首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
C G Lee  K A Chang  M I Kuroda    J Hurwitz 《The EMBO journal》1997,16(10):2671-2681
Drosophila maleless (mle) is required for X chromosome dosage compensation and is essential for male viability. Maleless protein (MLE) is highly homologous to human RNA helicase A and the bovine counterpart of RNA helicase A, nuclear helicase II. In this report, we demonstrate that MLE protein, overexpressed and purified from Sf9 cells infected with recombinant baculovirus, possesses RNA/DNA helicase, adenosine triphosphatase (ATPase) and single-stranded (ss) RNA/ssDNA binding activities, properties identical to RNA helicase A. Using site-directed mutagenesis, we created a mutant of MLE (mle-GET) that contains a glutamic acid in place of lysine in the conserved ATP binding site A. In vitro biochemical analysis showed that this mutation abolished both NTPase and helicase activities of MLE but affected the ability of MLE to bind to ssRNA, ssDNA and guanosine triphosphate (GTP) less severely. In vivo, mle-GET protein could still localize to the male X chromosome coincidentally with the male-specific lethal-1 protein, MSL-1, but failed to complement mle1 mutant males. These results indicate that the NTPase/helicase activities are essential functions of MLE for dosage compensation, perhaps utilized for chromatin remodeling of X-linked genes.  相似文献   

3.
4.
Gu W  Wei X  Pannuti A  Lucchesi JC 《The EMBO journal》2000,19(19):5202-5211
Dosage compensation in Drosophila is mediated by a multiprotein, RNA-containing complex that associates with the X chromosome at multiple sites. We have investigated the role that the enzymatic activities of two complex components, the histone acetyltransferase activity of MOF and the ATPase activity of MLE, may have in the targeting and association of the complex with the X chromosome. Here we report that MLE and MOF activities are necessary for complexes to access the various X chromosome sites. The role that histone H4 acetylation plays in this process is supported by our observations that MOF overexpression leads to the ectopic association of the complex with autosomal sites.  相似文献   

5.
6.
The ribonucleoprotein Male Specific Lethal (MSL) complex is required for X chromosome dosage compensation in Drosophila melanogaster males. Beginning at 3 h of development the MSL complex binds transcribed X-linked genes and modifies chromatin. A subset of MSL complex proteins, including MSL1 and MSL3, is also necessary for full expression of autosomal heterochromatic genes in males, but not females. Loss of the non-coding roX RNAs, essential components of the MSL complex, lowers the expression of heterochromatic genes and suppresses position effect variegation (PEV) only in males, revealing a sex-limited disruption of heterochromatin. To explore the molecular basis of this observation we examined additional proteins that participate in compensation and found that MLE, but not Jil-1 kinase, contributes to heterochromatic gene expression. To determine if identical regions of roX RNA are required for dosage compensation and heterochromatic silencing, we tested a panel of roX1 transgenes and deletions and find that the X chromosome and heterochromatin functions are separable by some mutations. Chromatin immunoprecipitation of staged embryos revealed widespread autosomal binding of MSL3 before and after localization of the MSL complex to the X chromosome at 3 h AEL. Autosomal MSL3 binding was dependent on MSL1, supporting the idea that a subset of MSL proteins associates with chromatin throughout the genome during early development. The broad localization of these proteins early in embryogenesis supports the idea of direct action at autosomal sites. We postulate that this may contribute to the sex-specific differences in heterochromatin that we, and others, have noted.  相似文献   

7.
Dosage compensation ensures similar levels of X-linked gene products in males (XY or XO) and females (XX), despite their different numbers of X chromosomes. In mammals, flies, and worms, dosage compensation is mediated by a specialized machinery that localizes to one or both of the X chromosomes in one sex resulting in a change in gene expression from the affected X chromosome(s). In mammals and flies, dosage compensation is associated with specific histone posttranslational modifications and replacement with variant histones. Until now, no specific histone modifications or histone variants have been implicated in Caenorhabditis elegans dosage compensation. Taking a candidate approach, we have looked at specific histone modifications and variants on the C. elegans dosage compensated X chromosomes. Using RNAi-based assays, we show that reducing levels of the histone H2A variant, H2A.Z (HTZ-1 in C. elegans), leads to partial disruption of dosage compensation. By immunofluorescence, we have observed that HTZ-1 is under-represented on the dosage compensated X chromosomes, but not on the non-dosage compensated male X chromosome. We find that reduction of HTZ-1 levels by RNA interference (RNAi) and mutation results in only a very modest change in dosage compensation complex protein levels. However, in these animals, the X chromosome–specific localization of the complex is partially disrupted, with some nuclei displaying DCC localization beyond the X chromosome territory. We propose a model in which HTZ-1, directly or indirectly, serves to restrict the dosage compensation complex to the X chromosome by acting as or regulating the activity of an autosomal repellant.  相似文献   

