首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The so‐called good‐laboratory‐practice (GLP) test provides an experimental design and appropriate statistical analysis for the problem of analyst performance assessment in microbiological laboratories. For a given sample material multiple dilution series are generated yielding colony counts from several dilution levels. Statistical evaluation is based on the assumption of Poisson‐distributed colony forming units. In this paper a new model based on conditional binomial and multinomial distributions is presented and it is shown how it is related to the standard model which assumes Poisson‐distributed colony counts. The effects of common working errors on the statistical evaluation of the GLP‐test are investigated.  相似文献   

2.
Li Y  Tiwari RC 《Biometrics》2008,64(4):1280-1286
Monitoring and comparing trends in cancer rates across geographic regions or over different time periods have been major tasks of the National Cancer Institute's (NCI) Surveillance, Epidemiology, and End Results (SEER) Program as it profiles healthcare quality as well as decides healthcare resource allocations within a spatial-temporal framework. A fundamental difficulty, however, arises when such comparisons have to be made for regions or time intervals that overlap, for example, comparing the change in trends of mortality rates in a local area (e.g., the mortality rate of breast cancer in California) with a more global level (i.e., the national mortality rate of breast cancer). In view of sparsity of available methodologies, this article develops a simple corrected Z-test that accounts for such overlapping. The performance of the proposed test over the two-sample "pooled"t-test that assumes independence across comparison groups is assessed via the Pitman asymptotic relative efficiency as well as Monte Carlo simulations and applications to the SEER cancer data. The proposed test will be important for the SEER * STAT software, maintained by the NCI, for the analysis of the SEER data.  相似文献   

3.
The interspike interval distribution of neuronal firing is analyzed by a model that assumes unit effect EPSP's lasting an exponential length of time. The model allows a general interarrival distribution; this contrasts with the numerous models requiring Poisson arrivals. The Laplace transform of the time to firing, modelled as the first passage time to a fixed arbitrary threshold level, is found. Comparisons are made for exponential and regular interarrivals using the first two moments of the time to firing. Surprisingly, the mean and variance of the time to reach any threshold level greater than one is greater for regular arrivals for any ratio of mean interarrival intervals to mean EPSP duration greater than 0.6.  相似文献   

4.
Fay MP  Tiwari RC  Feuer EJ  Zou Z 《Biometrics》2006,62(3):847-854
The annual percent change (APC) is often used to measure trends in disease and mortality rates, and a common estimator of this parameter uses a linear model on the log of the age-standardized rates. Under the assumption of linearity on the log scale, which is equivalent to a constant change assumption, APC can be equivalently defined in three ways as transformations of either (1) the slope of the line that runs through the log of each rate, (2) the ratio of the last rate to the first rate in the series, or (3) the geometric mean of the proportional changes in the rates over the series. When the constant change assumption fails then the first definition cannot be applied as is, while the second and third definitions unambiguously define the same parameter regardless of whether the assumption holds. We call this parameter the percent change annualized (PCA) and propose two new estimators of it. The first, the two-point estimator, uses only the first and last rates, assuming nothing about the rates in between. This estimator requires fewer assumptions and is asymptotically unbiased as the size of the population gets large, but has more variability since it uses no information from the middle rates. The second estimator is an adaptive one and equals the linear model estimator with a high probability when the rates are not significantly different from linear on the log scale, but includes fewer points if there are significant departures from that linearity. For the two-point estimator we can use confidence intervals previously developed for ratios of directly standardized rates. For the adaptive estimator, we show through simulation that the bootstrap confidence intervals give appropriate coverage.  相似文献   

