首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: To determine the functions of striatal adenosine A2a receptors in vivo, the effects of a selective agonist, 2-[4-(2-carboxyethyl)phenethylamino]-5'- N -ethylcarboxamidoadenosine hydrochloride (CGS 21680), and an antagonist, ( E )-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine (KF17837), on acetylcholine release were investigated in the striatum of awake freely moving rats using microdialysis. Intracerebroventricular injection of CGS 21680 (10 µg) increased acetylcholine release in striatum and KF17837 (30 mg/kg p.o.) antagonized the CGS 21680-induced acetylcholine elevation. To investigate the contribution of dopaminergic and GABAergic neurons on A2a receptor-mediated acetylcholine release, the effects of CGS 21680 were studied by using dopamine-depleted rats in the presence or absence of GABA antagonists. In the dopamine-depleted striatum, the intrastriatal application of CGS 21680 (0.3–30 µ M ) increased extracellular acetylcholine, which was significantly greater than that in normal striatum. The CGS 21680-induced elevation of acetylcholine release was still observed in the presence of GABA antagonists bicuculline (30 µ M ) and 2-hydroxysaclofen (100 µ M ) and was similar in both normal and dopamine-depleted striatum. These results suggest that A2a agonist stimulates acetylcholine release in vivo, and this effect of A2a agonist is modulated by dopaminergic and GABAergic neurotransmission.  相似文献   

2.
Abstract: The adenosine A2a receptor inhibition of potassium (15 m M )-evoked GABA release from striatal nerve terminals has been examined. High extracellular calcium concentrations (4 m M ) reduced the effect of the A2a receptor agonist CGS-21680 (1 n M ). CGS-21680 inhibited GABA release in the presence of the L-type calcium channel blocker nifedipine, which itself inhibited evoked GABA release (by 16 ± 4%). ω-Conotoxin inhibited the evoked release by 45 ± 4% and prevented the action of CGS-21680. Forskolin and 8-bromo cyclic AMP both stimulated evoked GABA release at low concentrations, but at higher concentrations they abolished the inhibition by CGS-21680 without affecting the evoked release. The nonselective protein kinase inhibitor H-7 inhibited both the evoked release and the inhibition by CGS-21680, whereas the selective protein kinase A and G inhibitor HA-1004 had no effect on either evoked release or the action of CGS-21680. Pretreatment with pertussis toxin did not affect the A2a receptor-mediated inhibition. Therefore, the effect of A2a receptor stimulation was not mediated by protein kinases A or G but was inhibited by elevated cyclic AMP levels and mimicked by inhibitors of the N-type calcium channel and protein kinase C.  相似文献   

3.
Abstract: The A2a adenosine receptor agonist 2-[2-(4-amino-3-iodophenyl)ethylamino]adenosine is a potent coronary vasodilator. The corresponding radioiodinated ligand, [125I]APE, discriminates between high- and low-affinity conformations of A2a adenosine receptors. In this study, [125I]APE was used for rapid (24-h) autoradiography in rat brain sections. The pattern of [125I]APE binding is consistent with that expected of an A2a-selective radioligand. It is highest in striatum, nucleus accumbens, and olfactory tubercle, with little binding to cortex and septal nuclei. Specific [125I]APE binding to these brain regions is abolished by 1 µ M 2- p -(2-carboxyethyl)phenethylamino-5'- N -ethylcarboxamidoadenosine (CGS-21680) but is little affected by 100 n M 8-cyclopentyl-1,3-dipropylxanthine. Conversion of [125I]APE to the corresponding arylazide results in [125I]AzPE. The rank-order potency of compounds to compete for [125I]AzPE binding in the dark is CGS-21680 > d -( R )- N 6-phenylisopropyladenosine > N 6-cyclopentyladenosine, indicating that it also is an A2a-selective ligand. Specific photoaffinity labeling by [125I]AzPE of a single polypeptide (42 kDa) corresponding to A2a adenosine receptors is reduced 55 ± 4% by 100 µ M guanosine 5'- O -(3-thiotriphosphate) and 91 ± 1.3% by 100 n M CGS-21680. [125I]APE and [125I]AzPE are valuable new tools for characterizing A2a adenosine receptors and their coupling to GTP-binding proteins by autoradiography and photoaffinity labeling.  相似文献   

