首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of methods known to perturb endocytosis from clathrin- coated pits on the localization of clathrin and HA2 adaptors in HEp-2 carcinoma cells have been studied by immunofluorescence and ultrastructural immunogold microscopy, using internalization of transferrin as a functional assay. Potassium depletion, as well as incubation in hypertonic medium, remove membrane-associated clathrin lattices: flat clathrin lattices and coated pits from the plasma membrane, and clathrin-coated vesicles from the cytoplasm, as well as those budding from the TGN. In contrast, immunofluorescence microscopy using antibodies specific for the alpha- and beta-adaptins, respectively, and immunogold labeling of cryosections with anti-alpha- adaptin antibodies shows that under these conditions HA2 adaptors are aggregated at the plasma membrane to the same extent as in control cells. After reconstitution with isotonic K(+)-containing medium, adaptor aggregates and clathrin lattices colocalize at the plasma membrane as normally and internalization of transferrin resumes. Acidification of the cytosol affects neither clathrin nor HA2 adaptors as studied by immunofluorescence microscopy. However, quantitative ultrastructural observations reveal that acidification of the cytosol results in formation of heterogeneously sized and in average smaller clathrin-coated pits at the plasma membrane and buds on the TGN. Collectively, our observations indicate that the methods to perturb formation of clathrin-coated vesicles act by different mechanisms: acidification of the cytosol by affecting clathrin-coated membrane domains in a way that interferes with budding of clathrin-coated vesicles from the plasma membrane as well as from the TGN; potassium depletion and incubation in hypertonic medium by preventing clathrin and adaptors from interacting. Furthermore our observations show that adaptor aggregates can exist at the plasma membrane independent of clathrin lattices and raise the possibility that adaptor aggregates can form nucleation sites for clathrin lattices.  相似文献   

2.
Most membrane proteins are endocytosed through clathrin-coated pits via AP-2 adaptor complexes. However, little is known about the interaction of internalization signals with AP-2 in live cells in the absence of clathrin lattices. To investigate this issue, we employed cells cotransfected with pairs of antigenically distinct influenza hemagglutinin (HA) mutants containing different internalization signals of the YXXZ family. To enable studies on the possible association of the naturally trimeric HAs into higher order complexes via binding to AP-2, we exploited the inability of HAs from different influenza strains to form mutual trimers. Thus, we coexpressed HA pairs from different strains (Japan and X:31) bearing similar cytoplasmic tails mutated to include internalization signals. Using antibody-mediated immunofluorescence co-patching on live cells, we demonstrate that internalization-competent HA mutants form higher order complexes and that this clustering depends on the strength of the internalization signal. The clustering persisted in cells treated with hypertonic medium to disperse the clathrin lattices, as validated by co-immunoprecipitation experiments. The clustering of HAs bearing strong internalization signals appears to be mediated via binding to AP-2, as indicated by (i) the coprecipitation of alpha-adaptin with these HAs, even in hypertonically treated cells; (ii) the co-localization (after hypertonic treatment) of AP-2 with antibody-mediated patches of these mutants; and (iii) the dispersal of the higher order HA complexes following chlorpromazine treatment, which removes AP-2 from the plasma membrane. These results suggest that even in the absence of clathrin lattices, AP-2 exists in multivalent complexes capable of simultaneously binding several internalization signals from the same family.  相似文献   

3.
In this study image correlation spectroscopy was used to demonstrate the presence of two populations of clathrin in situ, on intact cells. In the periphery of the cell approximately 35% of the clathrin triskelions are free within the cytosol while approximately 65% are in large aggregates, presumably coated pits. Although endocytosis is inhibited at low temperature, free clathrin triskelions are still present and small AP-2 aggregates (of approximately 20 proteins), or coated pit nucleation sites, are still observed. Following hypertonic treatment, or cytoplasmic acidification, free clathrin triskelions within the cytosol are depleted and all of the clathrin becomes associated with the membrane. Under these conditions coated pit associated AP-2 remains while the smaller AP-2 aggregates, or coated pit nucleation sites, dissociate. This indicates that the stabilization of AP-2 coated pit nucleation sites requires the presence of free clathrin triskelions within the cytosol. Furthermore, this indicates that free clathrin is required for the early stages of coated pit formation and presumably the continuation of the clathrin-mediated endocytic process. We also provide indirect evidence that AP-2 binding to the membrane in coated pit nucleation sites may be regulated in part by binding to internalization-competent membrane receptors.  相似文献   

