首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel cercozoan filose thecate amoeba, Trachyrhizium urniformis n. g., n. sp., was isolated from a marine sediment sample collected at Agenashiku Island, Okinawa, Japan. We performed light and electron microscopic observations, and a molecular phylogenetic analysis using the small subunit ribosomal RNA gene of the isolate. Cells of T. urniformis are spherical in shape and are covered by a thin theca possessing a wide rounded aperture. Branching and occasionally anastomosing filopodia with small granules emerge from the aperture. The granules are transported in the filopodia bidirectionally. Transmission electron microscopy showed that cells of T. urniformis possess nucleus with permanently condensed chromatin, Golgi apparatuses, microbodies, mitochondria with tubular cristae, and extrusomes. Several morphological and ultrastructural features of T. urniformis (the presence of thecae and nucleus with permanently condensed chromatin) show similarities with those of Thecofilosea. In a phylogenetic analysis, T. urniformis included in Thecofilosea with weak statistical supports and formed a clade with two sequences that constitutes a cercozoan environmental clade, novel clade 4. On the basis of morphological and ultrastructural information and the results of the phylogenetic analysis, we propose T. urniformis as a new member of class Thecofilosea.  相似文献   

2.
We describe three new orders of filosan Cercozoa, five new deep-branching genera, eight new species of Thaumatomonas, Reckertia, Spongomonas, Rhogostoma, Agitata, Neoheteromita and Paracercomonas, sequence their 18S rDNA, and construct 18S rDNA trees for 148 Cercozoa. Our phylogeny indicates that Filosa were ancestrally gliding flagellates; non-flagellate filose amoebae evolved from them five times independently. The new genera are more closely related to environmental DNA sequences than cultured organisms. Tremula longifila, a zooflagellate glider on both flagella (unlike other Cercozoa), is the most divergent filosan (Tremulida ord. n.). Micrometopion nutans is a eukaryote-eating gliding zooflagellate like Metopion and Metromonas. Minimassisteria diva is a widespread trimorphic marine amoeboflagellate granofilosan. Peregrinia clavideferens, a non-testate, scale-bearing, filose amoeba, branches deeply in Thaumatomonadida, which are probably sisters to Spongomonadida. Nudifila producta is a filose amoeboflagellate related to Clautriavia and Marimonadida (ord. n., e.g. Pseudopirsonia, Auranticordis). We substantially revise Imbricatea, now including Spongomonadida, and Thecofilosea to include Phaeodaria. Thecofilosea and Imbricatea and Thecofilosea are sisters, both arguably ancestrally rigid gliding flagellates with ventral pseudopod-emitting grooves. Scale-free Ovulinata parva is sister to Paulinella, so imbricate silica scales can be lost. Internal hollow silica skeletons evolved twice in Thecofilosea (Ebriida, Phaeodaria) or were multiply lost. Protaspa replaces preoccupied 'Protaspis'.  相似文献   

3.
Thecofilosea is a class in Cercozoa (Rhizaria) comprising mainly freshwater‐inhabiting algivores. Recently, numerous isolates of thecofilosean amoebae have been cultured and were characterized by an integrated morphological and molecular approach. As attempts to establish a culture of Lecythium mutabilis repeatedly failed, it was not yet investigated by molecular means. We isolated single cells of L. mutabilis directly from their habitat and successfully sequenced the V4 region of their SSU rDNA. Phylogenetic analyses showed that L. mutabilis is not directly related to the genus Lecythium and instead branches within the Fiscullidae (Tectofilosida, Thecofilosea). Accordingly, we transfer the species L. mutabilis to a novel genus Omnivora gen. nov.  相似文献   