4.
Abstract: The ability of adenosine agonists to modulate K+-evoked 4D†-[3H]aminobutyric acid ([3H]GABA) and acetylcholine (ACh) release from rat striatal synaptosomes was investigated. The A2a receptor-selective agonist CGS 21680 inhibited Ca2+-dependent [3H]GABA release evoked by 15 m M KCI with a maximal inhibition of 29 ± 4% (IC50 of ∼4 ± 10 −12 M ). The relative order of potency of three agonists was CGS 21680 ± 5'- N -ethylcarboxamidoadenosine > R-phenylisopropyladenosine (R-PIA), with the inhibition being blocked by A2a receptor-selective antagonists (CP 66,713 and CGS 15943A) but not by the A1-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). When release of [3H]GABA was evoked by 30 mM KCI, no significant inhibition was observed. In contrast, CGS 21680 stimulated the release of [3H]ACh evoked by 30 m M KCI, with a maximal stimulation of 26 ± 5% (IC50 of ∼10−11 M ). This effect was blocked by CP 66,713 but not by DPCPX. The A1 agonist R -PIA inhibited [3H]ACh release, an effect blocked by DPCPX. It is concluded that adenosine A2a receptors are present on both GABAergic and cholinergic striatal nerve terminals where they inhibit and stimulate transmitter release, respectively. Key Words : GABA—Acetylcholine—Adenosine receptors—Striatum.  相似文献   

5.
Abstract: The cytokine interleukin (IL)-6 has recently been demonstrated to play a role in the pathology of Alzheimer's disease (AD). The mechanisms leading to increased IL-6 levels in brains of AD patients are still unknown. Because in experimental animals ischemia increases both the level of cytokines and the extracellular concentrations of adenosine in the brain, we hypothesized that these two phenomena may be functionally connected and that adenosine might increase IL-6 gene expression in the brain. Here we show that the mixed A1 and A2 agonist 5'-( N -ethylcarboxamido)adenosine (NECA) induces an increase in IL-6 mRNA levels and protein synthesis in the human astrocytoma cell line U373 MG. The A1-specific agonists R -phenylisopropyladenosine and cyclopentyladenosine are much less potent, and the A2a-specific agonist CGS-21680 shows only marginal effects. Increased levels of mRNA are already found within 30 min after NECA treatment. The A2a-selective antagonists 8-(3-chlorostyryl)caffeine and KF17837 [( E )-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine], which have also some antagonistic properties at A2b receptors, and the nonspecific adenosine antagonist 8-phenyltheophylline were equipotent at inhibiting the NECA-induced increase in IL-6 protein synthesis, whereas the specific A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine is much less potent. The results indicate that adenosine A2b receptors participate in the regulation of the IL-6 gene in astrocytoma cells.  相似文献   

6.
Abstract: The regulatory role of A2A adenosine receptors in P2 purinoceptor-mediated calcium signaling was investigated in rat pheochromocytoma (PC12) cells. When PC12 cells were treated with 2- p -(2-carboxyethyl)-phenethylamino-5'- N -ethylcarboxamidoadenosine (CGS-21680), a specific agonist of the A2A adenosine receptor, the extracellular ATP-evoked rise in cytosolic free Ca2+ concentration ([Ca2+]i) was inhibited by 20%. Both intracellular calcium release and inositol 1,4,5-trisphosphate production evoked by ATP were not affected by CGS-21680 treatment. However, ATP-evoked Ca2+ influx was inhibited following CGS-21680 stimulation. The CGS-21680-mediated inhibition occurred independently of nifedipine-induced inhibition of the [Ca2+]i rise. The CGS-21680-induced inhibition was completely blocked by reactive blue 2. The CGS-21680 effect was mimicked by forskolin and dibutyryl-cyclic AMP and blocked by Rp -adenosine 3',5'-cyclic monophosphothioate, a protein kinase A inhibitor, or by staurosporine, a general kinase inhibitor. The data suggest that in PC12 cells activation of A2A adenosine receptors leads to inhibition of P2 purinoceptor-mediated Ca2+ influx through ATP-gated cation channels and involves protein kinase A.  相似文献   

