首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
L J Perry  H L Heyneker  R Wetzel 《Gene》1985,38(1-3):259-264
The phage T4 gene coding for lysozyme has been cloned into a plasmid under control of the (trp/lac) hybrid tac promoter and expressed in Escherichia coli with no significant toxic effect to actively growing cells. E. coli D1210 (lacIq) transformed with this plasmid produced active T4 lysozyme at levels up to 2% of the cellular protein after induction with isopropyl-beta-D-thiogalactoside. A strain producing active lysozyme was shown to be under a selective disadvantage when co-cultured with a similar strain producing inactive lysozyme. Purified strains, however, are reasonably stable in culture and under normal storage conditions.  相似文献   

2.
3.
A recombinant plasmid containing the complete lacZ gene downstream of the T7 promoter was used to transform Escherichia coli containing another plasmid which had the T7 RNA polymerase gene under the control of heat inducible lambda PL promoter. This recombinant E. coli containing the two plasmids was studied in order to enhance beta-galactosidase expression. The heat shock time which effectively regulates the T7 RNA polymerase was optimized and best expression of beta-galactosidase was obtained with 2 min heat shock. Substrate feeding increased the duration of log phase and allowed induction at a higher cell density without affecting the specific activity. A high cell density (7 g l-1) and high specific activity (approximately 20,000 U) were achieved which effectively increased the product concentration 18-fold.  相似文献   

4.
苜蓿根瘤菌(Rhizobiummeliloti)nodC蛋白是结瘤基因nodC编码的43kD多肽(NodC)。应用噬菌体T7RNA聚合酶/启动子表达系统.pT7-5作为载体质粒.构建了带有nodC基因的PBF6克隆.经诱导在大肠杆菌JAKE中获得表达,过量生成NodC,占细胞总蛋白量的5%。经细胞膜蛋白组份的分离,Bio-gel柱层析,SDS-PAGE电泳等获得了比较纯化的NodC。  相似文献   

5.
将编码噬菌体T7RNA聚合酶的基因克隆至噬菌体M13mpl8RFDNA中,置于lac启动子的控制之下,得到了可表达T7 RNA聚合酶的重组噬菌体M13HEP。利用该噬菌体感染含T7启动子表达质粒的宿主菌以提供T7RNA聚合酶,可以诱导T7启动子控制下的外源基因的表达。该噬茵体诱导表达系统已成功地表达了多种外源基因,特别是一些表达产物对宿主菌有毒性的基因。同时,通过细菌接合将F',因子从大脑杆菌XL1-blue转至大肠杆菌HMS174,构建了新的大脑杆菌菌株HMSl74F,,使得T7表达质粒构建、表达及单链制备可以在同一菌株中完成,得到了一个完整的T7表达系统。  相似文献   

6.
An alternative and facile delivery system for T7 RNA polymerase has been devised and constructed. T7 gene 1 has been placed under control of the araBAD promoter element regulated by the AraC protein. Cotransformation of the resultant plasmid, pTara, with one containing a target gene under T7 promoter-regulated expression potentially allows repression by glucose and induction by arabinose in the range of 0.5 to 20 mM sugar concentration. To demonstrate the efficacy of this expression system, the p53 gene under T7 promoter control in two different plasmids was expressed in Escherichia coli using pTara as the source of T7 RNA polymerase. Repression and induction of p53 were achieved in both a lower and higher copy number plasmid, although the levels of induction were higher with the lower copy number expression vector. Cotransformation of an expression plasmid with pTara provides a low-cost method of T7 RNA polymerase-regulated expression that can be fine-tuned using glucose and arabinose concentrations to balance protein expression with potential solubility or toxicity problems.  相似文献   