5.
6.
Using data from the human mortality database (HMD), and five different modeling approaches, we estimate Gompertz mortality parameters for 7,704 life tables. To gauge model fit, we predict life expectancy at age 40 from these parameters, and compare predicted to empirical values. Across a diversity of human populations, and both sexes, the overall best way to estimate Gompertz parameters is weighted least squares, although Poisson regression performs better in 996 cases for males and 1,027 cases for females, out of 3,852 populations per sex. We recommend against using unweighted least squares unless death counts (to use as weights or to allow Poisson estimation) are unavailable. We also recommend fitting to logged death rates. Over time in human populations, the Gompertz slope parameter has increased, indicating a more severe increase in mortality rates as age goes up. However, it is well-known that the two parameters of the Gompertz model are very tightly (and negatively) correlated. When the slope goes up, the level goes down, and, overall, mortality rates are decreasing over time. An analysis of Gompertz parameters for all of the HMD countries shows a distinct pattern for males in the formerly socialist economies of Europe.  相似文献   

7.
A typical summary statistic for temporal trends is the average percent change (APC). The APC is estimated by using a generalized linear model, usually under the assumption of linearity on the logarithmic scale. A serious limitation of least-squares type estimators is their sensitivity to outliers. The goal of this study is twofold: firstly, we propose a robust and easy-to-compute measure of the temporal trend based on the median of the rates (median percent change – MPC), rather than their mean, under the hypothesis of constant relative change; secondly, we investigate the performance of several models for estimating the rate of change when some of the most common model assumptions are violated. We provide some guidance on the practices of the estimation of temporal trends when using different models under different circumstances. The robustness property of the median is assessed in a simulation study, which shows that the MPC provides strong reductions in estimation bias and variance in presence of outliers. We also demonstrate how a mathematical property of the median helps addressing the issue of zero counts when estimating trends on the log-scale. Finally, we analyzed an English cancer registration dataset to illustrate the proposed method. We believe that, as a good practice, both APC and MPC should be presented when sensitivity issues arise.  相似文献   

8.
Molecular loci that fail relative-rate tests are said to be "overdispersed." Traditional molecular-clock approaches to estimating divergence times do not take this into account. In this study, a method was developed to estimate divergence times using loci that may be overdispersed. The approach was to replace the traditional Poisson process assumption with a more general stationary process assumption. A probability model was developed, and an accompanying computer program was written to find maximum-likelihood estimates of divergence times under both the Poisson process and the stationary process assumptions. In simulation, it was shown that confidence intervals under the traditional Poisson assumptions often vastly underestimate the true confidence limits for overdispersed loci. Both models were applied to two data sets: one from land plants, the other from the higher metazoans. In both cases, the traditional Poisson process model could be rejected with high confidence. Maximum-likelihood analysis of the metazoan data set under the more general stationary process suggested that their radiation occurred well over a billion years ago, but confidence intervals were extremely wide. It was also shown that a model consistent with a Cambrian (or nearly Cambrian) origination of the animal phyla, although significantly less likely than a much older divergence, fitted the data well. It is argued that without an a priori understanding of the variance in the time between substitutions, molecular data sets may be incapable of ever establishing the age of the metazoan radiation.  相似文献   

9.
Person‐time incidence rates are frequently used in medical research. However, standard estimation theory for this measure of event occurrence is based on the assumption of independent and identically distributed (iid) exponential event times, which implies that the hazard function remains constant over time. Under this assumption and assuming independent censoring, observed person‐time incidence rate is the maximum‐likelihood estimator of the constant hazard, and asymptotic variance of the log rate can be estimated consistently by the inverse of the number of events. However, in many practical applications, the assumption of constant hazard is not very plausible. In the present paper, an average rate parameter is defined as the ratio of expected event count to the expected total time at risk. This rate parameter is equal to the hazard function under constant hazard. For inference about the average rate parameter, an asymptotically robust variance estimator of the log rate is proposed. Given some very general conditions, the robust variance estimator is consistent under arbitrary iid event times, and is also consistent or asymptotically conservative when event times are independent but nonidentically distributed. In contrast, the standard maximum‐likelihood estimator may become anticonservative under nonconstant hazard, producing confidence intervals with less‐than‐nominal asymptotic coverage. These results are derived analytically and illustrated with simulations. The two estimators are also compared in five datasets from oncology studies.  相似文献   

