首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of systematically modified vanadyl-β-diketone complexes, VO(β-diketone)2, bearing substituent groups with different electron inductive properties were synthesized and evaluated as inhibitors against calf-intestine alkaline phosphatase (APase). A combination of biochemical and quantum mechanical techniques were employed to identify structure-activity relationships relevant for rational design of phosphatase inhibitors. Kinetic parameters and activation free energy, enthalpy, and entropy for calf-intestine APase-catalyzed dephosphorylation of para-nitrophenylphosphate were also determined along with the inhibition constants (Ki) for the VO(β-diketone)2 complexes. Increased positive charge on the vanadyl group increases the inhibition potency of the complex while the absence of an available coordination site on the complex decreases its inhibition potency. These findings correlate well with the results of ab initio electron density calculations for the complexes.  相似文献   

2.
The increasing interest in vanadium coordination chemistry is based on its well-established chemical and biological functions. A beta-diketonato complex of oxovanadium(IV) is known to be having numerous catalytic applications and also exhibits promising insulin mimetic properties. In continuation of our structure activity relationship studies of metal complexes, we report herein the synthesis and characterization of the vanadium complexes of beta-diketonato ligand system with systematic variations of electronic and steric factors. Two complexes, VO(tmh)(2) (tmh = 2,2,6,6,-tetramethyl-3,5-heptanedione), and VO(hd)(2) (hd = 3,5-heptanedione) were synthesized and characterized by using different spectroscopic techniques. Elemental and mass spectral analysis supports the presence of two beta-diketonato ligands per VO(2+) unit. UV-Vis spectra in different solvents indicate coordination of coordinating solvent molecules at sixth position resulting in red shift of the band I transition. NMR and IR spectra reveal binding of coordinating solvent molecule at vacant sixth position trans to oxo group without releasing beta-diketonato ligands. Enzyme inhibition studies of these and other related oxovanadium(IV) complexes with beta-diketonato ligand system are conducted with snake venom phosphodiesterase I (SPVDE). All of these complexes showed significant inhibitory potential and were found to be non-competitive inhibitors against this enzyme.  相似文献   

3.
Activation of rabbit liver microsomal high affinity cAMP phosphodiesterase (Type IV PDE) by vanadyl-glutathione complexes was studied as a possible model of insulin stimulation of the enzyme in a cell-free system. The effect of VO.2GSH activation of PDE was a 21-fold decrease in the IC50 value for cGMP inhibition and a 2.6-fold increase in the Vmax of the higher affinity cAMP catalytic site. Cyclic AMP and cGMP substrate affinities and cGMP hydrolysis were unaffected by VO.2GSH activation. Selective Type IV PDE inhibitors and cGMP analogs indicated that VO.2GSH complexes activated the cGMP-inhibitable form of the Type IV PDE activities which co-localized in hepatic microsomes. The Type IV PDE activating complex appears to consist minimally of vanadyl ion and 2 oxidized electron donor compounds. The components of the electron donor required to achieve an enzyme activation complex are: 1) a free -SH group as the electron donor for vanadate reduction and 2) a minimum structure of cysteamine (NH2-CH2-CH2-SH). Maximal activation of the enzyme required near 2:1 molar ratios of either glutathione or cysteamine mixed with sodium orthovanadate. Active vanadyl-cysteamine complexes were isolated by reverse- phase high performance liquid chromatography. Tungsten, niobium, and tantalum, but not manganese, chromium, or molybdenum, substituted for vanadium to form enzyme-activating complexes with glutathione. VO.RSH complex activation occurred rapidly upon addition to microsomes and was reversible. We conclude from these studies that VO.RSH complexes and insulin activate the same form of Type IV PDE in rabbit liver microsomes; our findings are discussed with respect to the involvement of a possible electron transfer enzyme oxidation in the activation mechanism.  相似文献   