7.
The coding sequence for bacteriophage T7 RNA polymerase has been cloned and expressed under control of a cognate T7 promoter, a configuration referred to as an autogene. Cloning a T7 autogene in a derivative of plasmid pBR322 in Escherichia coli was achieved by a combination of blocking initiation at the T7 promoter with bound lac repressor and inhibiting the polymerase itself by T7 lysozyme. Neither type of inhibition by itself was sufficient to control the autogene. Upon unblocking the T7 promoter with added inducer. T7 RNA polymerase produced its own mRNA, leading to autocatalytic production of polymerase protein. T7 autogenes may be useful for developing high-level gene expression systems in a variety of cell types, with little if any need for the host cell RNA polymerase.  相似文献   

8.
The complete lyc gene encoding the autolytic lysozyme of Clostridium acetobutylicum ATCC 824 was reconstructed from two overlapping DNA fragments and cloned into a suitable plasmid enabling Escherichia coli to produce this lytic enzyme under the control of the lac promoter. A polypeptide with an apparent M(r) of 35,000, corresponding to that predicted from the nucleotide sequence, was observed by maxicell analysis of whole-cell extracts of E. coli harboring the clostridial gene. The enzyme yield was shown to depend on the pH of the culture medium, since the protein was unstable at alkaline pH. The expression of the lyc gene was not increased by using the E. coli strong promoter, lpp-lac, probably due to the limit imposed by the extreme differences in codon usage. Although the LYC lysozyme does not contain a cleavable signal peptide, most of the protein was found in the periplasmic fraction of E. coli suggesting that this enzyme was secreted through a specific mechanism, as already observed for other autolysins.  相似文献   

9.
10.
The genes encoding the three Mg chelatase subunits, ChlH, ChlI and ChlD, from the cyanobacterium Synechocystis PCC6803 were all cloned in the same pET9a-based Escherichia coli expression plasmid, forming an artificial chlH-I-D operon under the control of the strong T7 promoter. When a soluble extract from IPTG-induced E. coli cells containing the pET9a-ChlHID plasmid was assayed for Mg chelatase activity in vitro, a high activity was obtained, suggesting that all three subunits are present in a soluble and active form. The chlM gene of Synechocystis PCC6803 was also cloned in a pET-based E. coli expression vector. Soluble extract from an E. coli strain expressing chlM converted Mg-protoporphyrin IX to Mg-protoporphyrin monomethyl ester, demonstrating that chlM encodes the Mg-protoporphyrin methyltransferase of Synechocystis. Co-expression of the chlM gene together with the chlH-I-D construct yielded soluble protein extracts which converted protoporphyrin IX to Mg-protoporphyrin IX monomethyl ester without detectable accumulation of the Mg-protoporphyrin IX intermediate. Thus, active Mg chelatase and Mg-protoporphyrin IX methyltransferase can be coupled in E. coli extracts. Purified ChlI, -D and -H subunits in combination with purified ChlM protein were subsequently used to demonstrate in vitro that a molar ratio of ChlM to ChlH of 1 to 1 results in conversion of protoporphyrin IX to Mg-protoporphyrin monomethyl ester without significant accumulation of Mg-protoporphyrin.  相似文献   

11.
霍乱毒素B亚单位基因(CtxB)的克隆及其表达   总被引:7,自引:0,他引:7  
从霍乱弧菌中抽提基因组DNA,用PCER方法获取霍乱毒素B亚单位基因(CtxB)。序列分析结果表明,CtxB基因编码124个氨基酸,其中编码62位Thr的密码子与文献报道有差异。将CtxB基因插入质粒pGEX-4T-2,构建pGEX-CTXB表达质粒,转化大肠相菌BL21(DE30,筛选表达菌株CTXB/BL21。工程株经IPTG诱导表达,可产生大量的表达蛋白,经SDS-PAGE分析,融合蛋白分子  相似文献   

12.
The gene of methylase M.SccL1I that protects DNA against hydrolysis with the nickase N.BspD6I was inserted into plasmid pRARE carrying genes of tRNA, which are rare in E. coli. The insertion of the gene sscML1I into pRARE was reasoned by incompatibility of pRARE and the plasmid carrying the gene sscML1I, because both plasmids contained the same ori-site. Upon transformation of E. coli TOP10F cells with both the recombinant plasmid pRARE/MSsc and the expression vector pET28b containing the nickase gene bspD6IN under the phage T7 promoter, a strain of E. coli was obtained which produced 7 x 10(5) units of the nickase N.BspD6I per 1 g wet biomass, and this yield was two orders of magnitude higher than the yield of the enzyme from the strain free of pRARE/MSsc.  相似文献   