7.
Abstract: Many Gs-linked receptors have been reported to use multiple signalling pathways in transfected cells but few in their normal cell environment. We show that the adenosine A2a receptor uses two signalling pathways to increase the release of acetylcholine from striatal nerve terminals. One pathway involves activation of Gs, adenylyl cyclase, protein kinase A, and P-type calcium channels; the other is mediated by a cholera toxin-insensitive G protein, protein kinase C, and N-type calcium channels. The effects of these two pathways are not additive, the second pathway being inhibited by the first; but they are equally sensitive to the A2a receptor antagonist KF17837. This demonstrates that the A2a receptor activates two signalling systems in striatal cholinergic neurons.  相似文献   

8.
Abstract: The pH dependency of the binding of ligands to adenosine A2a receptors in rat striatal membranes was examined. For those agonists sensitive to adenosine deaminase a solubilised membrane preparation was used. A two- to fourfold increase in affinity was observed for CGS-21680, 5'- N -ethylcarboxamidoadenosine, adenosine, 3'-deoxyadenosine, 5'-deoxyadenosine, inosine, and N 6-methoxypurine riboside on lowering the ambient pH from 7.0 to 5.5. In contrast, no such pH dependency was observed with 2'-deoxyadenosine, although 2'-methoxyadenosine binding was pH dependent. This effect on the affinity of CGS-21680 was reduced by diethylpyrocarbonate and restored by hydroxylamine and implied a pK value of 7.0 for the histidine residue involved. No such dependence was observed with cyclopentyltheophylline or dimethylpropargylxanthine. It is concluded that one of the histidines conserved in the adenosine receptor binding site acts as a hydrogen bond donor to the oxygen of the 2'-hydroxyl group of adenosine agonists.  相似文献   

9.
Abstract: We have characterized the new potent and selective nonxanthine adenosine A2A receptor antagonist SCH 58261 as a new radioligand for receptor autoradiography. In autoradiographic studies using agonist radioligands for A2A receptors ([3H]CGS 21680) or A1 receptors ( N 6-[3H]cyclohexyladenosine), it was found that SCH 58261 is close to 800-fold selective for rat brain A2A versus A1 receptors ( K i values of 1.2 n M versus 0.8 µ M ). Moreover, receptor autoradiography showed that [3H]SCH 58261, in concentrations below 2 n M , binds only to the dopamine-rich regions of the rat brain, with a K D value of 1.4 (0.8–1.8) n M . The maximal number of binding sites was 310 fmol/mg of protein in the striatum. Below concentrations of 3 n M , the nonspecific binding was <15%. Three adenosine analogues displaced all specific binding of [3H]SCH 58261 with the following estimated K i values (n M ): 2-hex-1-ynyl-5'- N -ethylcarboxamidoadenosine, 3.9 (1.8–8.4); CGS 21680, 130 (42–405); N 6-cyclohexyladenosine, 9,985 (3,169–31,462). The binding of low concentrations of SCH 58261 was not influenced by either GTP (100 µ M ) or Mg2+ (10 m M ). The present results show that in its tritium-labeled form, SCH 58261 appears to be a good radioligand for autoradiographic studies, because it does not suffer from some of the problems encountered with the currently used agonist radioligand [3H]CGS 21680.  相似文献   

10.
Abstract: The role of the A2A adenosine receptor in regulating voltage-sensitive calcium channels (VSCCs) was investigated in PC12 cells. Ca2+ influx induced by membrane depolarization with 70 m M K+ could be inhibited with CGS21680, an A2A receptor-specific agonist. Both L- and N-type VSCCs were inhibited by CGS21680 treatment. Effects of adenosine receptor agonists and antagonists indicate that the typical A2A receptor mediates inhibition of VSCCs. Cholera toxin (CTX) treatment for 24 h completely eliminated the CGS21680 potency. Similar inhibitory effects on VSCCs were obtained by membrane-permeable activators of protein kinase A (PKA). These effects were blocked by Rp -adenosine-3',5'-cyclic monophosphothioate, a PKA inhibitor. The data suggest that activation of the A2A receptor leads to inhibition of VSCCs via a CTX-sensitive G protein and PKA. ATP pretreatment caused a reduction in subsequent rise in cytosolic free Ca2+ concentration induced by 70 m M K+, presumably by inactivation of VSCCs. Simultaneous treatment with ATP and CGS21680 produced significantly greater inhibition of VSCCs than treatment with CGS21680 or ATP alone. Furthermore, the CGS21680-induced inhibition of VSCCs was not affected by the presence of reactive blue 2. CGS21680 still significantly inhibited ATP-evoked Ca2+ influx without VSCC activity after cobalt or 70 m M K+ pretreatment. These data suggest that the A2A receptor-sensitive VSCCs differ from those activated by ATP treatment. Although A2A receptors induce inhibition of VSCCs as well as ATP-induced Ca2+ influx, the two inhibitory effects are clearly distinct from each other.  相似文献   