10.
The time intervals between miniature excitatory postsynaptic potentials and the counts of them in the cockroach, Periplaneta americana, were analyzed, using a computer program to test for properties of a Poisson process. The miniature potentials occurred basically in random manner at this neuromuscular junction. Although the distribution of the potentials did not fit the criteria for a Poisson process when the muscle fiber exhibited the short burst of high-frequency discharges, it was suggested that the primary process of such a distribution is Poisson, which is occasionally contaminated by the burst phase of the release rates.  相似文献   

11.
Many methods for fitting demographic models to data sets of aligned sequences rely upon an assumption that the data have a branching coalescent history without recombination within regions or loci. To mitigate the effects of the failure of this assumption, a common approach is to filter data and sample regions that pass the four‐gamete criterion for recombination, an approach that allows data to run, but that is expected to detect only a minority of recombination events. A series of empirical tests of this approach were conducted using computer simulations with and without recombination for a variety of isolation‐with‐migration (IM) model for two and three populations. Only the IMa3 program was used, but the general results should apply to related genealogy‐sampling‐based methods for IM models or subsets of IM models. It was found that the details of sampling intervals that pass a four‐gamete filter have a moderate effect, and that schemes that use the longest intervals, or that use overlapping intervals, gave poorer results. A simple approach of using a random nonoverlapping interval returned the smallest difference between results with and without recombination, with the mean difference between parameter estimates usually less than 20% of the true value (usually much less). However, the posterior probability distributions for migration rates were flatter with recombination, suggesting that filtering based on the four‐gamete criterion, while necessary for methods like these, leads to reduced resolution on migration. A distinct, alternative approach, of using a finite sites mutation model and not filtering the data, performed quite poorly.  相似文献   

12.
Many tests of the lineage dependence of substitution rates, computations of the error of evolutionary distances, and simulations of molecular evolution assume that the rate of evolution is constant in time within each lineage descended from a common ancestor. However, estimates of the index of dispersion of numbers of mammalian substitutions suggest that the rate has time-dependent variations consistent with a fractal-Gaussian-rate Poisson process, which assumes common descent without assuming rate constancy. While this model does not affect certain relative-rate tests, it substantially increases the uncertainty of branch lengths. Thus, fluctuations in the rate of substitution cannot be neglected in calculations that rely on evolutionary distances, such as the confidence intervals of divergence times and certain phylogenetic reconstructions. The fractal-Gaussian-rate Poisson process is compared and contrasted with previous models of molecular evolution, including other Poisson processes, the fractal renewal process, a Lévy-stable process, a fractional-difference process, and a log-Brownian process. The fractal models are more compatible with mammalian data than the nonfractal models considered, and they may also be better supported by Darwinian theory. Although the fractal-Gaussian-rate Poisson process has not been proven to have better agreement with data or theory than the other fractal models, its Gaussian nature simplifies the exploration of its impact on evolutionary distance errors and relative-rate tests. Received: 29 September 1999 / Accepted: 20 January 2000  相似文献   

13.
In allometry, researchers are commonly interested in estimating the slope of the major axis or standardized major axis (methods of bivariate line fitting related to principal components analysis). This study considers the robustness of two tests for a common slope amongst several axes. It is of particular interest to measure the robustness of these tests to slight violations of assumptions that may not be readily detected in sample datasets. Type I error is estimated in simulations of data generated with varying levels of nonnormality, heteroscedasticity and nonlinearity. The assumption failures introduced in simulations were difficult to detect in a moderately sized dataset, with an expert panel only able to correct detect assumption violations 34-45% of the time. While the common slope tests were robust to nonnormal and heteroscedastic errors from the line, Type I error was inflated if the two variables were related in a slightly nonlinear fashion. Similar results were also observed for the linear regression case. The common slope tests were more liberal when the simulated data had greater nonlinearity, and this effect was more evident when the underlying distribution had longer tails than the normal. This result raises concerns for common slopes testing, as slight nonlinearities such as those in simulations are often undetectable in moderately sized datasets. Consequently, practitioners should take care in checking for nonlinearity and interpreting the results of a test for common slope. This work has implications for the robustness of inference in linear models in general.  相似文献   

