首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin (IL)-17 is a key member of the Th17 cytokines and has been reported to be involved in the pathomechanisms underlying various diseases, including infectious diseases. Infections with community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) have garnered worldwide attention, and the representative USA300 strain is known to cause pneumonia in healthy people, which can be lethal. However, little is known about the role of IL-17 in CA-MRSA pneumonia. In this study, we investigated the role of IL-17 in a CA-MRSA pneumonia animal model. Mortality was higher and occurred at an earlier stage of infection in the IL-17A-knockout mice than in the wild-type (P < 0.01) and IL-17A/F-knockout mice (P < 0.05); however, no significant difference in the intrapulmonary bacterial counts was observed among the three groups of mice. Moreover, the IL-17A-knockout group showed significantly higher levels of IL-17F and granulocyte-colony stimulating factor (G-CSF) and a significantly higher neutrophil count in the bronchoalveolar lavage fluid than the other groups. These results confirmed that G-CSF expression significantly increased, and significant neutrophilic inflammation occurred under conditions of IL-17A deficiency in the murine CA-MRSA pneumonia model.  相似文献   

2.
Methicillin-resistant Staphylococcus aureus (MRSA) emerged in the early 1960's after the acquisition of the methicillin resistance gene mecA, which is carried by the staphylococcal cassette chromosome mec (SCCmec). MRSA seemed to have arisen by multiple introductions of SCCmec into successful methicillin-susceptible S. aureus (MSSA) lineages. MRSA is one of the most common agents of nosocomial infections worldwide increasing the cost and mortality compared to MSSA infections. Little by little, MRSA has acquired resistance to all antibiotics available in clinical practice, which complicates treatment. This situation was further aggravated by the recent reports of vanA-mediated vancomycin-resistant S. aureus. As a reaction to the emergence and spread of multidrug-resistant MRSA worldwide, international surveillance systems such as the CEM/NET initiative have been created. The characterization of over 3000 MRSA isolates from different regions of the world evidenced the existence of only a few epidemic clones spread worldwide, namely the Iberian, Brazilian, Hungarian, New York/Japan, Pediatric and EMRSA-16 clones. It was found that in surveillance or evolutionary studies strains should be characterized by a combination of different typing methods, namely pulsed-field gel electrophoresis, multi-locus sequence typing and SCCmec typing. In recent years, community-acquired MRSA (CA-MRSA) has become a growing public health concern. However, although many authors reported the emergence of CA-MRSA isolates, a standard definition has not been created and the prevalence of MRSA among persons without risk factors seems to remain very low. CA-MRSA has distinct properties compared to epidemic nosocomial clones and its origin is still unclear. Certain authors suggest there is MRSA transmission from the hospital setting to the community, namely transfer of nosocomial MRSA minor clones or sporadic isolates showing a high degree of similarity with CA-MRSA; others believe CA-MRSA strains represent new acquisitions of SCCmec DNA in susceptible backgrounds. Many questions concerning this extraordinarily versatile and threatening pathogen remain unanswered, needing future investigation  相似文献   

3.
Aims: Iberian pigs are bred in Spain for the production of high‐value dry‐cured products, whose export volumes are increasing. Animals are typically reared outdoors, although indoor farming is becoming popular. We compared carriage of methicillin‐resistant Staphylococcus aureus (MRSA) in Iberian pigs, raised indoors and outdoors, with intensively farmed Standard White pigs. Methods and Results: From June 2007 to February 2008, 106 skin swabs were taken from Iberian pigs and 157 samples from SWP at slaughterhouses in Spain. We found that Iberian pigs carried MRSA, although with a significantly lower prevalence (30/106; 28%) than SWP (130/157; 83%). A higher prevalence of indoor Iberian pigs compared with animals reared under outdoor conditions was not significant; however, all but one positive indoor Iberian pig samples were detected from one slaughterhouse. Overall, 16 different spa types were identified, with t011 predominating in all three animal populations. A subset of isolates was characterized by MLST. Most of these belonged to ST398. MRSA isolates from Iberian pigs presented a higher susceptibility to antibiotics than those isolated from SWP. Conclusions: Despite limited contact with humans, pigs raised outdoors are colonized by an MRSA population that genetically overlaps with that of intensively farmed pigs, although antimicrobial resistance is lower. Significance and Impact of the Study: To our knowledge, this is the first detection of MRSA in food animals raised in free‐range conditions.  相似文献   