4.
5.
Two new species of heterolobosean amoebae from anoxic environments, Monopylocystis visvesvarai and Sawyeria marylandensis, are described on the basis of light microscopy, electron microscopy, and their phylogenetic affiliation based on analyses of nuclear small-subunit ribosomal RNA gene sequences. Both species lack mitochondria but have organelles provisionally interpreted as hydrogenosomes, and neither can tolerate aerobic conditions. As their conditions of culture do not exclude all oxygen, they may be microaerophiles rather than strict anaerobes. Both species have unusual nucleolar morphologies. Monopylocystis visvesvarai, from a marine sediment, has nucleolar material distributed around the nuclear periphery. It is the first non-aerobic heterolobosean protist for which a cyst is known; the cyst is unmineralized and unornamented except for a single, raised, plugged pore. Sawyeria marylandensis, from an iron-rich freshwater stream, has nucleolar material distributed in one or two parietal masses, which persist during mitosis. In phylogenetic analyses of small-subunit rRNA gene sequences, Monopylocystis visvesvarai, Sawyeria marylandensis and Psalteriomonas lanterna converge to form a single clade of non-aerobic (anaerobic/microaerophilic) heteroloboseans.  相似文献   

6.
We report a new naked cercozoan flagellate, Esquamula lacrimiformis n. g., n. sp., collected from a sandy beach in Japan. Its cells were 4.5–11.3 μm in length and 3.9–8.8 μm in width and possess two unequal flagella. Cells move in a smooth gliding motion and have a trailing long posterior flagellum. Phylogenetic analyses with small and large subunit ribosomal RNA genes revealed that E. lacrimiformis forms a novel lineage within the Thaumatomonadida, the members of which are flagellates with siliceous scales. However, our light and electron microscopic observations indicated that E. lacrimiformis cells do not possess any siliceous structures. Furthermore, other morphological characteristics, such as the shape of the extrusomes and the structural arrangement of the microbody, were clearly different from those of previously described thaumatomonads. On the basis of a combination of these morphological observations and our phylogenetic analyses, we conclude that E. lacrimiformis should be treated as a new species of a new genus and placed into a new family, Esquamulidae n. fam., under Thaumatomonadida.  相似文献   

7.
A new species of Microsporidia classified to a new genus was observed in the trunk muscle of commercial hake (Merluccius capensis/paradoxus complex) from Namibian fisheries. Macroscopic examination revealed thin and dark filaments inserted among muscle fibers. Inside the filaments were many sporophorous vesicles with about 30-50 spores per vesicle. The shape of the spore was pyriform and the extruded polar filament was of moderate length (up to 4.29 microm, n=12). This new species of Microsporidia is described using macrophotography, microphotography, staining, and transmission electron microscopy (TEM), as well as molecular methods. Its 16S rRNA was found to be similar to that of Microsporidium prosopium Kent et al., 1999, while both sequences were quite different from 16S rRNA sequences known for other Microsporidia. Nevertheless, this new species is separated morphologically from M. prosopium by the presence of 11-12 anisofilar coils and the formation of the xenoma at the site of infection. Type species.  相似文献   

8.
Holomastigotes is a protist genus (Parabasalia: Spirotrichonymphea) that resides in the hindguts of “lower” termites. It can be distinguished from other parabasalids by spiral flagellar bands that run along the entire length of the cell, an anterior nucleus, a reduced or absent axostyle, the presence of spherical vesicles inside the cells, and the absence of ingested wood particles. Eight species have been described based on their morphology so far, although no molecular data were available prior to this study. We determined the 18S rRNA gene sequences of Holomastigotes from the hindguts of Hodotermopsis sjostedti, Reticulitermes flavipes, Reticulitermes lucifugus, and Reticulitermes tibialis. Phylogenetic analyses placed all sequences in an exclusive and well‐supported clade with the type species, Holomastigotes elongatum from R. lucifugus. However, the phylogenetic position of Holomastigotes within the Spirotrichonymphea was not resolved. We describe two new species, Holomastigotes flavipes n. sp. and Holomastigotes tibialis n. sp., inhabiting the hindguts of R. flavipes and R. tibialis, respectively.  相似文献   