4.
Nine new metal complexes of the quinolone antibacterial agent N-propyl-norfloxacin, pr-norfloxacin, with VO(2+), Mn(2+), Fe(3+), Co(2+), Ni(2+), Zn(2+), MoO(2)(2+), Cd(2+) and UO(2)(2+) have been prepared and characterized with physicochemical and spectroscopic techniques while molecular mechanics calculations for Fe(3+), VO(2+) and MoO(2)(2+) complexes have been performed. In all complexes, pr-norfloxacin acts as a bidentate deprotonated ligand bound to the metal through the pyridone and one carboxylate oxygen atoms. All complexes are six-coordinate with slightly distorted octahedral geometry. For the complex VO(N-propyl-norfloxacinato)(2)(H(2)O) the axial position, trans to the vanadyl oxygen, is occupied by one pyridone oxygen atom. The investigation of the interaction of the complexes with calf-thymus DNA has been performed with diverse spectroscopic techniques and has shown that the complexes can be bound to calf-thymus DNA resulting to a B-->A DNA transition. The antimicrobial activity of the complexes has been tested on three different microorganisms. The complexes show equal or decreased biological activity in comparison to the free pr-norfloxacin except UO(2)(pr-norf)(2) which shows better inhibition against S. aureus.  相似文献   

5.
As a contribution to the development of novel vanadyl complexes with potential insulin-mimetic activity, three new oxovanadium(IV) complexes with the formula VO(L)(2), where L are 3-amino-quinoxaline-2-carbonitrile N(1),N(4)-dioxide derivatives, have been synthesized. Complexes have been characterized by elemental and thermal analyses, fast atom bombardment mass spectroscopy (FAB-MS), conductivity measurements and electronic, Fourier transform infrared (FTIR) and electron paramagnetic resonance (EPR) spectroscopies. The in vitro insulin-mimetic activity of the vanadyl complexes has been estimated by lipolysis inhibition tests, in which the inhibition of the release of free fatty acid from isolated rat adipocytes treated with epinephrine was determined. All the complexes showed inhibitory effects on free fatty acid release. [V(IV)O(3-amino-6(7)-bromoquinoxaline-2-carbonitrile N(1),N(4)-dioxide)(2)] exhibited higher in vitro insulin-mimetic activity than the very active bis(6-methylpicolinato)oxovanadium(IV), VO(6mpa)(2). This new vanadyl complex is expected to exhibit a higher blood glucose lowering activity than VO(6mpa)(2) in diabetic animals.  相似文献   

6.
A new vanadyl(IV) complex of the disaccharide lactose was obtained in aqueous solution at pH = 13. The sodium salt of the complex, of composition Na4[VO(lactose)2].3H2O, has been characterized by elemental analysis and by ultraviolet-visible, diffuse reflectance, and infrared spectroscopies. Its magnetic susceptibility and thermal behavior were also investigated. The inhibitory effect on alkaline phosphatase activity was tested for this compound as well as for the vanadyl(IV) complexes with maltose, sucrose, glucose, fructose, and galactose. For comparative purposes, the free ligands and the vanadyl(IV) cation were also studied. The free sugars and the sucrose/VO complex exhibited the lowest inhibitory effect. Lactose-VO, maltose-VO, and the free VO2+ cation showed an intermediate inhibition potential, whereas the monosaccharide/VO complexes appeared as the most potent inhibitory agents.  相似文献   

7.
Inhibition of a tartrate-resistant acid phosphatase (ACP) from Leishmania donovani and the tartrate-sensitive ACP from human seminal fluid (prostatic ACP) was examined using a series of 13 molybdate-containing heteropolyanions. The heteropolyanions were divided into four groups based on the number of molybdenum atoms they contain: Group I, Mo4; Group II, Mo6-8; Group III, Mo12; Group IV, Mo18. Two of the four groups, those consisting of compounds that contain either an Mo4 unit or an Mo18 unit with a heteroatom in the central cavity, were potent inhibitors and exhibited the highest degree of selectivity against the leishmanial and seminal fluid ACPs. The inhibition of prostatic ACP by complex E2 could be completely reversed by dialysis. Little inhibition of the acid phosphatase, beta-glucuronidase, or alpha-mannosidase from human spleen was observed with complexes B' and E2. For the seminal fluid phosphatase, the Ki values obtained with arsenate and vanadate depended markedly on pH, suggesting that, unlike most other phosphatases, the conformation of the inhibitor binding site on human seminal fluid ACP is pH-dependent. Results of competition experiments performed with various inhibitor pairs indicated that complex D2 binds to the active site of prostatic ACP while complex M binds at some site on the enzyme that affects the active site. Binding of complex M also modifies the affinity of the enzyme for other inhibitors such as vanadate. The potency of several heteropolyanion complexes and their selective inhibition of pathophysiologically significant acid phosphatases indicate that these compounds may have value as tools for study of the structure and function of this class of enzyme and perhaps in the therapy of human disease.  相似文献   