13.
AIMS: The objective of this work was to evaluate the use of wild-type GFP and mutant forms thereof as reporter for gene expression under high pressure conditions. METHODS AND RESULTS: The intensity of fluorescence after high pressure treatment was checked by subjecting cells, crude protein extracts containing GFPs and purified GFPs to pressures ranging from 100 MPa to 900 MPa. All tested GFP's retained fluorescence up to 600 MPa without loss of intensity. Expression of GFP under sublethal conditions was investigated in Escherichia coli with plasmid pQBI63, in which rsGFP is placed downstream of the T7 RNA polymerase binding site. T7 RNA polymerase is controlled in E. coli BL21 (DE3) pLysS by an IPTG inducible lacUV5 promoter. A pressure induced increase of GFP expression was monitored at 50 Mpa and 70 MPa. CONCLUSION: Fluorescence of GFPs is not influenced at pressures at which protein expression still occurs. We showed that the expression system used is inducible by pressurized conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: This study proved GFP to be a suitable reporter for gene expression studies capable to detect pressure induced gene expression.  相似文献   

14.
The poliovirus 3AB gene has been cloned and overproduced in T7 expression vectors using different approaches to allow reduction of basal levels of expression. Expression of the poliovirus 3AB gene is highly toxic for E. coli cells, due to drastic changes induced in membrane permeability of the bacteria that lead to cell lysis when the T7 lysozyme is present. The best production of 3AB was achieved with the T7/lac system in cells lacking T7 lysozyme, where this toxic protein was synthesized to high levels and during several hours in the absence of cell lysis. These results show the efficient synthesis of a highly damaging membrane protein and open the possibility to apply heterologous gene expression in E. coli to other lytic proteins.  相似文献   

15.
GNA成熟蛋白基因亚克隆及其原核表达载体构建   总被引:3,自引:1,他引:2  
雪花莲外源凝集素(GNA)对刺吸式昆虫和某些咀嚼式昆虫以及多种线虫均有毒性,从含GNA前体蛋白基因的质粒中亚克隆出GNA的成熟蛋白基因MGNA,将MGNA基因插入大肠杆菌表达载体pET22b的不同位点,再经测序验证,得到了三种不同表达形式的GNA原核表达载体;22bG1(分泌型融合GNA蛋白),22bG2(包涵体型GNA蛋白),22bG3(分泌型天然GNA蛋白),这为进一步在大肠杆菌中表达GNA和将GNA制成生物农药奠定了基础。  相似文献   

16.
17.
Although widely used as a host for recombinant protein production, Escherichia coli is unsuitable for massive screening of recombinant clones, owing to its poor secretion of proteins. A vector system containing T4 holin and T7 lysozyme genes under the control of the ptsG promoter derivative that is inducible in the absence of glucose was developed for programmed cell lysis of E. coli. Because E. coli harboring the vector grows well in the presence of glucose, but is lysed upon glucose exhaustion, the activity of the foreign gene expressed in E. coli can be monitored easily without an additional step for cell disruption after the foreign gene is expressed sufficiently with an appropriate concentration of glucose. The effectiveness of the vector was demonstrated by efficient screening of the amylase gene from a Bacillus subtilis genomic library. This vector system is expected to provide a more efficient and economic screening ofbioactive products from DNA libraries in large quantities.  相似文献   