9.
ABSTRACT. Based on both morphological and molecular information, two new euplotid genera Apodiophrys n. g. and Heterodiophrys n. g. are described in the present paper. Apodiophrys n. g. is defined as sculptured Diophryinae with bipartite adoral zone; frontoventral cirri arranged in Diophrys‐pattern; marginal cirri located in two clearly separated groups. Heterodiophrys n. g. is recognizable by the combination of Diophrys‐like frontoventral cirri and the unique structure of several marginal cirri that are arranged in a long row. The type species for both new genera, Apodiophrys ovalis n. sp. and Heterodiophrys zhui n. sp., collected from southern China sea, are described. The small subunit rRNA (SSU rRNA) gene sequences for both new taxa are determined. Phylogenetic analyses based on these data indicate that Apodiophrys is most closely related to Paradiophrys, which then clusters with Uronychia species. Thus, Apodiophrys–Paradiophrys is separated from other typical Diophrys‐like genera in the SSU rRNA gene trees. The new genus Heterodiophrys is basal to the sister group of Diophrys–Diophryopsis, hence belongs to the “core”Diophrys‐complex.  相似文献   

10.
ABSTRACT. The mixotrophic dinoflagellate Paragymnodinium shiwhaense n. gen., n. sp. is described from living cells and from cells prepared by light, scanning electron, and transmission electron microscopy. In addition, sequences of the small subunit (SSU) and large subunit (LSU) rDNA and photosynthetic pigments are reported. The episome is conical, while the hyposome is hemispherical. Cells are covered with polygonal amphiesmal vesicles arranged in 16 rows and containing a very thin plate‐like component. There is neither an apical groove nor apical line of narrow plates. Instead, there is a sulcal extension‐like furrow. The cingulum is as wide as 0.2–0.3 × cell length and displaced by 0.2–0.3 × cell length. Cell length and width of live cells fed Amphidinium carterae were 8.4–19.3 and 6.1–16.0 μm, respectively. Paragymnodinium shiwhaense does not have a nuclear envelope chamber nor a nuclear fibrous connective (NFC). Cells contain chloroplasts, nematocysts, trichocysts, and peduncle, though eyespots, pyrenoids, and pusules are absent. The main accessory pigment is peridinin. The sequence of the SSU rDNA of this dinoflagellate (GenBank AM408889) is 4% different from that of Gymnodinium aureolum, Lepidodinium viride, and Gymnodinium catenatum, the three closest species, while the LSU rDNA was 17–18% different from that of G. catenatum, Lepidodinium chlorophorum, and Gymnodinium nolleri. The phylogenetic trees show that this dinoflagellate belongs within the Gymnodinium sensu stricto clade. However, in contrast to Gymnodinium spp., cells lack nuclear envelope chambers, NFC, and an apical groove. Unlike Polykrikos spp., which have a taeniocyst–nematocyst complex, P. shiwhaense has nematocysts without taeniocysts. In addition, P. shiwhaense does not have ocelloids in contrast to Warnowia spp. and Nematodinium spp. Therefore, based on morphological and molecular analyses, we suggest that this taxon is a new species, also within a new genus.  相似文献   

11.
ABSTRACT. Paranucleospora theridion n. gen, n. sp., infecting both Atlantic salmon (Salmo salar) and its copepod parasite Lepeophtheirus salmonis is described. The microsporidian exhibits nuclei in diplokaryotic arrangement during all known life‐cycle stages in salmon, but only in the merogonal stages and early sporogonal stage in salmon lice. All developmental stages of P. theridion are in direct contact with the host cell cytoplasm or nucleoplasm. In salmon, two developmental cycles were observed, producing spores in the cytoplasm of phagocytes or epidermal cells (Cycle‐I) and in the nuclei of epidermal cells (Cycle‐II), respectively. Cycle‐I spores are small and thin walled with a short polar tube, and are believed to be autoinfective. The larger oval intranuclear Cycle‐II spores have a thick endospore and a longer polar tube, and are probably responsible for transmission from salmon to L. salmonis. Parasite development in the salmon louse occurs in several different cell types that may be extremely hypertrophied due to P. theridion proliferation. Diplokaryotic merogony precedes monokaryotic sporogony. The rounded spores produced are comparable to the intranuclear spores in the salmon in most aspects, and likely transmit the infection to salmon. Phylogenetic analysis of P. theridion partial rDNA sequences place the parasite in a position between Nucleospora salmonis and Enterocytozoon bieneusi. Based on characteristics of the morphology, unique development involving a vertebrate fish as well as a crustacean ectoparasite host, and the results of the phylogenetic analyses it is suggested that P. theridion should be given status as a new species in a new genus.  相似文献   