8.
Lu L  Gao X  Zhu M  Wang S  Wu Q  Xing S  Fu X  Liu Z  Guo M 《Biometals》2012,25(3):599-610
The inhibitory effects of three biguanido-oxovanadium complexes ([VO(L(1-3))(2)]·nH(2)O: HL(1) = metformin, HL(2) = phenformin, HL(3) = moroxydine) against four protein tyrosine phosphatases (PTPs) and an alkaline phosphatase (ALP) were investigated. The complexes display strong inhibition against PTP1B and TCPTP (IC(50), 80-160 nM), a bit weaker inhibition against HePTP (IC(50), 190-410 nM) and SHP-1(IC(50), 0.8-3.3 μM) and much weaker inhibition against ALP (IC(50), 17-35 μM). Complex 3 is about twofold less potent against PTP1B, TCPTP and HePTP than complexes 1 and 2, while complex 2 inhibits SHP-1 more strongly (about three to fourfold) than the other two complexes. These results suggest that the structures of the ligands slightly influence the potency and selectivity against PTPs. The complexes inhibit PTP1B and ALP with a typical competitive type.  相似文献   

9.
The oxovanadium(IV) complex of oxodiacetic acid (H2oda) of stoichiometry [VO(oda)(H2O)2], which presents an unprecedented tridentate OOO coordination, was thoroughly characterized by infrared, Raman, electronic, and electron paramagnetic resonance spectroscopies. The biological activity of the complex on the cell proliferation and differentiation was tested on osteoblast-like cells (MC3T3E1 osteoblastic mouse calvaria-derived cells and UMR106 rat osteosarcoma-derived cells) in culture. The complex caused inhibition of cellular proliferation in both osteoblast-like cells in culture, but the cytotoxicity was stronger in the normal (MC3T3E1) than in the tumoral (UMR106) osteoblasts. The effect of the complex in cell differentiation was tested through the specific activity of alkaline phosphatase of the UMR106 cells because they expressed a high activity of this enzyme. What occurs with other vanadium compounds [VO(oda)(H2O)2] is an inhibitory agent of osteoblast differentiation.  相似文献   

10.
Piroxicam (=Hpir) is a non-steroidal anti-inflammatory and an anti-arthritic drug. VO(2+), Mn(2+), Fe(3+), MoO(2)(2+) and UO(2)(2+) complexes with deprotonated piroxicam have been prepared and characterized with the use of infrared, UV-Vis, nuclear magnetic resonance and electron paramagnetic resonance spectroscopies. The experimental data suggest that piroxicam acts as a deprotonated bidentate ligand in all complexes and is coordinated to the metal ion through the pyridine nitrogen and the amide oxygen. Molecular mechanics calculations in the gas state have been performed in order to propose a model for the Fe(3+), VO(2+) and MoO(2)(2+) complexes. Potential anticancer cytostatic and cytotoxic effects of piroxicam complexes with VO(2+), Mn(2+) and MoO(2)(2+) on human promyelocytic leukemia HL-60 cells have been investigated. Among all complexes, only VO(pir)(2)(H(2)O) clearly induces apoptosis after 24-h incubation, whereas piroxicam induces apoptosis after 57-h incubation.  相似文献   

11.
Using vanadate, poly(1H-pyrazol-1-yl)borate and pyrazole as starting materials, two new neutral peroxovanadium(V) complexes with poly(1H-pyrazol-1-yl)borate, VO(O(2))(pzH)(HB(pz)(3))(1) and VO(O(2))(pzH)(B(pz)(4))(2), were synthesized successfully. Both complexes were characterized by elemental analysis, IR, UV-vis and NMR spectra. And the structure of complex 1 was determined by X-ray diffraction, which is somewhat relevant for haloperoxidase enzymes. Cytotoxic effects also are discussed on 3T3 cell proliferation. In the concentration range (0.1-100mumol), both complexes have an inhibiting cellular proliferation effect. When the cells cultivated with the complexes at high dose, the toxicity effect of both complexes is more and more predominant.  相似文献   