8.
9.
10.
eIF-4A is a eukaryotic translation initiation factor that is required for mRNA binding to ribosomes. It exhibits single-stranded RNA-dependent ATPase activity, and in combination with a second initiation factor, eIF-4B, it exhibits duplex RNA helicase activity. eIF-4A is the prototype of a large family of proteins termed the DEAD box protein family, whose members share nine highly conserved amino acid regions. The functions of several of these conserved regions in eIF-4A have previously been assigned to ATP binding, ATPase, and helicase activities. To define the RNA-binding region of eIF-4A, a UV-induced cross-linking assay was used to analyze binding of mutant eIF-4A proteins to RNA. Mutants carrying mutations in the ATP-binding region (AXXXXGKT), ATPase region (DEAD), helicase region (SAT), and the most carboxy-terminal conserved region of the DEAD family, HRIGRXXR, were tested for RNA cross-linking. We show that mutations, either conservative or not, in any one of the three arginines in the HRIGRXXR sequence drastically reduced eIF-4A cross-linking to RNA. In addition, all the mutations in the HRIGRXXR region abrogate RNA helicase activity. Some but not all of these mutations affect ATP binding and ATPase activity. This is consistent with the hypothesis that the HRIGRXXR region is involved in the ATP hydrolysis reaction and would explain the coupling of ATPase and RNA-binding/helicase activities. Our results show that the HRIGRXXR region, which is QRXGRXXR or QXXGRXXR in the RNA and DNA helicases of the helicase superfamily II, is involved in ATP hydrolysis-dependent RNA interaction during unwinding. We also show that mutations in other regions of eIF-4A that abolish ATPase activity sharply decrease eIF-4A cross-linking to RNA. A model is proposed in which eIF-4A first binds ATP, resulting in a change in eIF-4A conformation which allows RNA binding that is dependent on the HRIGRXXR region. Binding of RNA induces ATP hydrolysis, leading to a more stable interaction with RNA. This process is then linked to unwinding of duplex RNA in the presence of eIF-4B.  相似文献   

11.
12.
13.
Secondary structures of nucleic acids play an importantrole in regulating their transactions as carriers of thegenetic information, including DNA replication, trans-cription, RNA processing, RNA transport, and translation.Resolving double-stranded (ds) DNA or RNA is usually anenergy-dependent process that can be accomplished byproteins termed DNA or RNA helicases, which are presentin all prokaryotic and eukaryotic organisms. Earlier attemptsto find mammalian helicases led to the detect…  相似文献   

14.
The putative RNA helicases of the DEAD-box protein family are involved in pre-mRNA splicing, rRNA maturation, ribosome assembly, and translation. Members of this protein family have been identified in organisms from Escherichia coli to humans, but except for the translation initiation factor 4A, there have been no reports on the characterization of other DEAD-box proteins from plants. Here we report on a novel member of the DEAD-box protein family, the plant RNA helicase 75 (PRH75). PRH75 is localized in the nucleus and contains two domains for RNA binding. One is located at the C terminus and is similar to RGG RNA-binding domains of nucleus-localized RNA-binding proteins. The other one is located between amino acids 308 and 622, a region containing the conserved motif VI characteristic of DEAD-box proteins and known as the RNA-binding site of eIF-4A. The N-terminal 81 amino acids are sufficient for nuclear targeting of the protein. Northern and Western blot analyses show that PRH75 is mainly expressed in young and rapidly developing tissues. The purified recombinant PRH75 has a weak ATPase activity which is barely stimulated by RNA ligands. The fractionation of spinach whole-cell extracts by glycerol gradient centrifugation and gel filtration on a Superdex 200 column shows that the protein exists in a complex of about 500 kDa. Possible biological functions of PRH75 as well as structure-function relationships in the context of its modular primary structure are discussed.  相似文献   