11.
Glial cell line-derived neurotrophic factor (GDNF) affords neuroprotection in Parkinson's disease in accordance with its ability to bolster nigrostriatal innervation. We previously found that GDNF facilitates dopamine release in a manner dependent on adenosine A2A receptor activation. As motor dysfunction also involves modifications of striatal glutamatergic innervation, we now tested if GDNF and its receptor system, Ret ( rearranged during transfection ) and GDNF family receptor α1 controlled the cortico-striatal glutamatergic pathway in an A2A receptor-dependent manner. GDNF (10 ng/mL) enhanced (by ≈13%) glutamate release from rat striatal nerve endings, an effect potentiated (up to ≈30%) by the A2A receptor agonist CGS 21680 (10 nM) and prevented by the A2A receptor antagonist, SCH 58261 (50 nM). Triple immunocytochemical studies revealed that Ret and GDNF family receptor α1 were located in 50% of rat striatal glutamatergic terminals (immunopositive for vesicular glutamate transporters-1/2), where they were found to be co-located with A2A receptors. Activation of the glutamatergic system upon in vivo electrical stimulation of the rat cortico-striatal input induced striatal Ret phosphorylation that was prevented by pre-treatment with the A2A receptor antagonist, MSX-3 (3 mg/kg). The results provide the first functional and morphological evidence that GDNF controls cortico-striatal glutamatergic pathways in a manner largely dependent on the co-activation of adenosine A2A receptors.  相似文献   

12.
13.
Abstract: We have investigated the effect of endogenous adenosine on the release of [3H]acetylcholine ([3H]ACh) in cultured chick amacrine-like neurons. The release of [3H]ACh evoked by 50 m M KCl was mostly Ca2+ dependent, and it was increased in the presence of adenosine deaminase and in the presence of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an adenosine A1 receptor antagonist. The effect of adenosine on [3H]ACh release was sensitive to pertussis toxin (PTX) and was due to a selective inhibition of N-type Ca2+ channels. Ligand binding studies using [3H]DPCPX confirmed the presence of adenosine A1 receptors in the preparation. Using specific inhibitors of the plasma membrane adenosine carriers and of the ectonucleotidases, we found that the extracellular accumulation of adenosine in response to KCl depolarization was due to the release of endogenous adenosine per se and to the extracellular conversion of released nucleotides into adenosine. Activation of adenosine A1 receptors was without effect on the intracellular levels of cyclic AMP under depolarizing conditions, but it inhibited the accumulation of inositol phosphates. Our results indicate that in cultured amacrine-like neurons, the Ca2+-dependent release of [3H]ACh evoked by KCl is under tonic inhibition by adenosine, which activates A1 receptors. The effect of adenosine on the [3H]ACh release may be due to a direct inhibition of N-type Ca2+ channels and/or secondary to the inhibition of phospholipase C and involves the activation of PTX-sensitive G proteins.  相似文献   

14.
Abstract: The influence of the adenosine A2A receptor on the A1 receptor was examined in rat striatal nerve terminals, a model for other cells in which these receptors are coexpressed. Incubation of striatal synaptosomes with the A2A receptor agonist 2- p -(2-carboxyethyl)phenethylamino-5'- N -ethylcarboxamidoadenosine (CGS 21680) caused the appearance of a low-affinity binding site for the A1 receptor agonist 2-chloro- N 6-cyclopentyladenosine (CCPA). This effect was blocked by the A2A receptor antagonist ZM241385 and by the protein kinase C inhibitor chelerythrine, but not by the protein kinase A inhibitor N -(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA 1004). The effect was not seen with striatal membranes or with hypotonically lysed synaptosomes. These results demonstrate a protein kinase C-mediated heterologous desensitisation of the A1 receptor by the A2A receptor.  相似文献   

