首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
Morphogenetic movements accompanying formation of the neural keel and neural tube in the zebrafishDanino (Brachydanio) rerio were studied by labelling single neural plate cells with fluoresceinated dextran (FDA) during late gastrula stages (95–100% epiboly) and localizing their progeny with an anti-fluorescein antibody on histological sections throughout neurulation. The mediolateral extent of the neural plate correlates directly with the dorso-ventral extent of the neural tube. That is to say, the progeny of cells located medially in the neural plate come to lie ventrally in the neural tube; cells located laterally in the neural plate give rise to progeny that populate dorsal levels in the neural tube. Fixation of labelled cells at various stages reveals that neural keel and nerve rod are organized as monostratified epithelia and that they maintain this organization during neurulation. These observations strongly suggest that the neural keel in the zebrafish forms by way of infolding of the neural plate and, therefore, utilizes a mechanism similar to primary neurulation in other vertebrates. The folding process juxtaposes the apical surfaces of both flanks of the neural plate at the midline. Mitoses occur preferentially in this zone, leading very frequently to formation of bilaterally symmetrical clones of progeny cells. The size of the clones that develop from injected cells suggests that neural plate cells divide an 1.5 times on average between late gastrula and the end of neurulation. Correspondence to: J.A. Campos-Ortega  相似文献   

4.
Understanding the changing morphology of an embryo presentsspecial challenges. Analyses of neurulation in vertebrate embryosdescribed here required observation from sectioned materialand from time-lapse movies, modeling, computer simulation, andexperiments. All these approaches were essential, and each approachhelped guide the use of the others. Experiments have the specialrole of letting the embryo decide between our alternative hypotheses. In the newt embryo, induction and patterning events establishin the ectoderm boundaries between epidermis and neural plate,and between neural plate and the notoplate at its midline. Thedifferentdomains of cells thus established—epidermis, neural plateand notoplate—develop different adhesive properties suchthat cell motility behavior along the notoplate boundary andalong the spinal cord/epidermis boundary produces forceful intercalationof cells which lengthens the boundaries and distorts (lengthens)the neuroepithelium. Neural plate cells also attempt to crawlbeneath the epidermis along their common boundary, raising neuralfolds and producing a rolling moment directed mediad that islargely responsible for neural tube formation. Both cell motilitythat leads to columnarization of neural plate cells and contractionof organized subapical microfilament bundles reduce the apicalsurface area of the neural plate cells and produce an apicaltension that aids neural tube formation. Cell relocation reducesthe width of the neural plate and increases its length, andthe Poisson buckling forces resulting from this elongation ofthe plate also aid neural tube formation. The newt embryo accomplishes neurulation without growth, butbird and mammal embryos grow during neurulation. Understandingthe organization of the products of growth in the amniote neuralplate is critical in determining whether growth helps or hindersneurulation.  相似文献   

5.
Through the direct analysis of cell behaviors, we address the mechanisms underlying anterior neural tube morphogenesis in the zebrafish and the role of the cell adhesion molecule N-cadherin (N-cad) in this process. We demonstrate that although the mode of neurulation differs at the morphological level between amphibians and teleosts, the underlying cellular mechanisms are conserved. Contrary to previous reports, the zebrafish neural plate is a multi-layered structure, composed of deep and superficial cells that converge medially while undergoing radial intercalation, to form a single cell-layered neural tube. Time-lapse recording of individual cell behaviors reveals that cells are polarized along the mediolateral axis and exhibit protrusive activity. In N-cad mutants, both convergence and intercalation are blocked. Moreover, although N-cad-depleted cells are not defective in their ability to form protrusions, they are unable to maintain them stably. Taken together, these studies uncover key cellular mechanisms underlying neural tube morphogenesis in teleosts, and reveal a role for cadherins in promoting the polarized cell behaviors that underlie cellular rearrangements and shape the vertebrate embryo.  相似文献   

6.
Molecular analysis of neural crest formation.   总被引:5,自引:0,他引:5  
  相似文献   

7.
Ctenophores possess eight longitudinally arrayed rows of comb plate cilia. Previous intracellular cell lineage analysis has shown that these comb rows are derived from two embryonic lineages, both daughters of the four e(1) micromeres (e(11) and e(12)) and a single daughter of the four m(1) micromeres (the m(12) micromeres). Although isolated e(1) micromeres will spontaneously generate comb plates, cell deletion experiments have shown that no comb plates appear during embryogenesis following the removal of e(1) descendents. Thus, the m(1) lineage requires the inductive interaction of the e(1) lineage to contribute to comb plate formation. Here we show that, although m(12) cells are normally the only m(1) derivatives to contribute to comb plate formation, m(11) cells are capable of generating comb plates in the absence m(12) cells. The reason that m(11) cells do not normally make comb rows may be attributable either to their more remote location relative to critical signaling centers (e.g., e(1) descendants) or to inhibitory signals that may be provided by other nearby cells such as sister cells m(12). In addition, we show that the signals provided by the e(1) lineage are not sufficient for m(1)-derived comb plate formation. Signals provided by endomesodermal progeny of either the E or the M lineages (the 3E or 2M macromeres) are also required.  相似文献   