4.
Numerous biologically relevant substrates are selectively internalized via clathrin-mediated endocytosis. At the plasma membrane the AP-2 complex plays a major role in clathrin coat formation, interacting with both cargo and clathrin. Utilizing simultaneous dual-channel total internal reflection fluorescence microscopy we have analyzed components of the AP-2 complex (alpha- and beta 2-adaptin) during clathrin-mediated endocytosis. Although in static images enhanced green fluorescent protein-tagged AP-2 markers significantly co-localized with clathrin and other components of clathrin-coated pits, AP-2 did not seem to be present in clathrin spots that appeared to undergo internalization or motility parallel to the plane of the plasma membrane. Two populations of clathrin at the plasma membrane seem to exist, the dynamic and the static, and AP-2 appears to be only found within the latter. These results suggest that colocalized clathrin/AP-2 puncta may represent loci for coated pit production and that previous models that assumed AP-2 was retained within clathrin coats during endocytosis may need to be re-evaluated.  相似文献   

5.
Potassium-depleted fibroblasts are unable to develop polarized morphology and lack coated pits. Experiments were carried out to measure internalization of fibronectin receptors (FNR) in potassium-depleted cells and possible association of FNR with AP-2 complexes after adding potassium back to the cells, which restores cell polarization. AP-2 complexes are the cell surface component of coated pits that contain both clathrin and membrane receptor binding domains. Potassium-depleted fibroblasts endocytosed antibody-tagged FNR and also internalized fluorescent fibronectin that previously had been adsorbed to the substratum. During cell polarization, antibody-tagged FNR reorganized into fibrillar structures along stress fibers beginning from nucleation sites at cell margins. Plasma membrane AP-2 complexes, which were undetectable in potassium-depleted cells, reappeared at the cell surface above the nucleus and then spread toward the cell margins. The results show that endocytosis of FNR can occur at least partially by a coated pit-independent mechanism.  相似文献   

6.
Although interactions between the mu2 subunit of the clathrin adaptor protein complex AP-2 and tyrosine-based internalization motifs have been implicated in the selective recruitment of cargo molecules into coated pits, the functional significance of this interaction for endocytosis of many types of membrane proteins remains unclear. To analyze the function of mu2-receptor interactions, we constructed an epitope-tagged mu2 that incorporates into AP-2 and is targeted to coated pits. Mutational analysis revealed that Asp176 and Trp421 of mu2 are involved in the interaction with internalization motifs of TGN38 and epidermal growth factor (EGF) receptor. Inducible overexpression of mutant mu2, in which these two residues were changed to alanines, resulted in metabolic replacement of endogenous mu2 in AP-2 complexes and complete abrogation of AP-2 interaction with the tyrosine-based internalization motifs. As a consequence, endocytosis of the transferrin receptor was severely impaired. In contrast, internalization of the EGF receptor was not affected. These results demonstrate the potential usefulness of the dominant-interfering approach for functional analysis of the adaptor protein family, and indicate that clathrin-mediated endocytosis may proceed in both a mu2-dependent and -independent manner.  相似文献   

7.
Boyd ND  Chan BM  Petersen NO 《Biochemistry》2002,41(23):7232-7240
Downregulation of several signaling pathways, such as those stimulated by growth factor receptors, occurs by internalization of signaling receptors through clathrin-coated pits. The first step in internalization or endocytosis is interaction with AP-2, which results in coated pit formation by assembly of clathrin to AP-2. Changes in endocytosis are reflected in the distribution of AP-2 molecules at the cell surface. Integrins are receptors which mediate attachment to the extracellular matrix and also stimulate numerous intracellular signaling pathways; however, it is not known how signaling through integrins is terminated or downregulated. Endocytosis through clathrin-coated pits offers an attractive mechanism for this. This work explores the relationship between AP-2 and beta(1) integrins. RD cells grown for 24 h on collagen or laminin exhibit a redistribution of AP-2 to the cell periphery relative to those grown on fibronectin or polylysine. The total AP-2 protein levels in the cells are unaffected. Blocking alpha(1)beta(1) integrin ligand binding on collagen prevents this redistribution fully. On laminin where alpha(1)beta(1) and alpha(6)beta(1) integrins are engaged, both receptors must be simultaneously blocked to prevent AP-2 redistribution, confirming that the redistribution depends on the specific engagement of the receptors. Immunofluorescence reveals that the majority of alpha(1)beta(1) integrins colocalize with alpha(6)beta(1) integrins in linear structures identified as focal adhesions. A separate fraction of alpha(1)beta(1) integrins colocalize with AP-2 in coated pits. Interestingly, alpha(6)beta(1) integrins are not located in coated pits, demonstrating that integrin colocalization with AP-2 is not necessary to induce redistribution of AP-2.  相似文献   