4.
【目的】研究和厚朴酚(HNK)抑制MRSA生物被膜(BF)形成的作用机制。【方法】使用TTC法测定了HNK对供试菌株BF的形成和成熟BF的抑制作用;刚果红平板法定性检测了HNK对PIA合成的影响;分光光度法测定了HNK对供试菌株eDNA释放量的影响;RT-PCR技术检测了HNK对供试菌株icaA、cidA以及agrA基因表达量的影响。【结果】HNK对MRSA 41573 BF的形成和成熟BF均有较强的抑制作用,其中,HNK抑制MRSA 41573 BF形成的MIC和MBC分别为10μg/mL和20μg/mL;抑制成熟BF的MIC和MBC分别为50μg/mL和100μg/mL。当用亚抑菌浓度的HNK与万古霉素联合作用后,可显著提高成熟BF对万古霉素的敏感性。HNK能显著抑制PIA的合成,且呈浓度剂量依赖。HNK能抑制供试菌株eDNA的释放量,其中1/8 MIC的HNK作用供试菌株16 h后,与对照组相比,e DNA的释放量降低了28.3%。HNK可抑制供试菌株BF形成的相关基因,其中1/2 MIC的HNK作用供试菌株16 h后,与对照相比,icaA的表达量降低了59.1%,cidA的表达量降低了56%,agrA的表达量降低了72.3%。【结论】HNK能显著抑制MRSA 41573 BF的形成,其作用机制主要是通过抑制icaA和cidA基因表达量,影响PIA和eDNA的合成,进而抑制BF的形成。此外HNK也可通过调控细菌的QS系统影响BF的形成。  相似文献   

5.
6.
目的 探讨下颌骨慢性化脓性骨髓炎的造模方法.方法 成年新西兰兔22只,于下颌骨体外侧近正中联合处开骨窗注入0.1 mL5%鱼肝油酸钠和0.1 mL5.0×108 CFU/mL金黄色葡萄球菌悬液,术后常规回笼饲养.于6周开始采用以下方法检测:①肉眼大体观察;②双能X线骨密度检测;③CBCT(锥束CT)放射学形态观察;④局部细菌培养;⑤组织病理学评价.结果 所有新西兰兔早期精神状况较差,手术区域肉眼观有瘘管并有脓性分泌物.双能X线骨密度检测发现手术区骨密度(BMD)值变化不具有统计学意义(P>0.05).CBCT显示骨缺损区边缘模糊,有骨破坏迹象.局部取材细菌培养有金黄色葡萄球菌生长.病理切片显示有不同程度的淋巴细胞、中性粒细胞、桨细胞浸润,死骨形成.结论 采用兔下颌骨体外侧近正中联合处造骨缺损并注射一定量细菌悬液的方法能够获得理想的慢性化脓性骨髓炎模型.  相似文献   

7.
An agent-based model of bacteria-antibiotic interactions has been developed that incorporates the antibiotic-resistance mechanisms of Methicillin-Resistant Staphylococcus aureus (MRSA). The model, called the Micro-Gen Bacterial Simulator, uses information about the cell biology of bacteria to produce global information about population growth in different environmental conditions. It facilitates a detailed systems-level investigation of the dynamics involved in bacteria-antibiotic interactions and a means to relate this information to traditional high-level properties such as the Minimum Inhibitory Concentration (MIC) of an antibiotic. The two main resistance strategies against β-lactam antibiotics employed by MRSA were incorporated into the model: β-lactamase enzymes, which hydrolytically cleave antibiotic molecules, and penicillin-binding proteins (PBP2a) with reduced binding affinities for antibiotics. Initial tests with three common antibiotics (penicillin, ampicillin and cephalothin) indicate that the model can be used to generate quantitatively accurate predictions of MICs for antibiotics against different strains of MRSA from basic cellular and biochemical information. Furthermore, by varying key parameters in the model, the relative impact of different kinetic parameters associated with the two resistance mechanisms to β-lactam antibiotics on cell survival in the presence of antibiotics was investigated.  相似文献   