15.
16.
Translation initiation in eukaryotes starts with the recognition of the mRNA 5′-cap by eIF4F, a hetero-trimeric complex of eIF4E, the cap-binding protein, eIF4A, a DEAD-box helicase, and eIF4G, a scaffold protein. eIF4G comprises eIF4E- and eIF4A-binding domains (4E-BD, 4A-BD) and three RNA-binding regions (RNA1–RNA3), and interacts with eIF4A, eIF4E, and with the mRNA. Within the eIF4F complex, the helicase activity of eIF4A is increased. We showed previously that RNA3 of eIF4G is important for the stimulation of the eIF4A conformational cycle and its ATPase and helicase activities. Here, we dissect the interplay between the eIF4G domains and the role of the eIF4E/cap interaction in eIF4A activation. We show that RNA2 leads to an increase in the fraction of eIF4A in the closed state, an increased RNA affinity, and faster RNA unwinding. This stimulatory effect is partially reduced when the 4E-BD is present. eIF4E binding to the 4E-BD then further inhibits the helicase activity and closing of eIF4A, but does not affect the RNA-stimulated ATPase activity of eIF4A. The 5′-cap renders the functional interaction of mRNA with eIF4A less efficient. Overall, the activity of eIF4A at the 5′-cap is thus fine-tuned by a delicately balanced network of stimulatory and inhibitory interactions.  相似文献   

17.
18.
19.
Dosage compensation in male Drosophila relies on the X chromosome–specific recruitment of a chromatin-modifying machinery, the dosage compensation complex (DCC). The principles that assure selective targeting of the DCC are unknown. According to a prevalent model, X chromosome targeting is initiated by recruitment of the DCC core components, MSL1 and MSL2, to a limited number of so-called “high-affinity sites” (HAS). Only very few such sites are known at the DNA sequence level, which has precluded the definition of DCC targeting principles. Combining RNA interference against DCC subunits, limited crosslinking, and chromatin immunoprecipitation coupled to probing high-resolution DNA microarrays, we identified a set of 131 HAS for MSL1 and MSL2 and confirmed their properties by various means. The HAS sites are distributed all over the X chromosome and are functionally important, since the extent of dosage compensation of a given gene and its proximity to a HAS are positively correlated. The sites are mainly located on non-coding parts of genes and predominantly map to regions that are devoid of nucleosomes. In contrast, the bulk of DCC binding is in coding regions and is marked by histone H3K36 methylation. Within the HAS, repetitive DNA sequences mainly based on GA and CA dinucleotides are enriched. Interestingly, DCC subcomplexes bind a small number of autosomal locations with similar features.  相似文献   

20.
Mss116 is a Saccharomyces cerevisiae mitochondrial DEAD-box RNA helicase protein that is essential for efficient in vivo splicing of all group I and group II introns and for activation of mRNA translation. Catalysis of intron splicing by Mss116 is coupled to its ATPase activity. Knowledge of the kinetic pathway(s) and biochemical intermediates populated during RNA-stimulated Mss116 ATPase is fundamental for defining how Mss116 ATP utilization is linked to in vivo function. We therefore measured the rate and equilibrium constants underlying Mss116 ATP utilization and nucleotide-linked RNA binding. RNA accelerates the Mss116 steady-state ATPase ∼ 7-fold by promoting rate-limiting ATP hydrolysis such that inorganic phosphate (Pi) release becomes (partially) rate-limiting. RNA binding displays strong thermodynamic coupling to the chemical states of the Mss116-bound nucleotide such that Mss116 with bound ADP-Pi binds RNA more strongly than Mss116 with bound ADP or in the absence of nucleotide. The predominant biochemical intermediate populated during in vivo steady-state cycling is the strong RNA-binding Mss116-ADP-Pi state. Strong RNA binding allows Mss116 to fulfill its biological role in the stabilization of group II intron folding intermediates. ATPase cycling allows for transient population of the weak RNA-binding ADP state of Mss116 and linked dissociation from RNA, which is required for the final stages of intron folding. In cases where Mss116 functions as a helicase, the data collectively favor a model in which ATP hydrolysis promotes a weak-to-strong RNA binding transition that disrupts stable RNA duplexes. The subsequent strong-to-weak RNA binding transition associated with Pi release dissociates Mss116-RNA complexes, regenerating free Mss116.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号