Strigiformes and 24 of 50 (48.0%) Falconiformes showed the presence of one or more hematozoa. Serologic testing revealed the serum of one adult male red-tailed hawk positive for antibody to NDV and one additional adult male red-tailed hawk positive for antibody to type-A influenza.  相似文献   

15.
We measured ventilation, oxygen consumption and blood gases in burrowing owls (Athene cunicularia) breathing moderate and extreme hypoxic gas mixtures to determine their hypoxic ventilatory threshold (HVT) and to assess if they, like other birds and mammals, exhibit a relationship between HVT and hemoglobin O2 affinity (P(50)) of their blood. An earlier report of an attenuated ventilatory responsiveness of this species to hypoxia was enigmatic given the low O2 affinity (high P(50)) of burrowing owl hemoglobin. In the current study, burrowing owls breathing 11% and 9% O2 showed a significantly elevated total ventilation. The arterial partial pressure of oxygen (PaO2) at which ventilation is elevated above normoxic values in burrowing owls was 58 mm Hg. This threshold value conforms well to expectations based on the high P(50) of their hemoglobin and the HVT vs. P(50) relationship for birds developed in this study. Correcting for phylogenetic relatedness in the multi-species analysis had no effect on the HVT vs. P(50) relationship. Also, because burrowing owls in this study did not show a hypometabolic response at any level of hypoxia (even at 9% O2); HVT described in terms of percent change in oxygen convection requirement is identical to that based on ventilation alone.  相似文献   

16.
Contrary to what is observed in Fennoscandia, it seems to be widely accepted that small mammals do not exhibit multi-annual population cycles in the boreal forest of North America. However, in the last thirty years, irruptions of vole predators such as owls have been reported by ornithologists south of the North American boreal forest. While such southerly irruptions have been associated in Fennoscandia with periods of low abundance of small mammals within their usual distribution range, their possible cyclic nature and their relationships to fluctuations in vole densities at northern latitudes has not yet been demonstrated in North America. With information collected from existing data-bases, we examined the presence of cycles in small mammals and their main avian predators by using temporal autocorrelation analyses. Winter invasions of boreal owls ( Aegolius funereus ) were periodic, with a 4-yr cycle in Québec. Populations of one species of small mammal, the red-backed vole ( Clethrionomys gapperi ), fluctuated periodically in boreal forests of Québec (north to 48°N). Boreal owls show invasion cycles which correspond to years of low density of red-backed voles, the main food item for this owl species. In addition, winter observations of northern hawk owls ( Surnia ulula ) and great gray owls ( Strix nebulosa ) south of their usual range increased in years of low density of red-backed voles. Our results suggest that a 4-yr population cycle exists in the eastern boreal forest of North America for voles and owls, which is very similar to the one observed in Fennoscandia.  相似文献   

17.
Owls possess stereopsis (i.e., the ability to perceive depth from retinal disparity cues), but its distribution amongst other birds has remained largely unexplored. Here, we present data on species variation in brain and telencephalon size and features of the Wulst, the neuroanatomical substrate that subserves stereopsis, in a putative sister-group to owls, the order Caprimulgiformes. The caprimulgiforms we examined included nightjars (Caprimulgidae), owlet-nightjars (Aegothelidae), potoos (Nyctibiidae), frogmouths (Podargidae) and the Oilbird (Steatornithidae). The owlet-nightjars and frogmouths shared almost identical relative brain, telencephalic and Wulst volumes as well as overall brain morphology and Wulst morphology with owls. Specifically, the owls, frogmouths and owlet-nightjars possess relatively large brains and telencephalic and Wulst volumes, had a characteristic brain shape and displayed prominent laminae in the Wulst. In contrast, potoos and nightjars both had relatively small brains and telencephala, and Wulst volumes that are typical for similarly sized birds from other orders. The Oilbird had a large brain, telencephalon and Wulst, although these measures were not quite as large as those of the owls. This gradation of owl-like versus nightjar-like brains within caprimulgiforms has significant implications for understanding the evolution of stereopsis and the Wulst both within the order and birds in general.  相似文献   

