首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipoprotein(a) [Lp(a)] is a quantitative trait in human plasma. Lp(a) consists of a low-density lipoprotein and the plasminogen-related apolipoprotein(a) [apo(a)]. The apo(a) gene determines a size polymorphism of the protein, which is related to Lp(a) levels in plasma. In an attempt to gain a deeper insight into the genetic architecture of this risk factor for coronary heart disease, we have investigated the basis of the apo(a) size polymorphism by pulsed field gel electrophoresis of genomic DNA employing various restriction enzymes (SwaI, KpnI, KspI, SfiI, NotI) and an apo(a) kringle-IV-specific probe. All enzymes detected the same size polymorphism in the kringle IV repeat domain of apo(a). With KpnI, 26 different alleles were identified among 156 unrelated subjects; these alleles ranged in size from 32kb to 189kb and differed by increments of 5.6kb, corresponding to one kringle IV unit. There was a perfect match between the size of the apo(a) DNA phenotypes and the size of apo(a) isoforms in plasma. The apo(a) DNA polymorphism was further used to estimate the magnitude of the apo(a) gene effect on Lp(a) levels by a sib-pair comparison approach based on 253 sib-pairs from 64 families. Intra-class correlation of log-transformed Lp(a) levels was high in sib-pairs sharing both parental alleles (r = 0.91), significant in those with one common allele (r = 0.31), and absent in those with no parental allele in common (r = 0.12). The data show that the intra-individual variability in Lp(a) levels is almost entirely explained by variation at the apo(a) locus but that only a fraction (46%) is explained by the DNA size polymorphism. This suggests further heterogeneity relating to Lp(a) levels in the apo(a) gene.  相似文献   

2.
3.
At least six allelic forms of apolipoprotein(a), differing in molecular mass, could be detected by immunoblot analysis. One of these phenotypes with a molecular mass of 570 kDa has been investigated. After reduction and carboxymethylation it was digested with trypsin and the resulting peptides were separated by gel filtration and reverse phase HPLC. The tryptic fragments sequenced comprised a total of 356 amino acids. The N-terminus of apo(a) was highly homologous to the start of the kringle 4 domain from human plasminogen and the majority of the tryptic peptides isolated was also homologous to sequences from this kringle. At least five homologous "kringle 4" domains are present in apolipoprotein(a) whereby one domain occurs more frequently than the others. A carbohydrate-rich peptide was also obtained in high yield. This glycopeptide connects two "kringle 4" domains and contains one N-glycoside within the kringle and six potential O-glycosides in the linking region. From the recovery it can be estimated that this peptide occurs several times within the whole apolipoprotein (a) sequence. The high carbohydrate content is in sharp contrast to that of human plasminogen. Other peptides sequenced indicate that apo (a) also contains domains homologous to the kringle 5 and protease regions of plasminogen. No unique peptides were found. These studies suggest that apolipoprotein (a) could have arisen through duplication of specific regions from the human plasminogen gene. The size heterogeneity of apo (a) might then be explained by differences in the numbers of gene duplications.  相似文献   

4.
Apolipoprotein(a) [apo(a)] is the distinctive glycoprotein of lipoprotein Lp(a), which is disulfide linked to the apo B100 of a low density lipoprotein particle. Apo(a) possesses a high degree of sequence homology with plasminogen, the precursor of plasmin, a fibrinolytic and pericellular proteolytic enzyme. Apo(a) exists in several isoforms defined by a variable number of copies of plasminogen-like kringle 4 and single copies of kringle 5, and the protease region including the backbone positions for the catalytic triad (Ser, His, Asp). A lysine-binding site that is similar to that of plasminogen kringle 4 is present in apo(a) kringle IV type 10. These kringle motifs share some amino acid residues (Asp55, Asp57, Phe64, Tyr62, Trp72, Arg71) that are key components of their lysine-binding site. The spatial conformation and the function of this site in plasminogen kringle 4 and in apo(a) kringle IV-10 seem to be identical as indicated by (i) the ability of apo(a) to compete with plasminogen for binding to fibrin, and (ii) the neutralisation of the lysine-binding function of these kringles by a monoclonal antibody that recognises key components of the lysine-binding site. In contrast, the lysine-binding site of plasminogen kringle 1 contains a Tyr residue at positions 64 and 72 and is not recognised by this antibody. Plasminogen bound to fibrin is specifically recognised and cleaved by the tissue-type plasminogen activator at Arg561-Val562, and is thereby transformed into plasmin. A Ser-Ile substitution at the activation cleavage site is present in apo(a). Reinstallation of the Arg-Val peptide bond does not ensure cleavage of apo(a) by plasminogen activators. These data suggest that the stringent specificity of tissue-type plasminogen activator for plasminogen requires molecular interactions with structures located remotely from the activation disulfide loop. These structures ensure second site interactions that are most probably absent in apo(a).  相似文献   