8.
Beta-arrestins are cytosolic proteins that regulate the signaling and the internalization of G protein-coupled receptors (GPCRs). Although termination of receptor coupling requires beta-arrestin binding to agonist-activated receptors, GPCR endocytosis involves the coordinate interactions between receptor-beta-arrestin complexes and other endocytic proteins such as adaptor protein 2 (AP-2) and clathrin. Clathrin interacts with a conserved motif in the beta-arrestin C-terminal tail; however, the specific molecular determinants in beta-arrestin that bind AP-2 have not been identified. Moreover, the respective contributions of the interactions of beta-arrestin with AP-2 and clathrin toward the targeting of GPCRs to clathrin-coated vesicles have not been established. Here, we identify specific arginine residues (Arg(394) and Arg(396)) in the beta-arrestin 2 C terminus that mediate beta-arrestin binding to AP-2 and show, in vitro, that these domains in beta-arrestin 1 and 2 interact equally well with AP-2 independently of clathrin binding. We demonstrate in HEK 293 cells by fluorescence microscopy that beta(2)-adrenergic receptor-beta-arrestin complexes lacking the beta-arrestin-clathrin binding motif are still targeted to clathrin-coated pits. In marked contrast, receptor-beta-arrestin complexes lacking the beta-arrestin/AP-2 interactions are not effectively compartmentalized in punctated areas of the plasma membrane. These results reveal that the binding of a receptor-beta-arrestin complex to AP-2, not to clathrin, is necessary for the initial targeting of beta(2)-adrenergic receptor to clathrin-coated pits.  相似文献   

9.
The Nef proteins of human immunodeficiency virus and simian immunodeficiency virus (SIV) bind the AP-1 and AP-2 clathrin adaptors to downmodulate the expression of CD4 and CD28 by recruiting them to sites of AP-2 clathrin-dependent endocytosis. Additionally, SIV Nef directly binds the CD3-zeta subunit of the CD3 complex and downmodulates the T-cell receptor (TCR)-CD3 complex. We report here that SIV mac239 Nef induces the endocytosis of TCR-CD3 in Jurkat T cells. SIV Nef also induces the endocytosis of a chimeric CD8-CD3-zeta protein containing only the CD3-zeta cytoplasmic domain (8-zeta), in the absence of other CD3 subunits. Thus, the interaction of SIV Nef with CD3-zeta likely mediates the induction of TCR-CD3 endocytosis. In cells expressing SIV Nef and 8-zeta, both proteins colocalize with AP-2, indicating that Nef induces 8-zeta internalization via this pathway. Surprisingly, deletion of constitutively strong AP-2 binding determinants (CAIDs) in SIV Nef had little effect on its ability to induce TCR-CD3, or 8-zeta endocytosis, even though these determinants are required for the induction of CD4 and CD28 endocytosis via this pathway. Fluorescent microscopic analyses revealed that while neither the mutant SIV Nef protein nor 8-zeta colocalized with AP-2 when expressed independently, both proteins colocalized with AP-2 when coexpressed. In vitro binding studies using recombinant SIV Nef proteins lacking CAIDs and recombinant CD3-zeta cytoplasmic domain demonstrated that SIV Nef and CD3-zeta cooperate to bind AP-2 via a novel interaction. The fact that Nef uses distinct AP-2 interaction surfaces to recruit specific membrane receptors demonstrates how Nef independently selects distinct types of target receptors and recruits them to AP-2 for endocytosis.  相似文献   