12.
Protein tyrosine phosphatase 1B (PTP1B) attenuates insulin signaling by catalyzing dephosphorylation of insulin receptors (IR) and is an attractive target of potential new drugs for treating the insulin resistance that is central to type II diabetes. Several analogues of cholecystokinin(26)(-)(33) (CCK-8) were found to be surprisingly potent inhibitors of PTP1B, and a common N-terminal tripeptide, N-acetyl-Asp-Tyr(SO(3)H)-Nle-, was shown to be necessary and sufficient for inhibition. This tripeptide was modified to reduce size and peptide character, and to replace the metabolically unstable sulfotyrosyl group. This led to the discovery of a novel phosphotyrosine bioisostere, 2-carboxymethoxybenzoic acid, and to analogues that were >100-fold more potent than the CCK-8 analogues and >10-fold selective for PTP1B over two other PTP enzymes (LAR and SHP-2), a dual specificity phosphatase (cdc25b), and a serine/threonine phosphatase (calcineurin). These inhibitors disrupted the binding of PTP1B to activated IR in vitro and prevented the loss of tyrosine kinase (IRTK) activity that accompanied PTP1B-catalyzed dephosphorylation of IR. Introduction of these poorly cell permeant inhibitors into insulin-treated cells by microinjection (oocytes) or by esterification to more lipophilic proinhibitors (3T3-L1 adipocytes and L6 myocytes) resulted in increased potency, but not efficacy, of insulin. In some instances, PTP1B inhibitors were insulin-mimetic, suggesting that in unstimulated cells PTP1B may suppress basal IRTK activity. X-ray crystallography of PTP1B-inhibitor complexes revealed that binding of an inhibitor incorporating phenyl-O-malonic acid as a phosphotyrosine bioisostere occurred with the mobile WPD loop in the open conformation, while a closely related inhibitor with a 2-carboxymethoxybenzoic acid bioisostere bound with the WPD loop closed, perhaps accounting for its superior potency. These CCK-derived peptidomimetic inhibitors of PTP1B represent a novel template for further development of potent, selective inhibitors, and their cell activity further justifies the selection of PTP1B as a therapeutic target.  相似文献   

13.
Recently, we have shown that a newly synthesized vanadyl complex, bis(1-oxy-2-pyridinethiolato)oxovanadium(IV), VO(opt)(2), is a potent orally active insulin-mimetic in treating streptozotocin-induced diabetes in rats, with long-term action. In the present study, the anti-diabetic effect of VO(opt)(2) and its mechanism in ob/ob mice, an obese non-insulin-dependent diabetes mellitus (NIDDM) animal model, was investigated. In ob/ob mice, 15-day oral treatment with VO(opt)(2) resulted in a dose-dependent decrease in the levels of glucose, insulin and triglyceride in blood. VO(opt)(2) was also effective in ameliorating impaired glucose tolerance in ob/ob mice, when an oral glucose tolerance test was performed after treatment with VO(opt)(2). Tumor necrosis factor-alpha (TNF-alpha) is a key component of obesity-diabetes link, we therefore examined the attenuating effect of VO(opt)(2) on impaired insulin signal transduction induced by TNF-alpha. Elevated expression of TNF-alpha was observed in the epididymal and subcutaneous fat tissues of ob/ob mice. Incubation of 3T3-L1, mouse adipocytes, with TNF-alpha reduced the phosphorylation of insulin receptor substrate-1 (IRS-1), whereas VO(opt)(2) treatment resulted in an enhancement of IRS-1 phosphorylation, irrespective of the presence or absence of TNF-alpha. Overall, the present study demonstrates that VO(opt)(2) exerts an anti-diabetic effect in ob/ob mice by ameliorating impaired glucose tolerance, and furthermore, attenuates the TNF-alpha-induced decrease in IRS-1 phosphorylation in adipocytes. These results suggest that the anti-diabetic action of VO(opt)(2) is derived from an attenuation of a TNF-alpha induced impaired insulin signal transduction via inhibition of protein tyrosine phosphatase, providing a potential clinical utility for VO(opt)(2) in the treatment of NIDDM.  相似文献   

