首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Entry of Epstein-Barr virus into human lymphoblastoid cells (Daudi cells) was studied by electron microscopy. At the site of viral attachment, two distinct interactions conducive to penetration of the virus occurred between the viral envelope and cell membrane, namely, (i) simultaneous dissolution of both the envelope and cell membrane, presumably resulting in passage of viral capsids into the cytoplasm and (ii) dissolution confined to the cell membrane with resulting penetration of enveloped virus. In the latter case envelope dissolution appears to occur subsequently in the cytoplasm with release of capsids. Fusion of the viral envelope with the cell membrane was not observed. The capsids exhibited two distinct structural forms--one dense, the other translucent or light in appearance. The former disrupted near the cell membrane with release of viral cores into the cytoplasm whereas the light capsids containing dense cores migrated toward the nucleus and accumulated in the perinuclear region. Apparently the process of releasing deoxyribonucleic acid (DNA) from the light capsid is slowed down or prevented in Daudi cells. A hypothesis is presented concerning the manner in which these two types of capsids initiate infection.  相似文献   

2.
3.
Adenovirus empty capsids are immature intermediates that lack DNA and viral core proteins. Highly purified preparations of empty and full capsids were generated by subjecting purified adenovirus preparations to repeated cesium chloride gradient separations. PAGE results revealed that empty capsids contain at least five bands that correspond to proteins absent from the mature virus proteome. Peptide mapping by matrix-assisted laser desorption/ionization time-of-flight MS revealed that three of these bands correspond to varying forms of L1 52/55kDa, a protein involved in the encapsidation of the viral DNA. One band at around 31kDa was found to include precursors to proteins VI and VIII. These precursors correspond to proteins that have not been cleaved by the adenovirus-encoded protease and are not present in the mature full capsids. The precursor to protein VIII (pVIII), a capsid cement protein, is used in this study as a marker in reverse-phased HPLC (RP-HPLC) analyses of adenovirus for the quantitation of empty capsids. A novel calculation method applied to the integration of RP-HPLC chromatograms allowed for the generation of a percentage empty capsid value in a given adenovirus preparation. The percentage empty capsid values generated to date by this method show a high degree of precision and good agreement with a cesium chloride gradient/SDS-PAGE quantitation method of empty capsids. The advantage of this method lies in the accurate, precise, and rapid generation of the percentage of empty capsids in a given purified virus preparation without relying on tedious and time-consuming cesium chloride gradient separations and extractions.  相似文献   

4.
A guinea pig herpesvirus (GPHV) has consistently been isolated from leukemic lymphoblasts of strain-2 guinea pigs. GPHV is serologically related to the guinea pig herpes-like virus isolated by Hsiung and Kaplow. The virions of GPHV consist of an icosahedral capsid containing a dense nucleoprotein core enclosed in a double-layered membrane. The average diameters of GPHV virion and capsid were 166 and 101 nm, respectively. Studies on the morphogenesis of GPHV revealed that, as in other herpesvirus infections, only the naked capsids with or without the nucleoprotein core were found in the infected cell nuclei; it was also learned that the virion acquired its envelope by budding from the nuclear membrane of the infected cells. However, GPHV-infected cell nuclei also contained dense fibrous rods, resembling nucleo-protein core outside the capsids, and tubules resembling viral core protein. The capsids were often embedded in dense granular antigen. GPHV deoxyribonucleic acid (DNA) has a density of 1.716 g/ml in cesium chloride compared to herpes simplex virus DNA (rho = 1.728 g/ml) and cellular DNA (rho = 1.700 g/ml).  相似文献   

5.
We used empty capsids ofpolyoma virus to transfer DNA fragments and DNA/protein complexes into human cells. We encapsulated labeled and unlabeled single stranded DNA fragments by viral capsids. A complex of DNA with a DNA binding protein, recA, will also be taken up by the capsids, whereas the free protein is not incorporated. We further compared this gentle biological method of DNA transfection with a well-established physical method, electroporation. Electroporation also allows the transfer of DNA as well as protein into cells, although there is no proof that a DNA/protein complex can survive the procedure functionally. Whereas the viability of capsid transfected cells is unaffected (100%), electroporation reduces the viability to 90–95%. On the other hand, the amount of DNA found in the nucleus of electroporated cells is higher than for cells treated with loaded viral capsids.  相似文献   