12.
The external morphology and internal cell fine structure of a new species of Tovelliaceae, Tovellia rubescens n. sp., is described. Phylogenetic analyses based on partial LSU rDNA sequences place the new species in a clade containing Tovellia species that accumulate red pigments and identify T. aveirensis as its closest known relative. Cells of T. rubescens n. sp. were mostly round and had the cingulum located near the middle, with its ends displaced about one cingular width. Small numbers of distinctly flat cells appeared in culture batches; their significance could not be determined. Cells of the new species in culture batches progressively changed from a yellowish‐green, mainly due to chloroplast colour, to a reddish‐brown colour that appeared associated with lipid bodies. The switch to a reddish colour happened earlier in batches grown in medium lacking sources of N or P. Pigment analyses by HPLC‐MS/MS revealed the presence of astaxanthin and astaxanthin‐related metabolites in the new species, but also in T. aveirensis, in which a reddish colour was never observed. The chloroplast arrangement of T. rubescens n. sp. resembled that of T. aveirensis, with lobes radiating from a central pyrenoid complex. The flagellar apparatus and pusular system fell within the general features described from other Tovelliaceae. A row of microtubules interpretable as a microtubular strand of the peduncle was present. Spiny resting cysts with red contents and an ITS sequence identical to that of cultured material of the new species were found in the original locality.  相似文献   

13.
The morphology, morphogenesis, and phylogeny of an undescribed oligotrich sensu lato (s. lat.) ciliate, Lynnella semiglobulosa n. g., n. sp., found in Daya Bay, southern China, were investigated. This species shares some features with both oligotrichs sensu stricto and choreotrichs, but most morphological and morphogenetic characters as well as the phylogenetic analysis suggest that it should be assigned into subclass Choreotrichia temporarily. Lynnella semiglobulosa is distinguished from members of all known genera and families of the subclass Choreotrichia by a unique combination of characteristics of the buccal and somatic ciliatures. Thus, a new family Lynnellidae n. fam. and a new genus Lynnella n. g. are proposed for it. The new family is distinguished by an open adoral zone of membranelles (AZM) in which, however, there are no ventral membranelles; the distal and proximal portions of the new adoral zone lie close to each other forming an open circle in stomatogenesis. The new genus Lynnella is characterized by possessing two longitudinally oriented somatic kineties, one dorsal and one ventral, several proximal membranelles progressively lengthened toward the proximal end of adoral zone, and two macronuclear nodules. In phylogenetic analyses based on small subunit rRNA gene sequences, L. semiglobulosa clustered basally to all choreotrichs, but with relatively weak support; nevertheless, the possibility of a relationship with the subclass Oligotrichia was not rejected by the approximately unbiased nor Shimodaira-Hasegawa test. Based on morphological, morphogenetic, and molecular evidence of L. semiglobulosa, it is confirmed that the open AZM should be a plesiomorphic character of oligotrichs s. lat. as suggested previously.  相似文献   