8.
Methicillin-resistant Staphylococcus aureus (MRSA) is a highly infectious Gram-positive pathogen known to cause severe diseases such as endocarditis, food poisoning, pneumonia, osteomyelitis, and septicemia. MRSA is a major public health issue. Among these, osteomyelitis is inflammation of the bone caused by the invasion of the bacterial pathogen in the bones. Its prominent symptoms include fever, pain, and redness of bones. In the case of children, it affects the long bones of arms and legs, whereas in the case of adults it affects the hip, feet, and spine. Bacterial osteomyelitis can trigger pathological remodeling of bones and hence causes substantial morbidity and mortality. The present study aims to evaluate the isoflavone genistein's (5,7-dihydroxy-3-(4-hydroxyphenyl)−4H-1-benzopyran-4-one,4′,5,7 trihydroxyisoflavone) antimicrobial and anti-inflammatory effects against osteomyelitis induced by MRSA in male Wistar rats. Classification of the animals was into the following: sham (Group I), osteomyelitis (Group II, control), genistein (25 mg/kg body weight, Group III), and genistein (50 mg/kg body weight, Group IV). The rats did not receive any treatment for 4 weeks after bacterial inoculation. Genistein was then administered twice daily for 2 weeks. Bacterial growth, mean body weight bone infection status, and side effects of genistein treatment were assessed. Furthermore, lipid peroxidation, superoxide dismutase, glutathione (GSH) peroxidase, catalase, reduced GSH, tumor necrosis factor-α (TNF-α), and interleukin (IL)-6 were also determined. Two days after treatment, it was found that genistein significantly suppressed bacterial growth and reduced serum pro-inflammatory cytokines TNF-α and IL-6. Therefore, the study suggests that genistein could be a promising lead against MRSA-induced osteomyelitis.  相似文献   

9.
The number, diversity and restriction enzyme fragmentation patterns of plasmids harboured by 44 multidrug-resistant hospital-acquired methicillin-resistant Staphylococcus aureus (MR-HA-MRSA) isolates, two multidrug-resistant community-acquired MRSA (MR-CA-MRSA), 50 hospital-acquired MRSA (HA-MRSA) isolates (from the University Hospital Birmingham, NHS Trust, UK) and 34 community-acquired MRSA (CA-MRSA) isolates (from general practitioners in Birmingham, UK) were compared. In addition, pulsed-field gel electrophoresis (PFGE) type following SmaI chromosomal digest and SCCmec element type assignment were ascertained for each isolate. All MR-HA-MRSA and MR-CA-MRSA isolates possessed the type II SCCmec, harboured no plasmid DNA and belonged to one of five PFGE types. Forty-three out of 50 HA-MRSA isolates and all 34 CA-MRSA isolates possessed the type IV SCCmec and all but 10 of the type IV HA-MRSA isolates and nine CA-MRSA isolates carried one or two plasmids. The 19 non-multidrug-resistant isolates (NMR) that did not harbour plasmids were only resistant to methicillin whereas all the NMR isolates harbouring at least one plasmid were resistant to at least one additional antibiotic. We conclude that although plasmid carriage plays an important role in antibiotic resistance, especially in NMR-HA-MRSA and CA-MRSA, the multidrug resistance phenotype from HA-MRSA is not associated with increased plasmid carriage and indeed is characterised by an absence of plasmid DNA.  相似文献   