6.
It is uncertain whether nonenveloped karyophilic virus particles may actively traffic from the nucleus outward. The unordered amino-terminal domain of the VP2 major structural protein (2Nt) of the icosahedral parvovirus minute virus of mice (MVM) is internal in empty capsids, but it is exposed outside of the shell through the fivefold axis of symmetry in virions with an encapsidated single-stranded DNA genome, as well as in empty capsids subjected to a heat-induced structural transition. In productive infections of transformed and normal fibroblasts, mature MVM virions were found to efficiently exit from the nucleus prior to cell lysis, in contrast to the extended nuclear accumulation of empty capsids. Newly formed mutant viruses lacking the three phosphorylated serine residues of 2Nt were hampered in their exit from the human transformed NB324K nucleus, in correspondence with the capacity of 2Nt to drive microinjected phosphorylated heated capsids out of the nucleus. However, in normal mouse A9 fibroblasts, in which the MVM capsid was phosphorylated at similar sites but with a much lower rate, the nuclear exit of virions and microinjected capsids harboring exposed 2Nt required the infection process and was highly sensitive to inhibition of the exportin CRM1 in the absence of a demonstrable interaction. Thus, the MVM virion exits the nucleus by accessing nonconventional export pathways relying on cell physiology that can be intensified by infection but in which the exposure of 2Nt remains essential for transport. The flexible 2Nt nuclear transport signal may illustrate a common structural solution used by nonenveloped spherical viruses to propagate in undamaged host tissues.  相似文献   

7.
The morphology of the intracellular development of bacteriophage phi25 in Bacillus subtilis 168M has been correlated with nucleic acid synthesis in infected cells. Host deoxyribonucleic acid (DNA) synthesis was shut off by a phage-induced enzyme within 5 min after infection, and another phage-mediated function extensively degraded host DNA at the time of cell lysis. Synthesis of phage DNA in infected cells began within 5 min and continued until late in the rise period. After phage DNA synthesis and coinciding with lysis, much of the unpackaged, newly synthesized phage DNA was degraded. Studies of thin sections of phi25 infected cells suggested that unfilled capsids may be precursors to filled capsids in the packaging process. To assess dependence of capsid formation on phage DNA replication, cells were either treated with mitomycin C and infected with normal phage or infected with ultraviolet-irradiated (99% killed) phi25. Only empty capsids were found in these cells, indicating that capsid production may be independent of the presence of newly synthesized viral DNA.  相似文献   

8.
Foot-and-mouth disease virus (FMDV) manifests an extreme sensitivity to acid, which is thought to be important for entry of the RNA genome into the cell. We have compared the low-pH-induced disassembly in vitro of virions and natural empty capsids of three subtypes of serotype A FMDV by enzyme-linked immunosorbent assay and sucrose gradient sedimentation analysis. For all three subtypes (A22 Iraq 24/64, A10(61), and A24 Cruzeiro), the empty capsid was more stable by 0.5 pH unit on average than the corresponding virion. Unexpectedly, in the natural empty capsids used in this study, the precursor capsid protein VP0 was found largely to be cleaved into VP2 and VP4. For picornaviruses the processing of VP0 is closely associated with encapsidation of viral RNA, which is considered likely to play a catalytic role in the cleavage. Investigation of the cleavage of VP0 in natural empty capsids failed to implicate the viral RNA. However, it remains possible that these particles arise from abortive attempts to encapsidate RNA. Empty capsids expressed from a vaccinia virus recombinant showed essentially the same acid lability as natural empty capsids, despite differing considerably in the extent of VP0 processing, with the synthetic particles containing almost exclusively uncleaved VP0. These results indicate that it is the viral RNA that modulates acid lability in FMDV. In all cases the capsids dissociate at low pH directly into pentameric subunits. Comparison of the three viruses indicates that FMDV A22 Iraq is about 0.5 pH unit more sensitive to low pH than types A10(61) and A24 Cruzeiro. Sequence analysis of the three subtypes identified several differences at the interface between pentamers and highlighted a His-alpha-helix dipole interaction which spans the pentamer interface and appears likely to influence the acid lability of the virus.  相似文献   

9.
Three-dimensional structure of the HSV1 nucleocapsid   总被引:26,自引:0,他引:26  
J D Schrag  B V Prasad  F J Rixon  W Chiu 《Cell》1989,56(4):651-660
The three-dimensional structures of full and empty capsids of HSV1 were determined by computer analysis of low dose cryo-electron images of ice embedded capsids. The full capsid structure is organized into outer, intermediate, and inner structural layers. The empty capsid structure has only one layer which is indistinguishable from the outer layer of the full capsids. This layer is arranged according to T = 16 icosahedral symmetry. The intermediate layer of full capsids appears to lie on a T = 4 icosahedral lattice. The genomic DNA is located inside the T = 4 shell and is the component of the innermost layer of the full capsids. The outer and intermediate layers interact in such a way that the channels along their icosahedral two-fold axis coincide and form a direct pathway between the DNA and the environment outside the capsid.  相似文献   

