首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tinospora cordifolia, used in anti-diabetic herbal drug preparations, was reported [12] to contain an alpha-glucosidase inhibitor, characterized as saponarin (apigenin-6-C-glucosyl-7-O-glucoside). The leaf extract had appreciable antioxidant and hydroxyl radical scavenging activities and contained the flavonoid in the range of 32.1 +/- 1.5-45.5 +/- 3.5 mg/g of dry solid. Saponarin showed mixed competitive inhibition on activities of alpha-glucosidase and sucrase of different origins. IC(50), Ki and ki' values determined were 48 muM, 8 muM and 19.5 microM respectively for intestinal maltase and 35 microM, 6 microM and 13 microM respectively for intestinal sucrase. When given orally to maltose-fed rat, saponarin showed hypoglycemic activity in the range of 20-80 mg/kg compared to 100-200 mg/kg for acarbose as reported.  相似文献   

2.
A synthetic beta-thio-fructofuranoside of mercaptoethanol inhibited not only beta-fructofuranosidases but also alpha-glucosidases. The compound was hardly hydrolyzed by the glycosidases. The thio-fructoside competitively inhibited beta-fructofuranosidases from Aspergillus niger, Candida sp., and Saccharomyces cerevisiae, but not Arthrobacter beta-fructofuranosidase at all. Sucrase activity of rat intestinal sucrase/isomaltase complex was also suppressed in the presence of the thio-fructoside. The thio-fructoside showed noncompetitive inhibition toward maltase activity of the rat intestinal enzyme complex and Saccharomyces sp. alpha-glucosidase. Inhibition against the Bacillus stearothermophilus alpha-glucosidase, Rhizopus glucoamylase, and porcine kidney trehalase were more slight than that against these two alpha-glucosidases.  相似文献   

3.
Syzygium cumini seed kernel extracts were evaluated for the inhibition of alpha-glucosidase from mammalian (rat intestine), bacterial (Bacillus stearothermophilus), and yeast (Saccharomyces cerevisiae, baker's yeast). In vitro studies using the mammalian alpha-glucosidase from rat intestine showed the extracts to be more effective in inhibiting maltase when compared to the acarbose control. Since acarbose is inactive against both the bacterial and the yeast enzymes, the extracts were compared to 1-deoxynojirimycin. We found all extracts to be more potent against alpha-glucosidase derived from B. stearothermophilus than that against the enzymes from either baker's yeast or rat intestine. In an in vivo study using Goto-Kakizaki (GK) rats, the acetone extract was found to be a potent inhibitor of alpha-glucosidase hydrolysis of maltose when compared to untreated control animals. Therefore, these results point to the inhibition of alpha-glucosidase as a possible mechanism by which this herb acts as an anti-diabetic agent.  相似文献   

4.
Inhibition of α-glucosidase and α-amylase delays the digestion of starch and disaccharides to absorbable monosaccharides, resulting in a reduction of postprandial hyperglycemia. Finding effective mammalian α-glucosidase inhibitors from natural sources can be beneficial in the prevention and treatment of diabetes mellitus. We investigated the inhibitory activity of cinnamic acid derivatives against rat intestinal α-glucosidase and porcine pancreatic α-amylase in vitro. Among 11 cinnamic acid derivatives, caffeic acid, ferulic acid, and isoferulic acid were the most potent inhibitors against intestinal maltase with IC50 values of 0.74?±?0.01, 0.79?±?0.04, and 0.76?±?0.03?mM, respectively, whereas ferulic acid (IC50?=?0.45?±?0.01?mM) and isoferulic acid (IC50?=?0.45?±?0.01?mM) were effective intestinal sucrase inhibitors. However, all cinnamic acid derivatives were found to be inactive in pancreatic α-amylase inhibition. Kinetic analysis revealed that intestinal maltase was inhibited by caffeic acid, ferulic acid, and isoferulic acid in a mixed-inhibition manner. In addition, ferulic acid and isoferulic acid inhibited intestinal sucrase in a mixed type manner, whereas caffeic acid was a non-competitive inhibitor. The combination of isoferulic acid and acarbose showed an additive inhibition on intestinal sucrase. This study could provide a new insight into naturally occurring intestinal α-glucosidase inhibitors that could be useful for treatment of diabetes and its complications.  相似文献   