14.
A new series of oxovanadium(IV) complexes of two aromatic acidhydrazides (BH and AH) have been reported. Of these two donors, AH is known to possess considerable in vitro antitubercular activity. At pH 2-4, oxometal complexes of the type [VO(BH/AH)2SO4].nH2O (n = 1, 0) and [VO(BH/AH)(C2O4)H2O].H2O (BH = C6H5CONHNH2 and AH = (2-NH2)C6H4.CO.NHNH2) were obtained. Reactions of [VO(BH/AH)(C2O4)H2O].H2O with a monodentate Lewis base lead to the isolation of metal-ligand complexes [VO(BH/AH)(C2O4)L].nH2O (L = NH3, n = 1, L = py, n = 2). Disposition of the bonding sites of donor molecules around the oxometal acceptor center and status of the metal-oxygen multiple bond have been established. A monomeric and distorted octahedral donor environment for the oxovanadium(IV) ion has been proposed on the basis of the electron paramagnetic resonance (EPR) spectra and magnetic susceptibility measurements. Antitubercular activities, in vitro, of the oxovanadium(IV) complexes of AH have also been evaluated towards tuberculosis mycobacteria such as Mycobacterium flae, Mycobacterium smegmatis and Mycobacterium H37Rv.  相似文献   

15.
Inhibition of phosphatase and sulfatase by transition-state analogues   总被引:2,自引:0,他引:2  
The inhibition constants for vanadate, chromate, molybdate, and tungstate have been determined with Escherichia coli alkaline phosphatase, potato acid phosphatase, and Helix pomatia aryl sulfatase. Vanadate was a potent inhibitor of all three enzymes. Inhibition of both phosphatases followed the order WO4(2-) greater than MoO4(2-) greater than CrO4(2-). The Ki values for potato acid phosphatase were about 3 orders of magnitude lower than those for alkaline phosphatase. Aryl sulfatase followed the reverse order of inhibition by group VI oxyanions. Phenol enhanced inhibition of alkaline phosphatase by vanadate and chromate but did not affect inhibition of acid phosphatase. Phenol enhanced inhibition of aryl sulfatase by metal oxyanions in all cases following the order H2VO4- greater than CrO4(2-) greater than MoO4(2-) greater than WO4(2-), and N-acetyltyrosine ethyl ester enhanced inhibition of aryl sulfatase by H2VO4- and CrO4(2-) more strongly than did phenol. It is apparent that the effectiveness of metal oxyanions as inhibitors of phosphatases and sulfatases can be selectively enhanced in the presence of other solutes. The relevance of these observations to the effects of transition metal oxyanions on protein phosphatases in vivo is discussed.  相似文献   

16.
Two chargeless VO(IV) complexes with 3-hydroxypyridine-2-carboxylic acid (H2hpic), [VO(Hhpic-O,O)(Hhpic-O,N)(H2O)].3H2O (1) and the cyclic tetramer [(VO)4(mu-(hpic-O,O',N))4(H2O)4].8H3O (2), have been synthesized and characterized by elemental analysis, mass, infrared, electronic absorption, electron spin resonance (ESR) spectroscopies, and X-ray crystallography. Their coordination structures are similar to each other (and 1 is readily transformed into 2), but are quite different from that of bis(pyridine-2-carboxylato)oxovanadium(IV). The magnetic susceptibility of 2 indicates the presence of a weak ferromagnetic intramolecular interaction between the V atoms at low temperature, in addition to a weak antiferromagnetic intermolecular interaction. The ESR signal of 2 was broad, while 1 showed an eight-line hyperfine splitting pattern due to coupling of the unpaired electron with the 51V nucleus (I=7/2). The ESR spectrum and cyclic voltammogram of 2 clearly show that the cyclic tetramer remains intact in solution. The insulinomimetic activity of 1 and 2 was evaluated by means of in vitro measurements of the inhibition of free fatty acid release from epinephrine-treated isolated rat adipocytes. While 1 exerted higher insulinomimetic activity than VOSO4, the activity of 2 was significantly lower than that of VOSO4. Hence 2 appears to retain its cyclic structure during the in vitro test. These results indicate that the rational ligand design for VO complexes might be a promising approach to obtain superior insulinomimetic activity.  相似文献   