10.
Alterations in nuclear matrix structure after adenovirus infection.   总被引:12,自引:5,他引:7       下载免费PDF全文
Infection of HeLa cells with adenovirus serotype 2 causes rearrangements in nuclear matrix morphology which can best be seen by gentle cell extraction and embedment-free section electron microscopy. We used these techniques to examine the nuclear matrices and cytoskeletons of cells at 6, 13, 28, and 44 h after infection. As infection progressed, chromatin condensed onto the nucleoli and the nuclear lamina. Virus-related inclusions appeared in the nucleus, where they partitioned with the nuclear matrix. These virus centers consisted of at least three distinguishable areas: amorphously dense regions, granular regions whose granulations appeared to be viral capsids, and filaments connecting these regions to each other and to the nuclear lamina. The filaments became decorated with viral capsids of two different densities, which may be empty capsid shells and capsids with DNA-protein cores. The interaction of some capsids with the filaments persisted even after lysis of the cell. We propose that granulated virus-related structures are sites of capsid assembly and storage and that the filaments may be involved in the transport of capsids and capsid intermediates. The nuclear lamina became increasingly crenated after infection, with some extensions appearing to bud off and form blebs of nuclear material in the cytoplasm. The perinuclear cytoskeleton became rearranged after infection, forming a corona of decreased filament number around the nucleus. In summary, we propose that adenovirus rearranges the nuclear matrix and cytoskeleton to support its own replication.  相似文献   

11.
家蚕质多角体病毒(BmCPV)结构研究   总被引:6,自引:0,他引:6  
用负染和冷冻电镜技术以及计算机数据处理方法,研究了CPV2和空病毒的结构,完整病毒和空病毒的结构和生化组成比较表明,CPV具有单层衣壳结构,病毒的5种结构蛋白都位于该单层衣壳上。该单层衣壳按T=1的对称结构排列,在二十面体的顶点具有塔状突起。空病毒与完整病毒具有相同的衣壳结构,但内部结构却不相同。  相似文献   

12.
The three capsid proteins VP1, VP2, and VP3 of the adeno-associated virus type 2 (AAV-2) are encoded by overlapping sequences of the same open reading frame. Separate expression of these proteins by recombinant baculoviruses in insect cells was achieved by mutation of the internal translation initiation codons. Coexpression of VP1 and VP2, VP2 and VP3, and all three capsid proteins and the expression of VP2 alone in Sf9 cells resulted in the production of viruslike particles resembling empty capsids generated during infection of HeLa cells with AAV-2 and adenovirus. These results suggest a requirement for VP2 in the formation of empty capsids. Individual expression of the AAV capsid proteins in HeLa cells showed that VP1 and VP2 accumulate in the cell nucleus and VP3 is distributed between nucleus and cytoplasm. Coexpression of VP3 with the other structural proteins also led to nuclear localization of VP3, indicating that the formation of a complex with VP1 or VP2 is required for accumulation of VP3 in the nucleus.  相似文献   

13.
Parvovirus capsids are assembled from multiple forms of a single protein and are quite stable structurally. However, in order to infect cells, conformational plasticity of the capsid is required and this likely involves the exposure of structures that are buried within the structural models. The presence of functional asymmetry in the otherwise icosahedral capsid has also been proposed. Here we examined the protein composition of canine parvovirus capsids and evaluated their structural variation and permeability by protease sensitivity, spectrofluorometry, and negative staining electron microscopy. Additional protein forms identified included an apparent smaller variant of the virus protein 1 (VP1) and a small proportion of a cleaved form of VP2. Only a small percentage of the proteins in intact capsids were cleaved by any of the proteases tested. The capsid susceptibility to proteolysis varied with temperature but new cleavages were not revealed. No global change in the capsid structure was observed by analysis of Trp fluorescence when capsids were heated between 40 degrees C and 60 degrees C. However, increased polarity of empty capsids was indicated by bis-ANS binding, something not seen for DNA-containing capsids. Removal of calcium with EGTA or exposure to pHs as low as 5.0 had little effect on the structure, but at pH 4.0 changes were revealed by proteinase K digestion. Exposure of viral DNA to the external environment started above 50 degrees C. Some negative stains showed increased permeability of empty capsids at higher temperatures, but no effects were seen after EGTA treatment.  相似文献   