10.
This study was designed to investigate the role of hypermutability of Staphylococcus aureus on bacterial fitness and antibiotic resistance in a model of chronic bone infection. An isogenic pair of strains, S. aureus RN4220 and its mutator counterpart inactivated in the mutL gene were used in a rat model of osteomyelitis of the tibia. The effect of the mutator phenotype in the emergence of antibiotic resistance was assessed in rats infected by each strain separately and treated with rifampicin for 5 days. No difference between the two strains was found in bacterial growth in vitro and in bacterial survival in the animal model, indicating no fitness defect in the mutator strain. In competition studies performed in rats coinfected with the two strains at a same ratio and sacrificed at different times from day 3 to day 42 postinoculation, the mutator strain was clearly disadvantaged because it was found in all rats and at all study times at lower counts (P<0.05 from day 14 to day 42). Two of the 16 rats infected by the mutator strain and none of the 14 rats infected by the wild-type strain had acquired rifampicin-resistant mutants (P=0.4). Data suggest that the S. aureus mutator phenotype was associated with a decreased bacterial fitness in vivo and did not confer significant advantage in the acquisition of antibiotic resistance in a model of chronic bone infection.  相似文献   

11.
Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for a large number of chronic infections due to its ability to form robust biofilms. Herein, the authors evaluated the anti-biofilm activity of a Staphylococcus specific chimeric lysin ClyH on MRSA biofilms. ClyH is known to be active against planktonic MRSA cells in vitro and in vivo. The minimum concentrations for biofilm eradication (MCBE) of ClyH were 6.2–50?mg?l?1, much lower than those of antibiotics. Scanning electron microscope (SEM) analysis revealed that ClyH eliminated MRSA biofilms through cell lytic activity in a time-dependent manner. Viable plate counts and kinetic analysis demonstrated that biofilms of different ages displayed varying susceptibility to ClyH. Together with previously demonstrated in vivo efficacy of ClyH against MRSA, the degradation efficacy against biofilms of different ages indicates that ClyH could be used to remove MRSA biofilms in vivo.  相似文献   

12.
13.
Methicillin-resistant strains of Staphylococcus aureus (MRSA) are important etiological factors responsible for hospital-acquired infections. The aim of this study was to analyze the influence of the presence of emp, pls and cna genes on the pathogenicity of MRSA strains. The presence of these genes was tested by PCR in 302 MRSA strains isolated from hospitalized patients and from carriers. For each tested gene, proportions of positive and negative strains were similar among the infected patients and carriers. We did not find any obvious correlation between the presence of the three tested genes and the infectivity of strains. Our results may also suggest that a lack of emp and presence of pls may correlate with reduced virulence of these strains.  相似文献   

14.
15.
A novel series of bis-indoles derived from naturally occurring marine alkaloid 4 were synthesized and evaluated as inhibitors of methicillin-resistant Staphylococcus aureus (MRSA) pyruvate kinase (PK). PK is not only critical for bacterial survival which would make it a target for development of novel antibiotics, but it is reported to be one of the most highly connected ‘hub proteins’ in MRSA, and thus should be very sensitive to mutations and making it difficult for the bacteria to develop resistance. From the co-crystal structure of cis-3-4-dihydrohamacanthin B (4) bound to S. aureus PK we were able to identify the pharmacophore needed for activity. Consequently, we prepared simple direct linked bis-indoles such as 10b that have similar anti-MRSA activity as compound 4. Structure–activity relationship (SAR) studies were carried out on 10b and led us to discover more potent compounds such as 10c, 10d, 10k and 10m with enzyme inhibiting activities in the low nanomolar range that effectively inhibited the bacteria growth in culture with minimum inhibitory concentrations (MIC) for MRSA as low as 0.5 μg/ml. Some potent PK inhibitors, such as 10b, exhibited attenuated antibacterial activity and were found to be substrates for an efflux mechanism in S. aureus. Studies comparing a wild type S. aureus with a construct (S. aureus LAC Δpyk::ErmR) that lacks PK activity confirmed that bactericidal activity of 10d was PK-dependant.  相似文献   