5.
Apo(a), the distinguishing protein component of lipoprotein(a) [Lp(a)], exhibits sequence similarity to plasminogen and can inhibit binding of plasminogen to cell surfaces. Plasmin generated on the surface of vascular cells plays a role in cell migration and proliferation, two of the fibroproliferative inflammatory events that underlie atherosclerosis. The ability of apo(a) to inhibit pericellular plasminogen activation on vascular cells was therefore evaluated. Two isoforms of apo(a), 12K and 17K, were found to significantly decrease tissue-type plasminogen activator-mediated plasminogen activation on human umbilical vein endothelial cells (HUVECs) and THP-1 monocytes and macrophages. Lp(a) purified from human plasma decreased plasminogen activation on THP-1 monocytes and HUVECs but not on THP-1 macrophages. Removal of kringle V or the strong lysine binding site in kringle IV10 completely abolished the inhibitory effect of apo(a). Treatment with carboxypeptidase B to assess the roles of carboxyl-terminal lysines in cellular receptors leads in most cases to decreases in plasminogen activation as well as plasminogen and apo(a) binding; however, inhibition of plasminogen activation by apo(a) was unaffected. Our findings directly demonstrate that apo(a) inhibits pericellular plasminogen activation in all three cell types, although binding of apo(a) to cell-surface receptors containing carboxyl-terminal lysines does not appear to play a major role in the inhibition mechanism.  相似文献   

6.
Apolipoprotein a, is a high molecular weight glycoproteic component of Lp(a), a molecule associated with coronary arterial disease. Apo(a) exhibits considerable size heterogeneity due to variable repetitions of the carbohydrate-containing structural unit, termed kringle. There are five different kringle forms and 10 different kringle 4 types. Apo(a) polymorphism and molecular weight depend on the number of copies of kringle 4 type 2.

In this paper we describe a modified 3.75% and 6% discontinuous polyacrylamide gel system and Western-blot technique that shortness the assay time and improves the identification of apo(a) isoforms with a theoretical error of less than 1 kringle. The assay uses a standard curve prepared with five different recombinant apo(a) molecules, detected up to 50 ng of protein in Lp(a), showed a maximal resolution of 2 kringles and, with the use of third degree polynominal regression analysis, had an error of 0.01275. The inter-assay coefficient of variation was 1.7, 2, and 1.4 for the 14 K, 18 K, and 22 K phenotypes, whereas the intra-assay coefficient of variation was 0.32%, 0.18%, and 0.17%, respectively.

It is possible that this modified method will diminish the number of putative null alleles so far detected in various studies, but most of all, we are certain that it can be of use in epidemiological studies due to its ease of use, speed, low cost, and enhanced number of samples that can be tested. Abbreviations: Lp(a) = lipoprotein (a); apo(a) = apolipoprotein (a)  相似文献   

7.
Summary Ornithine transcarbamylase (OTC) deficiency is the most common inborn error of the urea cycle in humans and is responsible for lethal neonatal hyperammonemia in males. Partial OTC deficiency also occurs in females and can be responsible for life-threatening hyperammonemic comas in heterozygotes. The cosegregation of the trait with a 5.8-kb abnormal MspI fragment in an affected family led us to hypothesize that this unexpected migration pattern was related to the mutation event in this particular family. Using polymerase chain reaction amplification of the specific mRNA derived from a post-mortem biopsy of the liver, we found that the MspI site located in the seventh exon of the gene was abolished and we finally identified a C-to-T transition at codon 225 of the cDNA, changing a proline to a leucine in the protein. Subsequent digestion of amplified exon 7 using the restriction enzyme MspI allowed direct screening for the mutant genotype during the next pregnancy. The present study supports the view that direct detection of the mutant genotype using either Southern blotting or digestion of amplified exons of the gene can contribute to genetic counselling in non-informative families. Finally, since MspI digestions are routinely performed for restriction fragment length polymorphism-based family studies in OTC deficiency, we suggest that the possible presence of the 5.8-kb abnormal fragment should be investigated on Southern blots of affected individuals.  相似文献   