14.
Viruses can be described as biological objects composed mainly of two parts: a stiff protein shell called a capsid, and a core inside the capsid containing the nucleic acid and liquid. In many double-stranded DNA bacterial viruses (aka phage), the volume ratio between the liquid and the encapsidated DNA is approximately 1:1. Due to the dominant DNA hydration force, water strongly mediates the interaction between the packaged DNA strands. Therefore, water that hydrates the DNA plays an important role in nanoindentation experiments of DNA-filled viral capsids. Nanoindentation measurements allow us to gain further insight into the nature of the hydration and electrostatic interactions between the DNA strands. With this motivation, a continuum-based numerical model for simulating the nanoindentation response of DNA-filled viral capsids is proposed here. The viral capsid is modeled as large- strain isotropic hyper-elastic material, whereas porous elasticity is adopted to capture the mechanical response of the filled viral capsid. The voids inside the viral capsid are assumed to be filled with liquid, which is modeled as a homogenous incompressible fluid. The motion of a fluid flowing through the porous medium upon capsid indentation is modeled using Darcy’s law, describing the flow of fluid through a porous medium. The nanoindentation response is simulated using three-dimensional finite element analysis and the simulations are performed using the finite element code Abaqus. Force-indentation curves for empty, partially and completely DNA-filled capsids are directly compared to the experimental data for bacteriophage λ. Material parameters such as Young’s modulus, shear modulus, and bulk modulus are determined by comparing computed force-indentation curves to the data from the atomic force microscopy (AFM) experiments. Predictions are made for pressure distribution inside the capsid, as well as the fluid volume ratio variation during the indentation test.  相似文献   

15.
Empty capsid species formed from the self- and extract-mediated assembly of poliovirus type 1 14S particles in vitro and procapsids isolated from virus-infected cells were subjected to isoelectric focusing in charge-free agarose gels. The empty capsid formed in the self-assembly reaction had an isoelectric point (pI) of 5.0, whereas procapsids and extract-assembled empty capsids focused at pH 6.8. Unreacted 14S particles focused at pH 4.8 to 5.0. The sedimentation coefficient (s20,w) and density of the empty capsid species were also determined. Procapsids had a density in CsCl of 1.31 g/cm3, whereas empty capsids formed by self- or extract-mediated assembly had a density of 1.29 g/cm3. Both extract-assembled empty capsids and procapsids had an s20,w of 75S, whereas self-assembled empty capsids had an s20,w of 71S. Self-assembled empty capsids were not converted to pI 6.8 empty capsids by incubation with poliovirus-infected HeLa cell extracts. The dissociated polypeptides of self-assembled empty capsids (pI 5.0) and procapsids (pI 6.8) behaved identically when analyzed by isoelectric focusing in the presence of 9 M urea and by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. These results suggest that infected cell extracts possess a factor that influences the final conformation of the empty shell (pI 6.8, 75S) formed from 14S particles and that this influences is exerted at the initiation step or during the polymerization reaction. A small amount of this activity (less than or equal to 20% of infected extracts) was detected in uninfected cells; the significance of this remains unknown.  相似文献   

16.
We examined cytoplasmic trafficking and nuclear translocation of adeno-associated virus type 2 (AAV) by using Alexa Fluor 488-conjugated wild-type AAV, A20 monoclonal antibody immunocytochemistry, and subcellular fractionation techniques followed by DNA hybridization. Our results indicated that in the absence of adenovirus (Ad), AAV enters the cell rapidly and escapes from early endosomes with a t(1/2) of about 10 min postinfection. Cytoplasmically distributed AAV accumulated around the nucleus and persisted perinuclearly for 16 to 24 h. Viral uncoating occurred before or during nuclear entry beginning about 12 h postinfection, when viral protein and DNA were readily detected in the nucleus. Few, if any, intact AAV capsids were found in the nucleus. In the presence of Ad, however, cytoplasmic AAV quickly translocated into the nucleus as intact particles as early as 40 min after coinfection, and this facilitated nuclear translocation of AAV was not blocked by the nuclear pore complex inhibitor thapsigargan. The rapid nuclear translocation of intact AAV capsids in the presence of Ad suggested that one or more Ad capsid proteins might be altering trafficking. Indeed, coinfection with empty Ad capsids also resulted in the appearance of AAV DNA in nuclei within 40 min. Escape from early endosomes did not seem to be affected by Ad coinfection.  相似文献   