5.
A most potent alpha-glucosidase inhibitor named salacinol has been isolated from an antidiabetic Ayurvedic traditional medicine, Salacia reticulata WIGHT, through bioassay-guided separation. The absolute stereostructure of salacinol was determined on the basis of chemical and physicochemical evidence, which included the alkaline degradation of salacinol to 1-deoxy-4-thio-D-arabinofuranose and the X-ray crystallographic analysis, to be the unique spiro-like configuration of the inner salt comprised of 1-deoxy-4-thio-D-arabinofuranosyl sulfonium cation and 1'-deoxy-D-erythrosyl-3'-sulfate anion. Salacinol showed potent inhibitory activities on several alpha-glucosidases, such as maltase, sucrase, and isomaltase, and the inhibitory effects on serum glucose levels in maltose- and sucrose-loaded rats (in vivo) were found to be more potent than that of acarbose, a commercial alpha-glucosidase inhibitor.  相似文献   

6.
The SAR studies suggested that the C-ring of baicalein (1) was not necessary for the activity, and validated the importance of 2,3,4-trihydroxybenzoyl structure of 1. Thus, a series of 2,3,4-trihydroxybenzoyl-containing flavonoid analogs were investigated for the alpha-glucosidase inhibitory activity. The results indicated that 5,6,7-trihydroxy-2-phenyl-4-quinolone (2) and 5,6,7-trihydroxyflavanone (4) showed the comparable activity to 1, while 3,5,6,7-tetrahydroxyflavone (7), 5,6,7-trihydroxyisoflavone (8), and 6-hydroxygenistein (9) showed moderate alpha-glucosidase inhibitory activity. In addition, it was found that 6-amino-5,7-dihydroxyflavone (16) was a more potent and specific rat intestinal alpha-glucosidase inhibitor than 1, and showed the comparable activity to acarbose. This is the first report on mammalian intestinal alpha-glucosidase inhibitory activity of 6-aminoflavones. Kinetic studies revealed that 16 inhibited both sucrose- and maltose-hydrolyzing activities of rat intestinal alpha-glucosidase uncompetitively.  相似文献   

7.
In order to clarify the postprandial glucose suppression via alpha-glucosidase (AGH) inhibitory action by natural compounds, flavonoids were examined in this study. Among the flavonoids (luteolin, kaempferol, chrysin, and galangin), luteolin showed the potent maltase inhibitory activity with the IC50 of 2.3 mM, while less inhibitions were observed against sucrase. In addition, the effects of maltase inhibition by flavonoids were observed in the descending order of potency of luteolin > kaempferol > chrysin > galangin. Apparently, the AGH inhibition power greatly increased with the replacement of hydroxyl groups at 3' and 4'-position of the B-ring. However, the inhibitory power of luteolin was poorer than a therapeutic drug (acarbose: IC50; 430 nM). As a result of a single oral administration of maltose or sucrose (2 g/kg) in SD rats, no significant change in blood glucose level with the doses of 100 and 200 mg/kg of luteolin was observed. These findings strongly suggested that luteolin given at less than 200 mg/kg did not possess the ability to suppress the glucose production from carbohydrates through the inhibition of AGH action in the gut.  相似文献   