14.
The morphologies of two novel ciliates, Arcanisutura chongmingensis n. gen., n. sp. and Naxella paralucida n. sp., collected from Shanghai, China, have been investigated using live observation and silver staining methods. Arcanisutura n. gen. can be easily distinguished from related genera by its inconspicuous, oblique anterior suture. Arcanisutura chongmingensis n. sp. is mainly recognized by its elongated body with a tail‐like posterior end, 25–33 somatic kineties, and 4–11 excretory pores. Naxella paralucida n. sp. can be distinguished from its congeners based on its two short nassulid organelles, fusiform trichocysts, 37–49 somatic kineties, and 16 nematodesmal rods. The small‐subunit (SSU) rRNA gene sequences of these two species are presented, revealing the phylogenetic positions of Arcanisutura and Naxella. Phylogenetic analyses show that Arcanisutura forms a sister clade to other synhymeniid genera, namely, Chilodontopsis, Orthodonella, and Zosterodasys; Naxella is most closely related to Nassula spp. and is located within the monophyletic clade of the family Nassulidae.  相似文献   

15.
The morphology, infraciliature and small subunit ribosomal RNA gene-based phylogeny of an urostylid ciliate, Monocoronella carnea n. g., n. sp., found in coastal areas off Daya Bay, Southern China, were investigated. The new genus Monocoronella n. g. is recognized by the following features: having conspicuous frontal cirri forming a long and single corona; buccal and frontoterminal cirri present; single marginal row on each side; adoral zone, midventral complex and transverse cirri in Pseudokeronopsis mode. The type species M. carnea n. sp. is diagnosed by the combination of marine habitat and brown-reddish color of the cortical granules. Phylogenetic analyses for the new taxon indicate that Monocoronella n. g. is most closely related to Bergeriella, and is located within the core Urostylida clade. A misidentification in previous literature was recognized and a new species, Monocoronella dragescoi n. sp. [Basionym: Holosticha (Keronopsis) monilata (Kahl 1928) sensu Dragesco (1970) et sensu Dragesco and Dragesco-Kernéis (1986), non sensu Kahl (1928)], was suggested.  相似文献   

16.
The heterotrophic dinoflagellate Gyrodiniellum shiwhaense n. gen., n. sp. is described from live cells and from cells prepared for light, scanning electron, and transmission electron microscopy. Also, sequences of the small subunit (SSU) and large subunit (LSU) of rDNA have been analyzed. The episome is conical, while the hyposome is ellipsoid. Cells are covered with polygonal amphiesmal vesicles arranged in 16 horizontal rows. Unlike other Gyrodinium-like dinoflagellates, the apical end of the cell shows a loop-shaped row of five elongate amphiesmal vesicles. The cingulum is displaced by 0.3-0.5 × cell length. Cells that were feeding on the dinoflagellate Amphidinium carterae Hulburt were 9.1-21.6 μm long and 6.6-15.7 μm wide. Cells of G. shiwhaense contain nematocysts, trichocysts, a peduncle, and pusule systems, but they lack chloroplasts. The SSU rDNA sequence is >3% different from that of the six most closely related species: Warnowia sp. (FJ947040), Lepidodinium viride Watanabe, Suda, Inouye, Sawaguchi & Chihara, Gymnodinium aureolum (Hulburt) Hansen, Gymnodinium catenatum Graham, Nematodinium sp. (FJ947039), and Gymnodinium sp. MUCC284 (AF022196), while the LSU rDNA is 11-12% different from that of Warnowia sp., G. aureolum, and Nematodinium sp. (FJ947041). The phylogenetic trees show that the species belongs in the Gymnodinium sensu stricto clade. However, in contrast to Gymnodinium spp., cells lack nuclear envelope chambers and a nuclear fibrous connective. Unlike Polykrikos spp., cells of which possess a taeniocyst-nematocyst complex, G. shiwhaense has nematocysts but lacks taeniocysts. It differs from Paragymnodinium shiwhaense Kang, Jeong, Moestrup & Shin by possessing nematocysts with stylets and filaments. Gyrodiniellum shiwhaense n. gen., n. sp. furthermore lacks ocelloids, in contrast to Warnowia spp., Nematodinium spp., and Proterythropsis spp. Based on morphological and molecular data, we suggest that the taxon represents a new species within a new genus.  相似文献   