17.
Two types of empty capsid particles that differed with respect to the presence of the two outer shell proteins were isolated from MA-104 cells infected with bovine rotavirus V1005. Three previously uncharacterized polypeptides, I, II, and III, migrating between VP2 and VP6, were detected in empty capsids but not in single- and double-shelled rotavirus particles. Peptide mapping revealed that all three proteins were related to VP2. Polypeptides I, II, and III could be generated by in vitro trypsin digestion of empty capsids not exposed to trypsin in the infection medium. Labeled polypeptides appeared in empty capsids before they were detected in intracellular single- or double-shelled rotavirus particles. Empty capsids were also observed in MA-104 cells infected with bovine rotaviruses UK and NCDV, simian rotavirus SA11, and human rotavirus KU. VP7-containing empty capsid is the minimal subunit vaccine for cows; we failed to induce a substantial neutralizing antibody increase with VP7 purified under denaturating or nondenaturating conditions or with synthetic peptides corresponding to two regions of VP7.  相似文献   

18.
Uncoating the herpes simplex virus genome   总被引:2,自引:0,他引:2  
Initiation of infection by herpes simplex virus (HSV-1) involves a step in which the parental virus capsid docks at a nuclear pore and injects its DNA into the nucleus. Once "uncoated" in this way, the virus DNA can be transcribed and replicated. In an effort to clarify the mechanism of DNA injection, we examined DNA release as it occurs in purified capsids incubated in vitro. DNA ejection was observed following two different treatments, trypsin digestion of capsids in solution, and heating of capsids after attachment to a solid surface. In both cases, electron microscopic analysis revealed that DNA was ejected as a single double helix with ejection occurring at one vertex presumed to be the portal. In the case of trypsin-treated capsids, DNA release was found to correlate with cleavage of a small proportion of the portal protein, UL6, suggesting that UL6 cleavage may be involved in making the capsid permissive for DNA ejection. In capsids bound to a solid surface, DNA ejection was observed only when capsids were warmed above 4 degrees C. The proportion of capsids releasing their DNA increased as a function of incubation temperature with nearly all capsids ejecting their DNA when incubation was at 37 degrees C. The results demonstrate heterogeneity among HSV-1 capsids with respect to their sensitivity to heat-induced DNA ejection. Such heterogeneity may indicate a similar heterogeneity in the ease with which capsids are able to deliver DNA to the infected cell nucleus.  相似文献   

19.
UL25 and UL17 are two essential minor capsid proteins of HSV-1, implicated in DNA packaging and capsid maturation. We used cryo-electron microscopy to examine their binding to capsids, whose architecture observes T = 16 icosahedral geometry. C-capsids (mature DNA-filled capsids) have an elongated two-domain molecule present at a unique, vertex-adjacent site that is not seen at other quasiequivalent sites or on unfilled capsids. Using SDS-PAGE and mass spectrometry to analyze wild-type capsids, UL25 null capsids, and denaturant-extracted capsids, we conclude that (1) the C-capsid-specific component is a heterodimer of UL25 and UL17, and (2) capsids have additional populations of UL25 and UL17 that are invisible in reconstructions because of sparsity and/or disorder. We infer that binding of the ordered population reflects structural changes induced on the outer surface as pressure builds up inside the capsid during DNA packaging. Its binding may signal that the C-capsid is ready to exit the nucleus.  相似文献   

20.
In this paper we describe the use of specific proteinases, surface-specific radioiodination, and antigenic reactivity in conjunction with isoelectric focusing for probing the conformations of different polioviral empty capsid species. Naturally occurring empty capsids (called procapsids) with an isoelectric point of 6.8 were resistant to proteolytic digestion by trypsin or chymotrypsin, as were empty capsids assembled in vitro in the presence of a cytoplasmic extract prepared from poliovirus-infected HeLa cells. In contrast, self-assembled empty capsids (isoelectric point, 5.0) were sensitive to both proteinases. Capsid proteins VP0 and VP1 were attacked predominantly, whereas VP3 was resistant to cleavage. Unpolymerized 14S particles possessed a trypsin sensitivity which was qualitatively similar to that of self-assembled empty shells. Surface-specific iodination of virions and procapsids labeled VP1 exclusively. In contrast, radioiodination of self-assembled empty capsids labeled predominantly VP0. After radioiodination the sedimentation coefficient corrected to water at 20 degrees C, the isoelectric point, and the trypsin resistance of the procapsids remained unchanged. Procapsids and extract-assembled empty capsids were N antigenic, whereas self-assembled empty capsids were H antigenic. Self-assembled empty capsids were not converted to pH 6.8 trypsin-resistant structures by incubation with a virus-infected cytoplasmic extract. However, 14S particles assembled in the presence of a mock-infected extract formed empty capsids, 20% of which resembled extract-assembled empty shells as determined by the above-described criteria. These and related findings are discussed in terms of empty capsid structure and morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号