8.
Mechanisms for shaping and folding sheets of cells during development are poorly understood. An example is the complex reorganisation of the forebrain neural plate during neurulation, which must fold a sheet into a tube while evaginating two eyes from a single contiguous domain within the neural plate. We, for the first time, track these cell rearrangements to show that forebrain morphogenesis differs significantly from prior hypotheses. We postulate a new model for forebrain neurulation and demonstrate how mutations affecting two signalling pathways can generate cyclopic phenotypes by disrupting normal cell movements or introducing new erroneous behaviours.  相似文献   

9.
Summary We have used interspecific grafts between Xenopus borealis and Xenopus laevis to study the signalling system that produces tail mesoderm. Early gastrula ectoderm grafted into the posterior neural plate region of neurulae responds to a mesodermal inducing signal in this region and forms mainly tail somites; this signal persists until at least the early tail bud stage. Ventral ectoderm grafted into the posterior neural plate loses its competence to respond to this signal after stage 10 1/2. We have established the specification of anterior and posterior neural plate ectoderm. In ectodermal sandwiches or when grafted into unusual positions, anterior regions gave rise to mainly nervous system and posterior regions to large amounts of muscle, together with some nervous system. Thus it was impossible to assess the competence of posterior neural plate ectoderm to form further mesoderm and hence to establish if mesodermal induction continues during neurulation in unmanipulated embryos.  相似文献   

10.
Neural crest cells are a migratory population that forms most of the peripheral nervous system, facial skeleton, and numerous other derivatives. These cells arise from the neural ectoderm and are first recognizable as discrete cells after neural tube closure. In this review, I summarize the results of studies from our laboratory on neural crest cell lineage and origin. Our recent experiments demonstrate that interactions between the presumptive neural plate and the nonneural ectoderm are likely to be instrumental in the induction of the avian neural crest. Juxtaposition of these tissues at early stages results in the formation of neural crest cells at the interface. However, neural crest cells do not appear to be segregated from other neuroepithelial cells; cell lineage studies have demonstrated that individual precursor cells within the neural tube can give rise to both neural crest and neural tube derivatives as diverse as sensory, commissural, and motor neurons. This suggests that individual neuroectodermal cells are multipotent, such that a precursor within the neural tube has the ability to form both neural tube (central nervous system) and neural crest (peripheral nervous system and other) derivatives. Further support for flexibility in the developmental program of neuroepithelial cells comes from experiments in which the cranial neural folds are ablated; this results in regulation by the remaining ventral neural tube cells to form neural crest cells after the endogenous neural crest is removed. At later stage of development, this regulative capacity is lost. Following their emigration from the neural tube, neural crest cells become progressively restricted to defined embryonic states. Taken together, these experiments demonstrate that: (1) the neural crest is an induced population that arises by interactions within the ectoderm; (2) initially, progenitor cells are multipotent, having the potential to form multiple neural crest and neural tube derivatives; and (3) with time, the precursors become progressively restricted to form neural crest derivatives and eventually to individual phenotypes.  相似文献   

11.
Chordates undergo a characteristic morphogenetic process during neurulation to form a dorsal hollow neural tube. Neurulation begins with the formation of the neural plate and ends when the left epidermis and right epidermis overlying the neural tube fuse to close the neural fold. During these processes, mitosis and the various morphogenetic movements need to be coordinated. In this study, we investigated the epidermal cell cycle in Ciona intestinalis embryos in vivo using a fluorescent ubiquitination-based cell cycle indicator (Fucci). Epidermal cells of Ciona undergo 11 divisions as the embryos progress from fertilization to the tadpole larval stage. We detected a long G2 phase between the tenth and eleventh cell divisions, during which fusion of the left and right epidermis occurred. Characteristic cell shape change and actin filament regulation were observed during the G2 phase. CDC25 is probably a key regulator of the cell cycle progression of epidermal cells. Artificially shortening this G2 phase by overexpressing CDC25 caused precocious cell division before or during neural tube closure, thereby disrupting the characteristic morphogenetic movement. Delaying the precocious cell division by prolonging the S phase with aphidicolin ameliorated the effects of CDC25. These results suggest that the long interphase during the eleventh epidermal cell cycle is required for neurulation.  相似文献   

12.
During neural tube formation, neural plate cells migrate from the lateral aspects of the dorsal surface towards the midline. Elevation of the lateral regions of the neural plate produces the neural folds which then migrate to the midline where they fuse at their dorsal tips, generating a closed neural tube comprising an apicobasally polarized neuroepithelium. Our previous study identified a novel role for the axon guidance receptor neogenin in Xenopus neural tube formation. We demonstrated that loss of neogenin impeded neural fold apposition and neural tube closure. This study also revealed that neogenin, via its interaction with its ligand, RGMa, promoted cell–cell adhesion between neural plate cells as the neural folds elevated and between neuroepithelial cells within the neural tube. The second neogenin ligand, netrin‐1, has been implicated in cell migration and epithelial morphogenesis. Therefore, we hypothesized that netrin‐1 may also act as a ligand for neogenin during neurulation. Here we demonstrate that morpholino knockdown of Xenopus netrin‐1 results in delayed neural fold apposition and neural tube closure. We further show that netrin‐1 functions in the same pathway as neogenin and RGMa during neurulation. However, contrary to the role of neogenin‐RGMa interactions, neogenin‐netrin‐1 interactions are not required for neural fold elevation or adhesion between neuroepithelial cells. Instead, our data suggest that netrin‐1 contributes to the migration of the neural folds towards the midline. We conclude that both neogenin ligands work synergistically to ensure neural tube closure. © 2012 Wiley Periodicals, Inc., 2013  相似文献   