10.
11.
The mechanism of AP-1/clathrin coat formation was analyzed using purified adaptor proteins and synthetic liposomes presenting tyrosine sorting signals. AP-1 adaptors recruited in the presence of Arf1.GTP and sorting signals were found to oligomerize to high-molecular-weight complexes even in the absence of clathrin. The appendage domains of the AP-1 adaptins were not required for oligomerization. On GTP hydrolysis induced by the GTPase-activating protein ArfGAP1, the complexes were disassembled and AP-1 dissociated from the membrane. AP-1 stimulated ArfGAP1 activity, suggesting a role of AP-1 in the regulation of the Arf1 "GTPase timer." In the presence of cytosol, AP-1 could be recruited to liposomes without sorting signals, consistent with the existence of docking factors in the cytosol. Under these conditions, however, AP-1 remained monomeric, and recruitment in the presence of GTP was short-lived. Sorting signals allowed stable recruitment and oligomerization also in the presence of cytosol. These results suggest a mechanism whereby initial assembly of AP-1 with Arf1.GTP and ArfGAP1 on the membrane stimulates Arf1 GTPase activity, whereas interaction with cargo induces oligomerization and reduces the rate of GTP hydrolysis, thus contributing to efficient cargo sorting.  相似文献   

12.
It has been recently shown (Larkin, J. M., M. S. Brown, J. L. Goldstein, and R. G. W. Anderson, 1983, Cell, 33:273-285) that after a hypotonic shock followed by incubation in a K+-free medium, human fibroblasts arrest their coated pit formation and therefore arrest receptor-mediated endocytosis of low density lipoprotein. We have used this technique to study the endocytosis of transferrin, diphtheria toxin, and ricin toxin by three cell lines (Vero, Wi38/SV40, and Hep2 cells). Only Hep2 cells totally arrested internalization of [125I]transferrin, a ligand transported by coated pits and coated vesicles, after intracellular K+ depletion. Immunofluorescence studies using anti-clathrin antibodies showed that clathrin associated with the plasma membrane disappeared in Hep2 cells when the level of intracellular K+ was low. In the absence of functional coated pits, diphtheria toxin was unable to intoxicate Hep2 cells but the activity of ricin toxin was unaffected by this treatment. By measuring the rate of internalization of [125I]ricin toxin by Hep2 cells, with and without functional coated pits, we have shown that this labeled ligand was transported in both cases inside the cells. Hep2 cells with active coated pits internalized twice as much [125I]ricin toxin as Hep2 cells without coated pits. Entry of ricin toxin inside the cells was a slow process (8% of the bound toxin per 10 min at 37 degrees C) when compared to transferrin internalization (50% of the bound transferrin per 10 min at 37 degrees C). Using the indirect immunofluorescence technique on permeabilized cells, we have shown that Hep2 cells depleted in intracellular K+ accumulated ricin toxin in compartments that were predominantly localized around the cell nucleus. Our study indicates that in addition to the pathway of coated pits and coated vesicles used by diphtheria toxin and transferrin, another system of endocytosis for receptor-bound molecules takes place at the level of the cell membrane and is used by ricin toxin to enter the cytosol.  相似文献   

13.
The presence of lysosomal acid phosphatase (LAP) in coated pits at the plasma membrane was investigated by immunocytochemistry in thymidine kinase negative mouse L-cells (Ltk-) and baby hamster kidney (BHK) cells overexpressing human LAP (Ltk-LAP and BHK-LAP cells). Double immunogold labeling showed that at various stages of invaginating coated pits LAP colocalized with clathrin and plasma membrane adaptors (HA-2 adaptors). Quantitation of the immunogold label showed similar density of wild-type LAP in coated over non-coated areas of the plasma membrane, whereas an internalization-deficient, truncated mutant of LAP which lacks the cytoplasmic tail was less efficiently included into coated pits. Internalization of anti-LAP antibodies into endosomal vesicles was accompanied by rapid dissociation of the coat proteins as shown by an immunofluorescence assay. The role of clathrin-coated vesicles in internalization of LAP was further corroborated by microinjecting monoclonal antibodies against clathrin or HA-2 adaptors into BHK-LAP cells. Internalization of LAP as detected by an immunofluorescence assay was transiently blocked by microinjected antibodies against clathrin or HA-2 adaptors, whereas unrelated antibodies did not affect internalization. These data suggest that LAP is included into clathrin-coated pits of the plasma membrane for rapid internalization.  相似文献   