8.
The protein component of human lipoprotein[a] consists primarily of two apolipoproteins, apo[a] and apo B-100, linked through a cystine disulfide(s). In the amino acid sequence of apo bd, Cys4057 located within a plasminogen kringle 4-like repeat sequence (3991-4068) is believed to form a disulfide bond with a specific cysteine residue in apo B-100. Our fluorescence-labeling experiments and molecular modeling studies have provided evidence for possible interactions between this apo[a] kringle type and apo B-100. The fluorescent probe, fluorescein-5-maleimide, was used in parallel experiments to label free sulfhydryl moieties in lipoprotein[a] and low-density lipoprotein (LDL). In apo B-100 of LDL, Cys3734 was labeled with the probe, but this site was not labeled in autologous lipoprotein[a]. The result strongly implicates Cys3734 of apo B-100 as the residue forming the disulfide linkage with Cys4057 of apo[a]. To explore possible noncovalent interactions between apo B-100 and apo[a], the crystallographic coordinates for plasminogen kringle 4 were used to generate molecular models of the apo[a] kringle-repeat sequence (3991-4068, LPaK9), the only plasminogen kringle 4 type repeat in apo[a] having an extra cysteine residue not involved in an intramolecular disulfide bond. The Cys4057 residue (henceforth designated as Cys67 in the LPaK9 sequence) is believed to form an intermolecular disulfide bond with a cysteine of apo B-100. In computer graphics molecular models of LPaK9, Cys67 is located on the surface of the kringle near the lysine ligand binding site. Selected segments of the LDL apo B-100 sequence that contain free sulfhydryl cysteines were subjected to energy minimization and docking with the ligand binding site and adjacent regions of the LPaK9 model. In the docking experiments, apo B-100 segment 3732-3745 (PSCKLDFREIQIYK) displayed the best fit and the largest number of van der Waals contacts with models of LPaK9. Other apo B-100 peptides with sulfhydryl cysteine were found to be less compatible when minimized with this kringle. These results support and extend previously suggested mechanisms for a complex interaction between apo[a] and apo B-100 that involve more than a simple covalent disulfide bond.  相似文献   

9.
Rhesus monkey apolipoprotein(a). Sequence, evolution, and sites of synthesis   总被引:11,自引:0,他引:11  
Human lipoprotein(a) is a low density lipoprotein-like lipoprotein whose concentration in plasma is correlated with atherosclerosis. The characteristic protein component of lipoprotein(a) is apolipoprotein(a) (apo(a)) which is disulfide-linked to apolipoprotein B-100. Sequencing of rhesus monkey apo(a) cDNA suggests that this protein, like human apo(a), is highly similar to plasminogen. Sequence data suggests that a plasminogen-like protease activity and kringle 1-, 2-, 3-, and 5-like domains are unnecessary for apo(a) function, but a highly repeated kringle four-like domain is important. Liver is the major site of apo(a) RNA synthesis; reduced amounts of message were also found in testes and brain. Co-expression with apoB-100 and plasminogen in rhesus tissues is not mandatory.  相似文献   