8.
Inhibitors targeting pancreatic alpha-amylase and intestinal alpha-glucosidases delay glucose production following digestion and are currently used in the treatment of Type II diabetes. Maltase-glucoamylase (MGA), a family 31 glycoside hydrolase, is an alpha-glucosidase anchored in the membrane of small intestinal epithelial cells responsible for the final step of mammalian starch digestion leading to the release of glucose. This paper reports the production and purification of active human recombinant MGA amino terminal catalytic domain (MGAnt) from two different eukaryotic cell culture systems. MGAnt overexpressed in Drosophila cells was of quality and quantity suitable for kinetic and inhibition studies as well as future structural studies. Inhibition of MGAnt was tested with a group of prospective alpha-glucosidase inhibitors modeled after salacinol, a naturally occurring alpha-glucosidase inhibitor, and acarbose, a currently prescribed antidiabetic agent. Four synthetic inhibitors that bind and inhibit MGAnt activity better than acarbose, and at comparable levels to salacinol, were found. The inhibitors are derivatives of salacinol that contain either a selenium atom in place of sulfur in the five-membered ring, or a longer polyhydroxylated, sulfated chain than salacinol. Six-membered ring derivatives of salacinol and compounds modeled after miglitol were much less effective as MGAnt inhibitors. These results provide information on the inhibitory profile of MGAnt that will guide the development of new compounds having antidiabetic activity.  相似文献   

9.
A hot water extract obtained by boiling adzuki beans (Vigna angularis) to produce bean paste for Japanese cake showed inhibitory activity against alpha-glucosidase, alpha-amylase, maltase, sucrase, and isomaltase after HP-20 column chromatography. The IC(50) values for each hydrolylase were 0.78 mg/ml (alpha-amylase), 2.45 mg/ml (maltase), 5.37 mg/ml (sucrase), and 1.75 mg/ml (isomaltase). The active fraction showed potential hypoglycemic activity in both normal mice and streptozotocin (STZ)-induced diabetic rats after an oral administration of sucrose, but did not show any effect on the blood glucose concentration after glucose administration, suggesting that the active fraction suppressed the postprandial blood glucose level by inhibiting alpha-glucosidase and alpha-amylase, irrespective of the endogenous blood insulin level.  相似文献   

10.
Flavonoids, including anthocyanins, are polyphenolic compounds present in fruits, vegetables and dietary supplements. They can be absorbed from the intestine to the bloodstream or pass into the large intestine. Various bacterial species and enzymes are present along the entire intestine. The aim of the present work was to investigate the intestinal metabolism of selected dietary polyphenol and polyphenol glycosides (quercetin, cyanidin-3-O-glucoside, cyanidin-3-O-galactoside, and delphinidin-3-O-galactoside) by human fecal bacteria. Moreover, the metabolism of metabolites formed from these compounds in human colon carcinoma cells (Caco-2) was also point of the interest. Test compounds were added to fresh human stool in broth or to Caco-2 cells in medium and then incubated for 6 or 20 h at 37°C. After incubation, samples were prepared for LC/MS determination. Main metabolic pathways were deglycosylation, hydrogenation, methylation, hydroxylation, and decomposition. 2,4,5-trihydroxybenzaldehyde, as a metabolite of cyanidin glycosides, was detected after incubation for the first time. Metabolites formed by fecal bacteria were further glucuronidated or methylated by intestinal enzymes. This metabolite profiling of natural compounds has helped to better understand the complex metabolism in the human intestine and this work also has shown the connection of metabolism of natural substances by intestinal bacteria followed by metabolism in intestinal cells.  相似文献   

11.
A series of 8-aminomethylated derivatives (1a-1j) were prepared by Mannich reaction of oroxylin A (1) with appropriate primary or secondary amines and para-formaldehyde. All the compounds were tested for their alpha-glucosidase inhibition activity against both yeast and rat intestinal alpha-glucosidase. Some of the compounds demonstrated significantly better alpha-glucosidase inhibitory activity than the parent compound (oroxylin A).  相似文献   