14.
During the assembly of enveloped viruses viral and cellular components essential for infectious particles must colocalize at specific membrane locations. For the human and simian immunodeficiency viruses (HIV and SIV), sorting of the viral envelope proteins (Env) to assembly sites is directed by trafficking signals located in the cytoplasmic domain of the transmembrane protein gp41 (TM). A membrane proximal conserved GYxx? motif mediates endocytosis through interaction with the clathrin adaptor AP-2. However, experiments with SIV(mac239) Env indicate the presence of additional signals. Here we show that a conserved C-terminal dileucine in HIV(HxB2) also mediates endocytosis. Biochemical and morphological assays demonstrate that the C-terminal dileucine motif mediates internalization as efficiently as the GYxx? motif and that both must be removed to prevent Env internalization. RNAi experiments show that depletion of the clathrin adaptor AP-2 leads to increased plasma membrane expression of HIV Env and that this adaptor is required for efficient internalization mediated by both signals. The redundancy of conserved endocytosis signals and the role of the SIV(mac239) Env GYxx? motif in SIV pathogenesis, suggest that these motifs have functions in addition to endocytosis, possibly related to Env delivery to the site of viral assembly and/or incorporation into budding virions.  相似文献   

15.
We have used RNA interference to knock down the AP-2 mu2 subunit and clathrin heavy chain to undetectable levels in HeLaM cells. Clathrin-coated pits associated with the plasma membrane were still present in the AP-2-depleted cells, but they were 12-fold less abundant than in control cells. No clathrin-coated pits or vesicles could be detected in the clathrin-depleted cells, and post-Golgi membrane compartments were swollen. Receptor-mediated endocytosis of transferrin was severely inhibited in both clathrin- and AP-2-depleted cells. Endocytosis of EGF, and of an LDL receptor chimera, were also inhibited in the clathrin-depleted cells; however, both were internalized as efficiently in the AP-2-depleted cells as in control cells. These results indicate that AP-2 is not essential for clathrin-coated vesicle formation at the plasma membrane, but that it is one of several endocytic adaptors required for the uptake of certain cargo proteins including the transferrin receptor. Uptake of the EGF and LDL receptors may be facilitated by alternative adaptors.  相似文献   

16.
Beta-arrestins are multifunctional adapters involved in the internalization and signaling of G protein-coupled receptors (GPCRs). They target receptors to clathrin-coated pits (CCPs) through binding with clathrin and clathrin adapter 2 (AP-2) complex. They also act as transducers of signaling by recruiting c-Src kinase to certain GPCRs. Here we sought to determine whether c-Src regulates the recruitment of AP-2 to beta-arrestin and the angiotensin II (Ang II) type 1 receptor (AT1R) during internalization. We show that the agonist stimulation of native AT1R in vascular smooth muscle cells (VSMCs) induces the formation of an endogenous complex containing c-Src, beta-arrestins and AP-2. In vitro studies using coimmunoprecipitation experiments and a yeast three-hybrid assay reveal that c-Src stabilizes the agonist-independent association between beta-arrestin2 and the beta-subunit of AP-2 independently of the kinase activity of c-Src. However, although c-Src expression promoted the rapid dissociation of AP-2 from both beta-arrestin and AT1R after receptor stimulation, a kinase-inactive mutant of c-Src failed to induce the dissociation of AP-2 from the agonist-occupied receptor. Thus, the consequence of c-Src in regulating the dissociation of AP-2 from the receptor was also examined on the internalization of AT1R by depleting c-Src in human embryonic kidney (HEK) 293 cells using a small interfering RNA strategy. Experiments in c-Src depleted cells reveal that AT1R remained mostly colocalized with AP-2 at the plasma membrane after Ang II stimulation, consistent with the observed delay in receptor internalization. Moreover, coimmunoprecipitation experiments in c-Src depleted HEK 293 cells and VSMCs showed an increased association of AP-2 to the agonist-occupied AT1R and beta-arrestin, respectively. Together, our results support a role for c-Src in regulating the dissociation of AP-2 from agonist-occupied AT1R and beta-arrestin during the clathrin-mediated internalization of receptors and suggest a novel function for c-Src kinase in the internalization of AT1R.  相似文献   

17.
Clathrin-coated pits at the cell surface select material for transportation into the cell interior. A major mode of cargo selection at the bud site is via the micro 2 subunit of the AP-2 adaptor complex, which recognizes tyrosine-based internalization signals. Other internalization motifs and signals, including phosphorylation and ubiquitylation, also tag certain proteins for incorporation into a coated vesicle, but the mechanism of selection is unclear. Disabled-2 (Dab2) recognizes the FXNPXY internalization motif in LDL-receptor family members via an N-terminal phosphotyrosine-binding (PTB) domain. Here, we show that in addition to binding AP-2, Dab2 also binds directly to phosphoinositides and to clathrin, assembling triskelia into regular polyhedral coats. The FXNPXY motif and phosphoinositides contact different regions of the PTB domain, but can stably anchor Dab2 to the membrane surface, while the distal AP-2 and clathrin-binding determinants regulate clathrin lattice assembly. We propose that Dab2 is a typical member of a growing family of cargo-specific adaptor proteins, including beta-arrestin, AP180, epsin, HIP1 and numb, which regulate clathrin-coat assembly at the plasma membrane by synchronizing cargo selection and lattice polymerization events.  相似文献   