10.
Similarity between the apolipoprotein(a) (apo(a)) moiety of lipoprotein(a) (Lp(a)) and plasminogen suggests a potentially important link between atherosclerosis and thrombosis. Lp(a) may interfere with tissue plasminogen activator (tPA)-mediated plasminogen activation in fibrinolysis, thereby generating a hypercoagulable state in vivo. A fluorescence-based system was employed to study the effect of apo(a) on plasminogen activation in the presence of native fibrin and degraded fibrin cofactors and in the absence of positive feedback reactions catalyzed by plasmin. Human Lp(a) and a physiologically relevant, 17-kringle recombinant apo(a) species exhibited strong inhibition with both cofactors. A variant lacking the protease domain also exhibited strong inhibition, indicating that the apo(a)-plasminogen binding interaction mediated by the apo(a) protease domain does not ultimately inhibit plasminogen activation. A variant in which the strong lysine-binding site in kringle IV type 10 had been abolished exhibited substantially reduced inhibition whereas another lacking the kringle V domain showed no inhibition. Amino-terminal truncation mutants of apo(a) also revealed that additional sequences within kringle IV types 1-4 are required for maximal inhibition. To investigate the inhibition mechanism, the concentrations of plasminogen, cofactor, and a 12-kringle recombinant apo(a) species were systematically varied. Kinetics for both cofactors conformed to a single, equilibrium template model in which apo(a) can interact with all three fibrinolytic components and predicts the formation of ternary (cofactor, tPA, and plasminogen) and quaternary (cofactor, tPA, plasminogen, and apo(a)) catalytic complexes. The latter complex exhibits a reduced turnover number, thereby accounting for inhibition of plasminogen activation in the presence of apo(a)/Lp(a).  相似文献   

11.
Restriction fragments isolated from a 17-kb rat genomic DNA clone containing the gene for apolipoprotein (apo) E were radiolabeled and used to screen a rat liver cDNA library. A cDNA clone hybridizing to a 6-kb genomic DNA fragment was isolated and the nucleotide sequence of the cDNA insert determined. The sequence was homologous to the sequence for human apo C-I and was used to derive the corresponding amino acid sequence. Unlike human apo C-I, mature rat apo C-I contains histidine, lacks valine, and has alanine at the C terminus and aspartate as the N terminus. Screening the rat liver cDNA library with a radiolabeled 1.9-kb restriction fragment from the genomic DNA clone containing the rat apo E gene identified another cDNA clone (ECL cDNA). Nucleotide sequencing yielded a derived 75-amino-acid sequence for the ECL protein with a hydrophobicity profile similar to that of rat apo C-I. Northern analysis demonstrated a 0.50-kb band for ECL mRNA. The tissue-specific expression of the gene is similar to that of rat apo C-I. This study indicates that the rat apo C-I and ECL genes are closely linked, about 4.5 and 12 kb downstream of the apo E gene, respectively.  相似文献   

12.
Zhou Y  Zheng Q  Gao J  Gu J 《Biotechnology letters》2005,27(3):167-171
Angiogensis can be blocked by inhibitors such as endostatin and angiostatin. The kringle 5 fragment of plasminogen also has a potent inhibitory effect on endothelial cell proliferation and leads to the inhibition of angiogenesis. It has promise in anti-angiogenic therapy due to its small size and potent inhibitory effect. Preparation of kringle 5 has been achieved through the proteolysis of native plasminogen and recombinant DNA technology. Bacterially expressed recombinant kringle 5 is mainly insoluble and expressed at low level. The refolding yield is also low. To produce recombinant human kringle 5 in a large quantity, we have genetically modified a strain of Pichia pastoris. On methanol induction, this strain expressed and secreted biologically active, recombinant kringle 5. The expression level of the engineered strain in culture reached more than 300mgl-1. Purification was easily achieved by precipitation, hydrophobic and DEAE ion exchange chromatography. The recovery of recombinant kringle 5 was about 50% after purification. Yeast-expressed kringle 5 has a higher activity in anti-endothelial proliferation than bacterially expressed kringle 5.Revisions requested 9 November 2004; Revisions received 2 December 2004  相似文献   

13.
Apolipoprotein a, is a high molecular weight glycoproteic component of Lp(a), a molecule associated with coronary arterial disease. Apo(a) exhibits considerable size heterogeneity due to variable repetitions of the carbohydrate-containing structural unit, termed kringle. There are five different kringle forms and 10 different kringle 4 types. Apo(a) polymorphism and molecular weight depend on the number of copies of kringle 4 type 2. In this paper we describe a modified 3.75% and 6% discontinuous polyacrylamide gel system and Western-blot technique that shortness the assay time and improves the identification of apo(a) isoforms with a theoretical error of less than 1 kringle. The assay uses a standard curve prepared with five different recombinant apo(a) molecules, detected up to 50 ng of protein in Lp(a), showed a maximal resolution of 2 kringles and, with the use of third degree polynominal regression analysis, had an error of 0.01275. The inter-assay coefficient of variation was 1.7, 2, and 1.4 for the 14 K, 18 K, and 22 K phenotypes, whereas the intra-assay coefficient of variation was 0.32%, 0.18%, and 0.17%, respectively. It is possible that this modified method will diminish the number of putative null alleles so far detected in various studies, but most of all, we are certain that it can be of use in epidemiological studies due to its ease of use, speed, low cost, and enhanced number of samples that can be tested.  相似文献   