12.
Some molecular properties of the purified neutral alpha-glucosidase from human kidney were studied. The enzyme is a glycoprotein with high molecular weight (315000-352000 according to the method used). Its sedimentation coefficient is 12.9S. It exhibits at least three peaks of activity in isoelectric focusing experiments. This heterogeneity appears to be related to sialic acid residues from the carbohydrate moiety. An anti-human renal alpha-glucosidase antiserum was raised from rabbit. The antiserum effect on human intestinal maltases was studied in immunodiffusion experiments. An identity pattern was observed between renal neutral alpha-glucosidase and intestinal glucoamylase. No precipitation occurred with intestinal sucrase. Renal neutral alpha-glucosidase and intestinal glucoamylase were both completely precipitated by the antiserum, their maltase activity being only slightly inhibited in the antigen-antibody complex. From their molecular and immunological properties a large homology appears between human renal alpha-glucosidase and intestinal glycoamylase.  相似文献   

13.
Tinospora cordifolia, used in anti-diabetic herbal drug preparations, was reported [12] to contain an α-glucosidase inhibitor, characterized as saponarin (apigenin-6-C-glucosyl-7-O-glucoside). The leaf extract had appreciable antioxidant and hydroxyl radical scavenging activities and contained the flavonoid in the range of 32.1 ± 1.5–45.5 ± 3.5 mg/g of dry solid. Saponarin showed mixed competitive inhibition on activities of α-glucosidase and sucrase of different origins. IC50, Ki and ki′ values determined were 48 μM, 8 μM and 19.5 μM respectively for intestinal maltase and 35 μM, 6 μM and 13 μM respectively for intestinal sucrase. When given orally to maltose-fed rat, saponarin showed hypoglycemic activity in the range of 20–80 mg/kg compared to 100–200 mg/kg for acarbose as reported [27].  相似文献   

14.
Acarbose analogues, containing cellobiose and lactose structures, were prepared by reaction of the two disaccharides with acarbose and Bacillus stearothermophilus maltogenic amylase. The kinetics for the inhibition by the two analogues was studied for beta-glucosidase, beta-galactosidase, cyclomaltodextrin glucanosyltransferase (CGTase), and alpha-glucosidase. Both analogues were potent competitive inhibitors for beta-glucosidase, with K(I) values in the range of 0.04-2.44 microM, and the lactose analogues were good uncompetitive inhibitors for beta-galactosidase, with K(I) values in the range of 159-415 microM, while acarbose was not an inhibitor for either enzyme at 10 and 5 mM, respectively. Both analogues were also potent mixed inhibitors for CGTase, with K(I) values in the range of 0.1-9.3 microM. The lactose analogue was a 6.4-fold better competitive inhibitor for alpha-glucosidase than was acarbose.  相似文献   

15.
Glycosyl amino esters (2-13) on reaction with different isocyanates resulted in quantitative conversion to glycosyl ureas (14--32). Few of the selected ureas (15-20, 22-28, 30 and 32) on cyclative amidation with DBU/TBAB/4 A MS gave respective dihydropyrimidinones in fair to good yields (33-47). The compounds were screened for alpha-glucosidase inhibitory activity and two (19 and 23) of them showed strong inhibition against rat intestinal alpha-glucosidase. The compounds were also screened against Mycobacterium aurum, however, only one (19) of them exhibited marginal antitubercular activity.  相似文献   

16.
Anthocyanins are widely distributed secondary metabolites that play an essential role in skin pigmentation of many plant organs and microorganisms. Anthocyanins have been associated with a wide range of biological and pharmacological properties. They are also effective agents in the prevention and treatment of many chronic diseases. Berries are particularly abundant in these compounds; therefore, their dietary intake has health-promoting effects. The aim of this study was to identify and determine the anthocyanin content in selected species and cultivars of berry fruits, such as raspberry, blackberry, red currant, blackcurrant, and highbush blueberry, widely consumed by Europeans. The concentrations of anthocyanins were determined by HPLC, identifying individual compounds: cyanidin-3-O-glucoside, pelargonidin-3-O-glucoside, delphinidin-3-O-glucoside, delphinidin-3-O-rutinoside, cyanidin-3-O-rutinoside, delphinidin-3-O-galactoside, cyanidin-3-O-galactoside, and malvidin-3-O-galactoside. The experimental data showed that the selected species and cultivars of berry fruits differ significantly in the contents of anthocyanins. Among all species tested, blackberry and blackcurrant were characterized significantly by the highest content of anthocyanins (sum), while the lowest content was found in red currant fruits. Additionally, the content of individual anthocyanin compounds in particular species and cultivars was also different. Considering the high content of anthocyanins and their potential positive impact on human health and protection against disease, berries should be part of healthy nutrition.  相似文献   