15.
Hemodynamic responses to adenosine, the A(1) receptor agonists N(6)-cyclopentyladenosine (CPA) and adenosine amine congener (ADAC), and the A(2) receptor agonist 5'-(N-cyclopropyl)-carboxamido-adenosine (CPCA) were investigated in the hindquarter vascular bed of the cat under constant-flow conditions. Injections of adenosine, CPA, ADAC, CPCA, ATP, and adenosine 5'-O-(3-thiotriphosphate) (ATPgamma S) into the perfusion circuit induced dose-related decreases in perfusion pressure. Vasodilator responses to the A(1) agonists were reduced by the A(1) receptor antagonists KW-3902 and CGS-15943, whereas responses to CPCA were reduced by the A(2) antagonist KF-17837. Vasodilator responses to adenosine were reduced by KW-3902, CGS-15943, and by KF-17837, suggesting a role for both A(1) and A(2) receptors. Vasodilator responses to ATP and the nonhydrolyzable ATP analog ATP gamma S were not attenuated by CGS-15943 or KF-17837. After treatment with the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester, the cyclooxygenase inhibitor sodium meclofenamate, or the ATP-dependent K(+) (K) channel antagonists U-37883A or glibenclamide, responses to adenosine and ATP were not altered. Responses to adenosine, CPA, and CPCA were increased in duration by rolipram, a type 4 cAMP phosphodiesterase inhibitor, but were not altered by zaprinast, a type 5 cGMP phosphodiesterase inhibitor. When blood flow was interrupted for a 30-s period, the magnitude and duration of the reactive vasodilator response were reduced by A(1) and A(2) receptor antagonists. These data suggest that vasodilator responses to adenosine and the A(1) and A(2) agonists studied are not dependent on the release of cyclooxygenase products, nitric oxide, or the opening of K channels in the regional vascular bed of the cat. The present data suggest a role for cAMP in mediating responses to adenosine and suggest that vasodilator responses to adenosine and to reactive hyperemia are mediated in part by A(1) and A(2) receptors in the hindquarter vascular bed of the cat.  相似文献   

16.
Abstract: The effects of adenosine analogues on phosphoinositide metabolism in rat sciatic nerve were examined. Sciatic nerve segments were prelabeled with [3H]-cytidine and incubated in the presence of LiCl and varying concentrations of adenosine analogues. The formation of [3H]cytidine monophosphate phosphatidic acid ([3H]-CMP-PA) was determined as an index of phosphoinositide breakdown. Liponucleotide accumulation was elevated significantly in the presence of 5'- N -ethylcarboxamidoadenosine (NECA), a nonselective analogue, and two different A2-selective analogues, N 6-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]adenosine and 2- p -(2-carboxyethyl)phenethylamino-NECA (CGS 21680), but not by N 6-cyclopentyladenosine, an A1-selective analogue. The stimulatory action of CGS 21680 was blocked by the A2-selective adenosine receptor antagonists 3,7-dimethyl-1-propargylxanthine (DMPX) and 1,3-dipropyl-7-methylxanthine. Inositol phosphate formation was also stimulated to a comparable degree by CGS 21680 and this response was antagonized by DMPX. Carbamylcholine, which was previously shown to stimulate phosphoinositide breakdown, also enhanced the accumulation of CMP-PA. When adenosine analogues and carbamylcholine were simultaneously present, their effects were additive. Taken together, these data suggest that an adenosine receptor, possibly of the A2 subtype, is coupled to enhanced phosphoinositide hydrolysis in peripheral nerve. However, adenosine-receptor activation does not appear to modulate phosphoinositide hydrolysis stimulated via muscarinic receptors.  相似文献   

17.
Abstract: Chronic treatment with the adenosine receptor antagonist caffeine evokes an up-regulation of A1 adenosine receptors and increased coupling of the receptor to G proteins in rat brain membranes. However, chronic agonist exposure has not been explored. Primary cultures of cerebellar granule cells were exposed chronically to A1 adenosine receptor agonists and antagonists. Exposure to the A1 adenosine receptor agonist N 6-cyclopentyladenosine resulted in (1) a time- and concentration-dependent reduction in the density of receptors labeled by 1,3-[3H]dipropyl-8-cyclopentylxanthine, (2) an enhanced ability of guanyl nucleotides to decrease the fraction of A1 adenosine receptor sites displaying high affinity for 2-chloroadenosine, and (3) a functional uncoupling of receptors from adenylyl cyclase (EC 4.6.1.1). The adenosine antagonists caffeine and 8- p -sulfophenyltheophylline produced alterations in A1 adenosine receptor homeostasis that were antipodal to those associated with agonist treatment. Antagonist exposure (1) increased the density of A1 adenosine receptors in cerebellar granule cell membranes, (2) blunted the effect of guanyl nucleotides on receptor coupling to G proteins, and (3) increased the functional coupling of receptors to adenylyl cyclase inhibition. Forskolin treatment of cerebellar granule cells did not affect receptor density, suggesting that cyclic AMP is not involved in the regulation of A1 adenosine receptor expression.  相似文献   