18.
We report a rapid procedure for the large-scale purification of the Escherichia coli encoded single-strand binding (SSB) protein, helix-destabilizing protein which is essential for replication, recombination, and repair processes in E. coli. To facilitate the isolation of large quantities of the ssb gene product, we have subcloned the ssb gene into a temperature-inducible expression vector, pPLc28 [Remaut, E., Stanssens, P., & Fiers, W. (1981) Gene 15, 81-93], carrying the bacteriophage lambda PL promoter. A large overproduction of the ssb gene product results upon shifting the temperature of E. coli strains which carry the plasmid and also produce the thermolabile lambda cI857 repressor. After 5 h of induction, the ssb gene product represents approximately 10% of the total cell protein. The overexpression of the ssb gene and the purification protocol reported here enable one to isolate SSB protein (greater than 99% pure) with final yields of approximately 3 mg of SSB protein/g of cell paste. In fact, very pure (greater than 99%) SSB protein can be obtained after approximately 8 h, starting from frozen cells in the absence of any columns, although inclusion of a single-stranded DNA-cellulose column is generally recommended to ensure that the purified SSB protein possesses DNA binding activity. The ability to easily purify 1 g of SSB protein from 300-350 g of induced cells will facilitate physical studies requiring large quantities of this important protein.  相似文献   

19.
A novel Eschericha coli expression system directed by bacteriophage T7 RNA Polymerase utilized for overexpression of the cloned gene. The recombinant cell contains the plasmid with a bacteriophage promoter, the T7 promoter, to regulate the expression of the target gene. This promoter is recongnized only by T7 RNA polymerase, whose gene has been fused into the host chromosome and is under control of the lacUV5 promoter. Therefore, the target gene on the plasmid can be expressed only in the presence of T7 RNA polymerase, which is induced by isopropyl-beta-D-thiogalactopyranoside (IPTG). The batch cultures were performed to investigate the effect of induction on kinetics of cell growth and foreign protein formation and to determine the optimal induction strategy. It was observed that the specific growth rates of the recombinant cells dramatically decrease after induction, and that there is an optimal induction time for maximizing the accumulated intracellular foreign protein. This optimal induction time varies singificantly with inducer concentration. To better understand the optimal behavior, a lumped mechanistic model was constructed to analyze the induced cell growth and foreign protein formation rates. (c) 1992 John Wiley & Sons, Inc.  相似文献   

20.

Background

To optimize the production of membrane and secretory proteins in Escherichia coli, it is critical to harmonize the expression rates of the genes encoding these proteins with the capacity of their biogenesis machineries. Therefore, we engineered the Lemo21(DE3) strain, which is derived from the T7 RNA polymerase-based BL21(DE3) protein production strain. In Lemo21(DE3), the T7 RNA polymerase activity can be modulated by the controlled co-production of its natural inhibitor T7 lysozyme. This setup enables to precisely tune target gene expression rates in Lemo21(DE3). The t7lys gene is expressed from the pLemo plasmid using the titratable rhamnose promoter. A disadvantage of the Lemo21(DE3) setup is that the system is based on two plasmids, a T7 expression vector and pLemo. The aim of this study was to simplify the Lemo21(DE3) setup by incorporating the key elements of pLemo in a standard T7-based expression vector.

Results

By incorporating the gene encoding the T7 lysozyme under control of the rhamnose promoter in a standard T7-based expression vector, pReX was created (ReX stands for Regulated gene eXpression). For two model membrane proteins and a model secretory protein we show that the optimized production yields obtained with the pReX expression vector in BL21(DE3) are similar to the ones obtained with Lemo21(DE3) using a standard T7 expression vector. For another secretory protein, a c-type cytochrome, we show that pReX, in contrast to Lemo21(DE3), enables the use of a helper plasmid that is required for the maturation and hence the production of this heme c protein.

Conclusions

Here, we created pReX, a T7-based expression vector that contains the gene encoding the T7 lysozyme under control of the rhamnose promoter. pReX enables regulated T7-based target gene expression using only one plasmid. We show that with pReX the production of membrane and secretory proteins can be readily optimized. Importantly, pReX facilitates the use of helper plasmids. Furthermore, the use of pReX is not restricted to BL21(DE3), but it can in principle be used in any T7 RNAP-based strain. Thus, pReX is a versatile alternative to Lemo21(DE3).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号