17.
A screening of 5 plants used for making drinks in Vietnam revealed a Cleistocalyx operculatus (Roxb.) Merr and Perry flower bud extract to have the highest inhibitory activity against the alpha-glucosidase enzyme. The anti-hyperglycemic effects of an aqueous extract from flower buds of Cleistocalyx operculatus (CO), a commonly used material for drink preparation in Vietnam, were therefore investigated in vitro and in vivo. In vitro, the CO extract inhibited the rat-intestinal maltase and sucrase activities, with IC50 values of 0.70 and 0.47 mg/ml, respectively. These values are lower than those for a guava leaf extract (GE; IC50 0.97 and 1.28 mg/ml, respectively). Postprandial blood glucose testing of normal mice and STZ-induced diabetic rats by maltose loading (2 g/kg body weight (bw)) showed that the blood glucose reduction with CO (500 mg/kg bw) was slightly less than that with acarbose (25 mg/kg bw) but was more potent than that with GE (500 mg/kg bw). In an 8-week experiment, the blood glucose level of STZ diabetic rats treated with 500 mg of CO/kg bw/day was markedly decreased in comparison with that of non-treated diabetic rats. Consequently, CO is considered to be a promising material for preventing and treating diabetes.  相似文献   

18.
Cyanidin-3-rutinoside, a natural anthocyanin, inhibited alpha-glucosidase from baker's yeast in dose-responsive manner. The IC50 value was 19.7 microM +/- 0.24 microM, compared with the IC50 value of voglibose (IC50 = 23.4 +/- 0.30 microM). Cyanidin-3-rutinoside was found to be a non-competitive inhibitor for yeast alpha-glucosidase with a Ki value in the range of 1.31-1.56 x 10(-5)M. These results indicated that cyanidin-3-rutinoside could be classed as a new alpha-glucosidase inhibitor.  相似文献   

19.
A new series of furofuran lignans containing catechol moiety were prepared from the reactions between lignans and a variety of phenolics. All 22 products obtained were evaluated against three different α-glucosidases (maltase, sucrase and Baker’s yeast glucosidase) and DPPH radical. Of furofuran lignans evaluated, β-14, having two catechol moieties and one acetoxy group, was the most potent inhibitor against Baker’s yeast, maltase, and sucrase with IC50 values of 5.3, 25.7, and 12.9 µM, respectively. Of interest, its inhibitory potency toward Baker’s yeast was 28 times greater than standard drug, acarbose and its DPPH radical scavenging (SC50 11.2 µM) was 130 times higher than commercial antioxidant BHT. Subsequent investigation on mechanism underlying the inhibitory effect of β-14 revealed that it blocked Baker’s yeast and sucrase functions by mixed-type inhibition while it exerted non-competitive inhibition toward maltase. Molecular dynamics simulation of the most potent furofuran lignans (4, α-8b, α-14, and β-14) with the homology rat intestinal maltase at the binding site revealed that the hydrogen bond interactions from catechol, acetoxy, and quinone moieties of furofuran lignans were the key interaction to bind tightly to α-glucosidase. The results indicated that β-14 possessed promising antidiabetic activity through simultaneously inhibiting α-glucosidases and free radicals.  相似文献   

20.
A series of aminoresorcinols and related compounds were tested for rat intestinal alpha-glucosidase inhibition and these results suggested that the 2-aminoresorcinol moiety of 6-amino-5,7-dihydroxyflavone (2) is important to exert the intestinal alpha-glucosidase inhibitory activity and 2-aminoresorcinol (4), itself, is a potent alpha-glucosidase inhibitor and inhibited sucrose-hydrolyzing activity of rat intestinal alpha-glucosidase uncompetitively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号