14.
In this paper the situation of extra population heterogeneity is discussed from a analysis of variance point of view. We first provide a non‐iterative way of estimating the variance of the heterogeneity distribution without estimating the heterogeneity distribution itself for Poisson and binomial counts. The consequences of the presence of heterogeneity in the estimation of the mean are discussed. We show that if the homogeneity assumption holds, the pooled mean is optimal while in the presence of strong heterogeneity, the simple (arithmetic) mean is an optimal estimator of the mean SMR or mean proportion. These results lead to the problem of finding an optimal estimator for situations not represented by these two extreme cases. We propose an iterative solution to this problem. Illustrations for the application of these findings are provided with examples from various areas.  相似文献   

15.
We present two models of optimal resource exploitation for sit-and-waitforagers. The first model assumes immediate recognition of sitequality and that site quality does not change over time. Thismodel predicts a forager's minimum acceptable site quality.We present a graphical analysis to show how (1) the distributionof site qualities, (2) the travel time between sites, (3) costof search, and (4) expected duration of the foraging processinfluence the minimum acceptable rate. Our second model allowssite qualities to change and relaxes the assumption of immediaterecognition. This model defines conditions of (1) state duration,(2) recognition time, (3) site abundance, and (4) cost of searchwhere the optimal policy is to stay put in a site regardlessof experience. We discuss the implications of these models forthe design and interpretation of field experiments of site useand habitat selection.  相似文献   

16.
Abstract

The annual pattern of black and white births in the Southeastern and Midwestern United States was analyzed for the years 1969 thru 1976. Monthly means for the eight‐year period were obtained individually for 17 states and for black births in the District of Columbia. The states and the district were selected for their large black populations and represent approximately 70% of black births in the USA. The data were analyzed in two ways, with an analysis of variance (the two‐factor mixed design with repeated measures on one factor) and by comparing the confidence intervals for the least‐squares derived Fourier coefficients of a sine curve. In addition, the range was compared between regions and between races and related to latitude. The analyses of variance indicated that statistically significant differences existed between regions and between races. The cosinor‐like method failed to adequately represent the data in most cases. The completely urban black population in the District of Columbia exhibited an annual pattern that was similar to the pattern in neighboring states, states that contained large rural populations. The range in the monthly averages of births was different between regions and between races, and inversely correlated with latitude (with “North”; and “white”; having smaller ranges). Some possible causative factors are briefly reviewed, and the correlation of sperm counts and conceptions offered as a new possibility.  相似文献   

17.
Summary Identifying regions with the highest and lowest mortality rates and producing the corresponding color‐coded maps help epidemiologists identify promising areas for analytic etiological studies. Based on a two‐stage Poisson–Gamma model with covariates, we use information on known risk factors, such as smoking prevalence, to adjust mortality rates and reveal residual variation in relative risks that may reflect previously masked etiological associations. In addition to covariate adjustment, we study rankings based on standardized mortality ratios (SMRs), empirical Bayes (EB) estimates, and a posterior percentile ranking (PPR) method and indicate circumstances that warrant the more complex procedures in order to obtain a high probability of correctly classifying the regions with the upper 100γ% and lower 100γ% of relative risks for γ= 0.05, 0.1 , and 0.2. We also give analytic approximations to the probabilities of correctly classifying regions in the upper 100γ% of relative risks for these three ranking methods. Using data on mortality from heart disease, we found that adjustment for smoking prevalence has an important impact on which regions are classified as high and low risk. With such a common disease, all three ranking methods performed comparably. However, for diseases with smaller event counts, such as cancers, and wide variation in event counts among regions, EB and PPR methods outperform ranking based on SMRs.  相似文献   