13.
《Developmental biology》1997,189(2):256-269
In this study we investigate the induction of the cell behaviors underlying neurulation in the frog,Xenopus laevis.Although planar signals from the organizer can induce convergent extension movements of the posterior neural tissue in explants, the remaining morphogenic processes of neurulation do not appear to occur in absence of vertical interactions with the organizer (R. Kelleret al.,1992,Dev. Dyn.193, 218–234). These processes include: (1) cell elongation perpendicular to the plane of the epithelium, forming the neural plate; (2) cell wedging, which rolls the neural plate into a trough; (3) intercalation of two layers of neural plate cells to form one layer; and (4) fusion of the neural folds. To allow planar signaling between all the inducing tissues of the involuting marginal zone and the responding prospective ectoderm, we have designed a “giant sandwich” explant. In these explants, cell elongation and wedging are induced in the superficial neural layer by planar signals without persistent vertical interactions with underlying, involuted mesoderm. A neural trough forms, and neural folds form and approach one another. However, the neural folds do not fuse with one another, and the deep cells of these explants do not undergo their normal behaviors of elongation, wedging, and intercalation between the superficial neural cells, even when planar signals are supplemented with vertical signaling until the late midgastrula (stage 11.5). Vertical interactions with mesoderm during and beyond the late gastrula stage were required for expression of these deep cell behaviors and for neural fold fusion. These explants offer a way to regulate deep and superficial cell behaviors and thus make possible the analysis of the relative roles of these behaviors in closing the neural tube.  相似文献   

14.
Ultrastructural analysis and differential immunocytochemical staining with two antitubulin monoclonal antibodies were used to reexamine the organization and development of the neural tube in the larva of an ascidian, Ciona intestinalis, in appraisal of a theory that the dorsal tubular nervous system of the chordates evolved from two halves of a ciliated band in an auricularia-like larva of the kind found in echinoderms and hemichordates. One of the antibodies stained cilia in the nervous system and elsewhere; the other reacted primarily with neuronal axons. The caudal neural tube consists of four rows of large ciliated ependymal-glial cells enclosing an axial neural canal into which their single cilia extend. Two ventrolateral nerve tracts, containing axons, arise in the posterior brain region and extend along the length of the caudal tube, partially surrounded by the ependymal cells. The nonnervous, ciliated, ependymal neural tube of the ascidian larva with its two associated nerve tracts survives as a primitive early condition that could result from a ciliated band transformation. Tissues in the distal-most part of the ascidian larval tail have cell lineage origins that indicate an evolutionary history different from those in the proximal majority of the tail. The ependymal cells in this presumed later addition to the tail are not ciliated, although all of the others in the caudal ependymal tube appear to be.  相似文献   

15.
16.
The origin of prospective M cells, which are median neuroepithelial cells that become wedge-shaped during bending of the neural plate and eventually form the midline floor of the neural tube, was determined by constructing quail/chick chimeras and using the quail nucleolar marker to identify quail donor cells in chick host blastoderms. Two possible sites of prospective M-cell origin in the epiblast were examined: a single, midline rudiment located just rostral to Hensen's node and paired rudiments flanking the cranial part of the primitive streak. Our results suggest that M cells arise exclusively from the midline, prenodal rudiment. From this rudiment, M cells extend caudally throughout the entire length of the neuroepithelium. This new information on the origin of prospective M cells will aid in the analysis of their role in neurulation.  相似文献   

17.
18.
19.
20.
Ascidians are a group of invertebrate chordates that exhibit a biphasic life history, with chordate-specific structures developing during embryogenesis (dorsal neural tube and notochord) and metamorphosis (pharyngeal gill slits and endostyle). Here we characterize the expression of a caudal/Cdx gene homologue, Hec-Cdx, from the ascidian Herdmania curvata. Vertebrate Cdx genes are expressed at gastrulation and in the posterior of the developing neural tube and endoderm. Hec-Cdx expression is initiated at the earliest stages of gastrulation, with peaks in RNA abundance occurring first during neurulation and tailbud extension and then in 3- to 5-day-old juveniles. Hec-Cdx is expressed in a pair of cells in the anterior lip of the blastopore in the late gastrula which form the most posterior portion of the neural plate. During tailbud formation expression is maintained in and solely restricted to these cells. During metamorphosis expression is localized to the intestine of the juvenile. These data, along with data for the H. curvata Otx gene, suggest that the evolution of the novel ascidian biphasic body plan was not accompanied by a deployment of these genes into new pathways but by a temporal separation of tissue-specific expression. Received: 10 October 1999 / Accepted: 1 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号