18.
Scleral ossicles are present in many reptiles, including turtles and birds. In both groups the sclerotic ring situated in the eye is composed of a number of imbricating scleral ossicles or plates. Despite this gross morphological similarity, Andrews (1996. An endochondral rather than a dermal origin for scleral ossicles in Cryptodiran turtles. J. Herpetol. 30, 257-260) reported that the scleral ossicles of turtles develop endochondrally unlike those in birds, which develop intramembranously after a complex epithelial-mesenchymal inductive event. This study re-explores one of the species examined by Andrews in order to determine the mode of ossification of scleral ossicles in turtles. A growth series of Chelydra serpentina embryos, including the stages examined by Andrews, were examined by staining separately for cartilage and bone. Results clearly contradict Andrews (1996) and show that the scleral ossicles of Chelydra serpentina develop similarly to those in birds. That is, they develop intramembranously without a cartilage precursor and are likely induced by transient scleral papillae. The sequence of scleral papillae development is broadly similar, but the papillae themselves are not as distinct as those seen in chicken embryos. This study has important consequences for understanding the homology of scleral ossicles among tetrapods.  相似文献   

19.
We measured ventilation, oxygen consumption and blood gases in burrowing owls (Athene cunicularia) breathing moderate and extreme hypoxic gas mixtures to determine their hypoxic ventilatory threshold (HVT) and to assess if they, like other birds and mammals, exhibit a relationship between HVT and hemoglobin O2 affinity (P(50)) of their blood. An earlier report of an attenuated ventilatory responsiveness of this species to hypoxia was enigmatic given the low O2 affinity (high P(50)) of burrowing owl hemoglobin. In the current study, burrowing owls breathing 11% and 9% O2 showed a significantly elevated total ventilation. The arterial partial pressure of oxygen (PaO2) at which ventilation is elevated above normoxic values in burrowing owls was 58 mm Hg. This threshold value conforms well to expectations based on the high P(50) of their hemoglobin and the HVT vs. P(50) relationship for birds developed in this study. Correcting for phylogenetic relatedness in the multi-species analysis had no effect on the HVT vs. P(50) relationship. Also, because burrowing owls in this study did not show a hypometabolic response at any level of hypoxia (even at 9% O2); HVT described in terms of percent change in oxygen convection requirement is identical to that based on ventilation alone.  相似文献   

20.
The major salivary glands of birds develop by branching or elongation of the epithelial cords. The development of the minor salivary glands in form of the lingual glands has never been described. Among birds, only Anatidae have three types of the lingual glands: rostral, caudo‐lateral, and caudo‐medial lingual glands. The study aims to characterize the manner and rate of the lingual glands development in the domestic duck and their topographical arrangement relative to the hyoid apparatus. The study reveals that all three types of the lingual glands develop by branching. We describe five stages of the lingual glands development in the domestic ducks: prebud, initial bud, pseudoglandular, canalicular, and terminal bud stage. The pattern of the lingual glands development in birds is similar to that described for mammals, with the exception, that the terminal buds are formed at the same time as the lumen of the glands. Generally, the rostral lingual gland starts to branch earlier than the caudal lingual glands. The 3D‐reconstruction shows the location and direction of lingual gland development relative to the entoglossal cartilage and basibranchial bone. Light microscopy and scanning electron microscopy allow to characterize the histogenesis of the embryonic epithelium into glandular epithelium. At a time of hatching only secretory units of caudal lingual glands resemble the secretory units of the adult domestic duck. The rostral and caudo‐lateral lingual glands are arranged on the sides of the entoglossal cartilage and basibranchial bone and caudo‐madial lingual glands are located over the basibranchial bone. We suggest that such an arrangement of the lingual glands in the domestic duck is important during food intake and responsible for reduction of friction and formation of food bites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号