18.
Regulated secretion of hormones, digestive enzymes, and other biologically active molecules requires the formation of secretory granules. Clathrin and the clathrin adaptor protein complex 1 (AP-1) are necessary for maturation of exocrine, endocrine, and neuroendocrine secretory granules. However, the initial steps of secretory granule biogenesis are only minimally understood. Powerful genetic approaches available in the fruit fly Drosophila melanogaster were used to investigate the molecular pathway for biogenesis of the mucin-containing "glue granules" that form within epithelial cells of the third-instar larval salivary gland. Clathrin and AP-1 colocalize at the trans-Golgi network (TGN) and clathrin recruitment requires AP-1. Furthermore, clathrin and AP-1 colocalize with secretory cargo at the TGN and on immature granules. Finally, loss of clathrin or AP-1 leads to a profound block in secretory granule formation. These findings establish a novel role for AP-1- and clathrin-dependent trafficking in the biogenesis of mucin-containing secretory granules.  相似文献   

19.
Cell surface receptor IgM molecules of cultured human lymlphoblastoid cells (WiL2) patch and redistribute into a cap over the Golgi region of the cell after treatment with multivalent anti-IgM antibodies. During and after the redistribution, ligand-receptor clusters are endocytosed into coated pits and coated vesicles. Morphometric analysis of the distribution of ferritin-labeled ligand at EM resolution reveals the following sequence of events in the endocytosis of cell surface IgM: (a) binding of the multivalent ligand in a diffuse cell surface distribution, (b) clustering of the ligand-receptor complexes, (c) recruitment of clathrin coats to the cytoplasmic surface of the cell membrane opposite ligand-receptor clusters, (d) assembly and (e) internalization of coated vesicles, and (f) delivery of label into a large vesicular compartment, presumably partly lysosomal. Most of the labeled ligand enters this pathway. The recruitment of clathrin coats to the membrane opposite ligand-receptor clusters is sensitive to the calmodulin-directed drug Stelazine (trifluoperazine dihydrochloride). In addition, Stelazine inhibits an alternate pathway of endocytosis that does not involve coated vesicle formation. The actin-directed drug dihydrocytochalasin B has no effect on the recruitment of clathrin to the ligand-receptor clusters and the formation of coated pits and little effect on the alternate pathway, but this drug does interfere with subsequent coated vesicle formation and it inhibits capping. Cortical microfilaments that decorate with heavy meromyosin with constant polarity are observed in association with the coated regions of the plasma membrane and with coated vesicles. SDS-polyacrylamide gel electrophoresis analysis of a coated vesicle preparation isolated from WiL2 cells demonstrates that the major polypeptides in the fraction are a 175-kdalton component that comigrates with calf brain clathrin, a 42- kdalton component that comigrates with rabbit muscle actin and a 18.5- kdalton minor component that comigrates with calmodulin as well as 110- , 70-, 55-, 36-, 30-, and 17-kdalton components. These results clarify the pathways of endocytosis in this cell and suggest functional roles for calmodulin, especially in the formation of clathrin-coated pits, and for actin microfilaments in coated vesicle formation and in capping.  相似文献   

20.
Many plasma membrane proteins destined for endocytosis are concentrated into clathrin-coated pits through the recognition of a tyrosine-based motif in their cytosolic domains by an adaptor (AP-2) complex. The mu2 subunit of isolated AP-2 complexes binds specifically, but rather weakly, to proteins bearing the tyrosine-based signal. We now demonstrate, using peptides with a photoreactive probe, that this binding is strengthened significantly when the AP-2 complex is present in clathrin coats, indicating that there is cooperativity between receptor-AP-2 interactions and coat formation. Phosphoinositides with a phosphate at the D-3 position of the inositol ring, but not other isomers, also increase the affinity of the AP-2 complex for the tyrosine-based motif. AP-2 is the first protein known (in any context) to interact with phosphatidylinositol 3-phosphate. Our findings indicate that receptor recruitment can be coupled to clathrin coat assembly and suggest a mechanism for regulation of membrane traffic by lipid products of phosphoinositide 3-kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号