14.
In this study, the variability within the ribosomal DNA region spanning the internal transcribed spacers ITS1 and ITS2 and the 5.8S gene (5.8S-ITS rDNA) was used to differentiate species in the genus Pichia. The 5.8S-ITS rDNA region was PCR-amplified and the PCR product digested with the enzymes CfoI, HinfI, and HaeIII. The variability in the size of the amplified product and in the restriction patterns enabled differentiation between species in the genus Pichia, and between Pichia species and yeast species from other genera in the Yeast-id database (). Moreover, the restriction fragment length polymorphism (RFLP) patterns of the 5.8S-ITS enabled misidentified strains to be detected and revealed genetic heterogeneity between strains within the Pichia membranifaciens and Pichia nakazawae species. Ultimately, the RFLP patterns of the 5.8S-ITS rDNA failed to differentiate between some Pichia and Candida species that could be distinguished on the basis of the sequence of the 5.8S-ITS rRNA region or the sequence of the D1/D2 domain of the 26S rDNA gene.  相似文献   

15.
Becker L  Cook PM  Koschinsky ML 《Biochemistry》2004,43(31):9978-9988
We have previously demonstrated that, in the presence of the lysine analogue epsilon-aminocaproic acid, apolipoprotein(a) [apo(a)] undergoes a conformational change from a closed to an open structure that is characterized by a change in tryptophan fluorescence, an increase in the radius of gyration, an alteration of domain stability, and an enhancement in the efficiency of covalent lipoprotein(a) [Lp(a)] formation. In the present study, to identify sequences within apo(a) that maintain its closed conformation, we used epsilon-aminocaproic acid to probe the conformational status of a variety of recombinant apo(a) isoforms using analytical ultracentrifugation, differential scanning calorimetry, intrinsic fluorescence, and in vitro covalent Lp(a) formation assays. We observed that the closed conformation of apo(a) is maintained by intramolecular interaction(s) between sequences within the amino- and carboxyl-terminal halves of the molecule. Using site-directed mutagenesis, we have identified the strong lysine-binding site present within apo(a) kringle IV type 10 as an important site within the C-terminal half of the molecule, which is involved in maintaining the closed conformation of apo(a). Apo(a) exhibits marked isoform size heterogeneity because of the presence of varying numbers of copies of the kringle IV type-2 domain located within the amino-terminal half of the molecule. Using recombinant apo(a) species containing either 1, 3, or 8 copies of kringle IV type 2, we observed that, while apo(a) isoform size does not alter the affinity of apo(a) for low-density lipoprotein, it affects the conformational status of the protein and therefore influences the efficiency of covalent Lp(a) assembly. The inverse relationship between apo(a) isoform size and the efficiency of covalent Lp(a) formation that we report in vitro may contribute to the inverse relationship between apo(a) isoform size and plasma Lp(a) concentrations that has been observed in vivo.  相似文献   

16.
Apolipoprotein(a) [apo(a)] contains the largest numbers of kringle domains identified to date. Of these, apo(a) kringle V shows significant sequence homology with plasminogen kringle 5, which is reported to be a potent angiogenesis inhibitor. To determine the effects of apo(a) kringle V on angiogenesis, it was expressed as a soluble protein (termed rhLK8) in Pichia pastoris and its in vitro and in vivo anti-angiogenic properties were examined. rhLK8 inhibited the migration of human umbilical vein endothelial cells in vitro in a dose-dependent manner. This function was associated with the down-regulation of the activation of focal adhesion kinase and the inhibition of the consequent formation of actin stress fibers/focal adhesions. rhLK8 also inhibited new capillary formation in vivo, as assessed by the chick chorioallantoic membrane assay and the Matrigel plug assay. These results indicate that rhLK8 may be an effective angiogenesis inhibitor both in vitro and in vivo.  相似文献   