16.
Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) possessing the Panton-Valentine leukocidin (PVL) gene (luk(PV)) is associated with skin and soft tissue infections, osteomyelitis, and necrotizing pneumonia. There are geographically two types of CA-MRSA: one (sequence type ST30) that is worldwide (pandemic) and the other (sequence types, e.g., ST1, ST8 or ST80) that is continent-specific. The pandemic type, but not continent-specific type, possessed the bone sialoprotein-adhesin gene (bbp), which was associated with osteomyelitis. No recent hospital-acquired MRSA had the bbp gene, while past PVL-positive nosocomial outbreak-derived strains did possess it. The collagen-adhesin gene (cna) was associated with pandemic CA-MRSA, though with positive cases even in continent-specific CA-MRSA and PVL-negative Japanese region-specific CA-MRSA. Thus, the pandemic type is characterized by the combination of luk(PV) and bbp (and cna) genes. A specific real-time PCR assay for the bbp gene was developed, and dual assay for bbp and luk(PV) in one test tube became possible.  相似文献   

17.
18.
The additional penicillin-binding protein (PBP 2') that is important in determining intrinsic resistance in methicillin-resistant strains of Staphylococcus aureus (MRSA) has been detected immunologically in strains from a variety of world-wide locations. This additional protein has also been definitively identified both immunologically and as a PBP in methicillin-resistant strains of S. epidermidis (MRSE). The assay described is rapid, specific and sensitive and has been used to detect PBP 2' in S. haemolyticus but not in beta-lactam resistant Streptococci.  相似文献   

19.
【背景】耐甲氧西林金黄色葡萄球菌(methicillin-resistant Staphylococcus aureus,MRSA)能以生物被膜的状态存在,从而产生多重耐药性和持续性感染。【目的】通过研究百里香酚和苯唑西林单用和联用对耐甲氧西林金黄色葡萄球菌生物被膜的形成抑制和清除作用,探究联合用药对MRSA生物被膜的影响,为临床联合应用抗MRSA药物提供理论依据。【方法】采用微量肉汤稀释法测定苯唑西林对MRSA标准菌株USA300的最低抑菌浓度;采用结晶紫染色法和菌落计数法评估百里香酚和苯唑西林单用和联用对USA300生物被膜形成抑制和清除作用。【结果】百里香酚和苯唑西林在亚抑菌浓度下对USA300生物被膜的形成具有一定的抑制作用。在较高浓度下,百里香酚对其24 h和72 h形成的生物被膜有良好的清除作用,而苯唑西林无清除作用。两药联用对生物被膜的抑制和清除作用进一步增强,在较低浓度下有较好的抑制和清除效果。【结论】百里香酚和苯唑西林联合用药与单独用药相比,对USA300的生物被膜的抑制和清除作用增强,两药联合有协同抗菌作用。  相似文献   

20.
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) are causing an ongoing pandemic of mostly skin and soft tissue infections. The success of CA-MRSA as pathogens is due to a combination of antibiotic resistance with high virulence. In addition, it has been speculated that CA-MRSA strains such as the epidemic U.S. clone USA300 have increased capacity to colonize human epithelia, owing to bacteriocin-based bacterial interference. We here analyzed the molecular basis of antimicrobial activity detected in S. aureus strains, including those of the USA300 lineage. In contrast to a previous hypothesis, we found that this activity is not due to expression of a lantibiotic-type bacteriocin, but proteolytically processed derivatives of the phenol-soluble modulin (PSM) peptides PSMα1 and PSMα2. Notably, processed PSMα1 and PSMα2 exhibited considerable activity against Streptococcus pyogenes, indicating a role of PSMs in the interference of S. aureus strains with the competing colonizing pathogen. Furthermore, by offering a competitive advantage during colonization of the human body, the characteristically high production of PSMs in USA300 and other CA-MRSA strains may thus contribute not only to virulence but also the exceptional capacity of those strains to sustainably spread in the population, which so far has remained poorly understood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号