18.
Abstract: Adenosine A1 receptors as well as other components of the adenylate cyclase system have been studied in cultured cerebellar granule cells. No significant changes in adenosine A1 receptor number, assayed by radioligand binding in intact cells, were detected from 2 days in vitro (DIV) until 7 DIV. Nevertheless, a decline in this parameter was detected at 9 DIV. The steady-state levels of α-Gs and α-Gi, detected by immunoblotting, showed similar profiles, increasing from 2 to 5 DIV and decreasing afterward. Forskolin-stimulated adenylate cyclase levels also showed an increase until 5 DIV, decreasing at 7 and 9 DIV. The adenosine A1 receptor analogue cyclopentyladenosine (CPA) was able to inhibit cyclic AMP accumulation at 2, 5, and 7 DIV but failed to do so at 9 DIV. This inhibition was prevented by the specific adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine. The presence of adenosine deaminase in the culture increased adenosine A1 receptor number during the period studied and induced recovery of the inhibitory effect of CPA, lost after 7 DIV. These data suggest that functional expression of adenosine A1 receptors and the other components of the adenylate cyclase system is subjected to regulation during the maturation of cultured cerebellar granule cells and demonstrates a key role for endogenous adenosine in the process.  相似文献   

19.
During hypoxia, extracellular adenosine levels are increased to prevent cell damage, playing a neuroprotective role mainly through adenosine A1 receptors. The aim of the present study was to analyze the effect of hypoxia in both adenosine A1 and A2A receptors endogenously expressed in C6 glioma cells. Two hours of hypoxia (5% O2) caused a significant decrease in adenosine A1 receptors. The same effect was observed at 6 h and 24 h of hypoxia. However, adenosine A2A receptors were significantly increased at the same times. These effects were not due to hypoxia-induced alterations in cells number or viability. Changes in receptor density were not associated with variations in the rate of gene expression. Furthermore, hypoxia did not alter HIF-1α expression in C6 cells. However, HIF-3α, CREB and CREM were decreased. Adenosine A1 and A2A receptor density in normoxic C6 cells treated with adenosine for 2, 6 and 24 h was similar to that observed in cells after oxygen deprivation. When C6 cells were subjected to hypoxia in the presence of adenosine deaminase, the density of receptors was not significantly modulated. Moreover, DPCPX, an A1 receptor antagonist, blocked the effects of hypoxia on these receptors, while ZM241385, an A2A receptor antagonist, was unable to prevent these changes. These results suggest that moderate hypoxia modulates adenosine receptors and cAMP response elements in glial cells, through a mechanism in which endogenous adenosine and tonic A1 receptor activation is involved.  相似文献   

20.
Both adenosine and interleukin-6 (IL-6) have been implicated in the pathophysiology of, e.g., epileptic seizures, traumatic brain injury, and affective disorders. Stimulation of adenosine A2B receptors on astrocytes in vitro leads to the increased synthesis and secretion of IL-6. We investigated whether or not activation of adenosine receptors evokes an increase of IL-6 release also in vivo . 5'- N -ethylcarboxamidoadenosine, a non-specific adenosine-agonist or vehicle was administered into the striatum of freely moving mice by reverse microdialysis. A statistical significant increase of the IL-6 concentration in the perfusate was detected already 60 min after 5'- N -ethylcarboxamidoadenosine administration. IL-6 increased progressively and reached a maximum after 240 min. This effect appears to be mediated through adenosine A2B receptors since it was counteracted by the specific A2B receptor antagonist MRS1706 but not by the specific A1 receptor antagonist DPCPX. We conclude that adenosine via activation of A2B receptors evokes IL-6 release also in vivo .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号