17.
The synthesis and spectral and magnetic characterization of VO(2+) complexes with Ibuprofen (2-(4-isobutylphenyl)propionic acid), Naproxen (6-methoxy-alpha-methyl-2-naphthalene acetic acid) and Tolmetin (1-methyl-5-(4-methylbenzoyl)-1H-pyrrole-2-acetic acid) were studied. The complexes [VO(Ibu)(2)] x 5CH(3)OH, [VO(Nap)(2)] x 5CH(3)OH and [VO(Tol)(2)] were obtained from methanolic solutions under nitrogen atmosphere. The biological activities of these complexes on the proliferation of two osteoblast-like cells in culture (MC3T3E1 and UMR106) were compared with that of the vanadyl(IV) cation. The complexes exhibited different effects depending on the concentration and the cellular type, while no effect was observed for their parent drugs.  相似文献   

18.
Oxovanadium (IV) complexes of the alpha-hydroxycarboxylic ligands D-gluconic and D-saccharic acids of stoichiometry Na(2)[VO(gluconate)(2)].H(2)O, K(2)[VO(saccharate)(2)].4H(2)O, Na(4)[VO(gluconate)(2)].2H(2)O and K(5)[VO(saccharate)(2)].4H(2)O were obtained in aqueous solutions; the first two in acid, the other two in alkaline media. They were characterized by infrared and UV-Vis spectroscopies, thermoanalytical (thermogravimetric and differential thermal analysis) data and magnetic susceptibility measurements. The complexes were found to be mononuclear, possessing the VO(2+) moiety, and the thorough analysis of the spectral data allowed the determination of the characteristics of the metal-to-ligand interactions. The biological activities of these complexes on the proliferation, differentiation and glucose consumption were tested on osteoblast-like cells in culture. Comparisons of these effects and those of the oxovanadium (IV) cation and the free ligands were performed. Different behaviors could be observed for the complexes obtained at acidic or alkaline pH-values, as well as for the different cellular types. The free ligands did not show any biological effect.  相似文献   

19.
Atpenins and harzianopyridone represent a unique class of penta-substituted pyridine-based natural products that are potent inhibitors of complex II (succinate-ubiquinone oxidoreductase) in the mitochondrial respiratory chain. These compounds block electron transfer in oxidative phosphorylation by inhibiting oxidation of succinate to fumarate and the coupled reduction of ubiquinone to ubiquinol. From our investigations of complex II inhibitors as potential agricultural fungicides, we report here on the synthesis and complex II inhibition for a series of synthetic atpenin analogs against both mammalian and fungal forms of the enzyme. Synthetic atpenin 2e provided optimum mammalian and fungal inhibition with slightly higher potency than natural occurring atpenin A5.  相似文献   

20.
A series of copper complexes with multi-benzimidazole derivatives, including mono- and di-nuclear, were synthesized and characterized by Fourier transform IR spectroscopy, UV–Vis spectroscopy, elemental analysis, electrospray ionization mass spectrometry. The speciation of Cu/NTB in aqueous solution was investigated by potentiometric pH titrations. Their inhibitory effects against human protein tyrosine phosphatase 1B (PTP1B), T-cell protein tyrosine phosphatase (TCPTP), megakaryocyte protein tyrosine phosphatase 2 (PTP-MEG2), srchomology phosphatase 1 (SHP-1) and srchomology phosphatase 2 (SHP-2) were evaluated in vitro. The five copper complexes exhibit potent inhibition against PTP1B, TCPTP and PTP-MEG2 with almost same inhibitory effects with IC50 at submicro molar level and about tenfold weaker inhibition versus SHP-1, but almost no inhibition against SHP-2. Kinetic analysis indicates that they are reversible competitive inhibitors of PTP1B. Fluorescence study on the interaction between PTP1B and complex 2 or 4 suggests that the complexes bind to PTP1B with the formation of a 1:1 complex. The binding constant are about 1.14 × 106 and 1.87 × 106 M−1 at 310 K for 2 and 4, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号