17.
A recombinant plasmid carrying a modified gene of human plasminogen (mini-plasminogen), lacking four kringle domains and an amino terminal fragment, and containing an additional oligopeptide of six N-terminal histidine residues has been constructed. The plasmid was used for transformation of E. coli JM 109 cells to obtain a strain producing a recombinant modified human plasminogen. The target protein is superexpressed in a form of inclusion bodies and is composed of more than 50% insoluble protein. The renaturated and chromatographically purified protein exhibits amidolytic activity specific for plasminogen proenzyme in a fibrinolytic system.  相似文献   

18.
Summary Southern blot analysis of human genomic DNA hybridized with a coding region aldolase A cDNA probe (600 bases) revealed four restriction fragments with EcoRI restriction enzyme: 7.8 kb, 13 kb, 17 kb and >30 kb. By human-hamster hybrid analysis (Southern technique) the principal fragments, 7.8 kb, 13 kb, >30 kb, were localized to chromosomes 10, 16 and 3 respectively. The 17-kb fragment was very weak in intensity; it co-segregated with the >30-kb fragment and is probably localized on chromosome 3 with the >30-kb fragment. Analysis of a second aldolase A labelled probe protected against S1 nuclease digestion by RNAs from different hybrid cells, indicated the presence of aldolase A mRNAs in hybrid cells containing only chromosome 16. Under the stringency conditions used, the EcoRI sequences detected by the coding region aldolase A cDNA probe did not correspond to aldolase B or C. The 7.8-kb and >30-kb EcoRI sequences, localized respectively on chromosomes 10 and 3, correspond to aldolase A pseudogenes, the 13-kb EcoRI sequence localized on chromosome 16 corresponds to the aldolase active gene. The fact that the aldolase A gene and pseudogenes are located on three different chromosomes supports the hypothesis that the pseudogenes originated from aldolase A mRNAs, copied into DNA and integrated in unrelated chromosomal loci.  相似文献   

19.
We have reported previously the cloning and characterization of a nucleolar-localized 5.8-kilobase (kb) EcoRI fragment that is approximately 50-fold more highly reiterated in Novikoff hepatoma tumor cells than in normal rat liver [Parker, D. L., Busch, H., & Rothblum, L. I. (1981) Biochemistry 20, 762]. In the present study, the arrangement of these 5.8-kb EcoRI segments within the Novikoff hepatoma genome was investigated. Through the use of "indirect" restriction site mapping, partial restriction enzyme digestions, and molecular cloning, we have determined that the 5.8-kb EcoRI fragment and a 1.5-kb EcoRI fragment together constitute a 7.3-kb unit. The 7.3-kb unit is present in the hepatoma genome as a tandem repeat and constitutes the unit of the DNA that has been amplified. Studies on the arrangement of homologous sequences in the normal rat genome indicate that the amplified DNA may have been derived by a rearrangement and amplification of the nontranscribed spacer of the ribosomal DNA (rDNA) repeat.  相似文献   

20.
We have stably expressed a recombinant form of apo(a) in a human embryonic kidney cell line. The engineered protein (predicted mass of 250 kDa) contains 17 copies of the apo(a) domain, which resembles kringle 4 of plasminogen, followed by the plasminogen-like kringle 5 and protease-like domain of apo(a). The recombinant protein [r-apo(a)] was isolated from cell culture media by immunoaffinity chromatography, and its physical properties were studied. As is the case for apo(a) isolated from plasma-derived Lp(a), r-apo(a) is highly glycosylated (23% by weight), containing both N- and O-linked glycans, which results in an observed molecular mass of 500 kDa by SDS-PAGE. The high sialic acid content was reflected in a pI of 4.3 for the r-apo(a). Two subpopulations of r-apo(a) secreted by the permanent cell line were identified with respect to lysine-Sepharose binding; the majority of the r-apo(a) bound specifically to this matrix and was eluted with epsilon-aminocaproic acid (epsilon-ACA). When the r-apo(a) plasmid was used to transfect a human hepatoma cell line, lipoprotein particles were secreted containing the disulfide-linked complex of apoB-100 and the r-apo(a). The density of these particles was shown to be heterogeneous, with the majority of the r-Lp(a) floating in the density range of plasma-derived Lp(a).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号