17.
Two populations of Epistylis wuhanensis n. sp., a new freshwater peritrich ciliate, were isolated from different freshwater ponds located in Hubei, China. Their morphological characteristics were investigated using live observation, protargol impregnation, and scanning electron microscopy (SEM). Specimens from the two populations showed identical arrangement of the infraciliature and identical small subunit ribosomal RNA (SSU rRNA) gene and ITS1‐5.8S‐ITS2 sequences. The zooids present bell‐shaped and 90–175 × 27–54 μm in vivo. Macronucleus is variable in shape and located in the middle of cell. Pellicle is usually smooth with 139–154 and 97–105 striations above and below the trochal band, respectively. SSU rRNA gene and ITS1‐5.8S‐ITS2 sequences of E. wuhanensis n. sp. did not match any available sequences in GenBank. Phylogenetically, E. wuhanensis n. sp. clusters with the other Epistylis within the family Epistylididae, but is distinct from the major clades of Epistylis. Above all, the morphological characteristics and molecular analyses support that the present Epistylis is a new species. Expanded phylogenetic analyses of sessilids based on both SSU rRNA gene sequences and ITS1‐5.8S‐ITS2 sequences reveal that the genus Epistylis consists of Epistylis morphospecies and taxonomic revision of the genus is needed.  相似文献   

18.
Myxobolus gayerae sp. n. and M. leuciscini González-Lanza & Alvarez-Pellitero, 1985 (Myxozoa: Myxobolidae) have been described and re-described from European chub Leuciscus cephalus L. from the Hungarian stretch of the river Danube. The ellipsoidal plasmodia of M. gayerae sp. n. were found in the mucosa of the intestinal wall, whereas the large, elongated plasmodia of M. leuciscini infected the afferent arteries of the gill filaments. The spores of M. gayerae sp. n. are relatively large, slightly oval and almost rectangular in shape. On the basis of spore morphology and 18S rDNA sequences, the most similar species was M. cycloides Gurley, 1893, but the 2 species differed in host and tissue tropism as well as in the size of the spores. The spores of M. leuciscini from L. cephalus, having no intercapsular appendix or occasionally a very small one, showed a high morphological similarity to spores collected from L. cephalus cabeda, Chondrostoma polylepis and Rutilus arcasi in Spain and described as M. leuciscini González-Lanza & Alvarez-Pellitero, 1985.  相似文献   

19.
Two new brackish pleurostomatid ciliates, Amphileptus spiculatus sp. n. and A. bellus sp. n. were collected from mangrove wetlands of southern China and their morphology and molecular phylogeny were studied. Amphileptus spiculatus sp. n. can be distinguished from congeners by the presence of 11–14 right and 6–8 left kineties, two macronuclear nodules and a conspicuous beak‐like anterior body end. Amphileptus bellus sp. n. is characterized by the presence of 2–4 macronuclear nodules, 31–35 right and 6 or 7 left kineties and two types of extrusomes. Phylogenetic analyses based on SSU rDNA sequences data indicate that the family Amphileptidae is paraphyletic.  相似文献   

20.
Dysnectes brevis n. gen., n. sp., a free-living heterotrophic flagellate that grows under microaerophilic conditions possesses two flagella. The posterior one lies in a ventral feeding groove, suggesting that this flagellate is an excavate. Our detailed electron microscopic observations revealed that D. brevis possesses all the key ultrastructural characters considered typical of Excavata. Among the 10 excavate groups previously recognized, D. brevis displays an evolutionary affinity to members of the Fornicata (i.e. Carpediemonas, retortamonads, and diplomonads). Firstly, a strong D. brevis-Fornicata affinity was recovered in the phylogenetic analyses of small subunit ribosomal RNA (SSU rRNA) sequences, albeit the internal branching pattern of the D. brevis+Fornicata clade was not resolved with confidence. Corresponding to the SSU rRNA phylogeny, D. brevis and the Fornicata shared the following components of the flagellar apparatus: the arched B fiber bridging the right root; a posterior basal body; and a left root. Combining both morphological and molecular phylogenetic analyses, D. brevis is classified as a new free-living excavate in the Fornicata incertae sedis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号