18.
We develop three Bayesian predictive probability functions based on data in the form of a double sample. One Bayesian predictive probability function is for predicting the true unobservable count of interest in a future sample for a Poisson model with data subject to misclassification and two Bayesian predictive probability functions for predicting the number of misclassified counts in a current observable fallible count for an event of interest. We formulate a Gibbs sampler to calculate prediction intervals for these three unobservable random variables and apply our new predictive models to calculate prediction intervals for a real‐data example. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Modeling vertical beta-diversity in tropical butterfly communities   总被引:1,自引:0,他引:1  
We present a novel analytical method for assessing spatial and temporal structure in community samples that is useful for comparing large data-sets that include species abundance data. The model assumes that species numbers in two samples are drawn from a bi-variate Poisson log-normal species abundance distribution and parameters from the fitted distribution are estimated to assess community structure. We assessed three tropical butterfly data-sets for spatial structure in the vertical dimension, and tested for changes in structure as a result of temporal variance, disturbance regimes, and geographic location. Our results indicate that the vertical dimension is a major structural component in tropical forest butterfly communities that varies little through time and is not measurably affected by small-scale disturbances. However, there is evidence that the degree of vertical structure may vary among geographic regions. These results are discussed in terms of the mechanisms maintaining vertical structure, and the implications of changes in forest architecture on butterfly communities.  相似文献   

20.
Aims In ecology and conservation biology, the number of species counted in a biodiversity study is a key metric but is usually a biased underestimate of total species richness because many rare species are not detected. Moreover, comparing species richness among sites or samples is a statistical challenge because the observed number of species is sensitive to the number of individuals counted or the area sampled. For individual-based data, we treat a single, empirical sample of species abundances from an investigator-defined species assemblage or community as a reference point for two estimation objectives under two sampling models: estimating the expected number of species (and its unconditional variance) in a random sample of (i) a smaller number of individuals (multinomial model) or a smaller area sampled (Poisson model) and (ii) a larger number of individuals or a larger area sampled. For sample-based incidence (presence–absence) data, under a Bernoulli product model, we treat a single set of species incidence frequencies as the reference point to estimate richness for smaller and larger numbers of sampling units.Methods The first objective is a problem in interpolation that we address with classical rarefaction (multinomial model) and Coleman rarefaction (Poisson model) for individual-based data and with sample-based rarefaction (Bernoulli product model) for incidence frequencies. The second is a problem in extrapolation that we address with sampling-theoretic predictors for the number of species in a larger sample (multinomial model), a larger area (Poisson model) or a larger number of sampling units (Bernoulli product model), based on an estimate of asymptotic species richness. Although published methods exist for many of these objectives, we bring them together here with some new estimators under a unified statistical and notational framework. This novel integration of mathematically distinct approaches allowed us to link interpolated (rarefaction) curves and extrapolated curves to plot a unified species accumulation curve for empirical examples. We provide new, unconditional variance estimators for classical, individual-based rarefaction and for Coleman rarefaction, long missing from the toolkit of biodiversity measurement. We illustrate these methods with datasets for tropical beetles, tropical trees and tropical ants.Important findings Surprisingly, for all datasets we examined, the interpolation (rarefaction) curve and the extrapolation curve meet smoothly at the reference sample, yielding a single curve. Moreover, curves representing 95% confidence intervals for interpolated and extrapolated richness estimates also meet smoothly, allowing rigorous statistical comparison of samples not only for rarefaction but also for extrapolated richness values. The confidence intervals widen as the extrapolation moves further beyond the reference sample, but the method gives reasonable results for extrapolations up to about double or triple the original abundance or area of the reference sample. We found that the multinomial and Poisson models produced indistinguishable results, in units of estimated species, for all estimators and datasets. For sample-based abundance data, which allows the comparison of all three models, the Bernoulli product model generally yields lower richness estimates for rarefied data than either the multinomial or the Poisson models because of the ubiquity of non-random spatial distributions in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号