首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have constructed strains that allow a direct selection for mutators of Escherichia coli on a single plate medium. The plate selection is based on using two different markers whose reversion is enhanced by a given mutator. Plates containing limiting amounts of each respective nutrient allow the growth of ghost colonies or microcolonies that give rise to full-size colonies only if a reversion event occurs. Because two successive mutational events are required, mutator cells are favored to generate full-size colonies. Reversion of a third marker allows direct visualization of the mutator phenotype by the large number of blue papillae in the full-size colonies. We also describe plate selections involving three successive nutrient markers followed by a fourth papillation step. Different frameshift or base substitution mutations are used to select for mismatch-repair-defective strains (mutHLS and uvrD). We can detect and monitor mutator cells arising spontaneously, at frequencies lower than 10(-5) in the population. Also, we can measure a mutator cascade, in which one type of mutator (mutT) generates a second mutator (mutHLS) that then allows stepwise frameshift mutations. We discuss the relevance of mutators arising on a single medium as a result of cells overcoming successive growth barriers to the development and progression of cancerous tumors, some of which are mutator cell lines.  相似文献   

2.
The most important system for correcting replication errors that survive the built in editing system of DNA polymerase is the mismatch repair (MMR) system. We have identified a novel mutator strain yycJ in Bacillus anthracis. Mutations in the yycJ gene result in a spontaneous mutator phenotype with a mutational frequency and specificity comparable to that of MMR-deficient strains such as those with mutations in mutL or mutS. YycJ was annotated as a metallo-β-lactamase (MβL) super family member with unknown activity. In this study we carried out a biochemical characterization of YycJ and demonstrated that a recombinant YycJ protein possesses a 5′–3′ exonuclease activity at the 5′ termini and at nicks of double-stranded DNA. This activity requires a divalent metal cofactor Mn2+ and is stimulated by 5′-phosphate ends of duplex DNA. The mutagenesis of conserved amino acid residues revealed that in addition to the five MβL family conserved motifs, YycJ appears to have its specific motifs that can be used to distinguish YycJ from other closely related MβL family members. A phylogenetic survey showed that putative YycJ homologs are present in several bacterial phyla as well as in members of the Methanomicrobiales and Thermoplasmales from Archaea. We propose that YycJ represents a new group of MβL fold exonucleases, which is likely to act in the recognition of MMR entry point and subsequent removal of the mismatched base in certain MutH-less bacterial species.  相似文献   

3.
Notley-McRobb L  Seeto S  Ferenci T 《Genetics》2002,162(3):1055-1062
The kinetics of mutator sweeps was followed in two independent populations of Escherichia coli grown for up to 350 generations in glucose-limited continuous culture. A rapid elevation of mutation rates was observed in both populations within 120-150 generations, as was apparent from major increases in the proportion of the populations with unselected mutations in fhuA. The increase in mutation rates was due to sweeps by mutY mutators. In both cultures, the enrichment of mutators resulted from hitchhiking with identified beneficial mutations increasing fitness under glucose limitation; mutY hitchhiked with mgl mutations in one culture and ptsG in the other. In both cases, mutators were enriched to constitute close to 100% of the population before a periodic selection event reduced the frequency of unselected mutations and mutators in the cultures. The high proportion of mutators persisted for 150 generations in one population but began to be eliminated within 50 generations in the other. The persistence of mutator, as well as experimental data showing that mutY bacteria were as fit as near-isogenic mutY(+) bacteria in competition experiments, suggest that mutator load by deleterious mutations did not explain the rapidly diminishing proportion of mutators in the populations. The nonmutators sweeping out mutators were also unlikely to have arisen by reversion or antimutator mutations; the mutY mutations were major deletions in each case and the bacteria sweeping out mutators contained intact mutY. By following mgl allele frequencies in one population, we discovered that mutators were outcompeted by bacteria that had rare mgl mutations previously as well as additional beneficial mutation(s). The pattern of appearance of mutY, but not its elimination, conforms to current models of mutator sweeps in bacterial populations. A mutator with a narrow mutational spectrum like mutY may be lost if the requirement for beneficial mutations is for changes other than GC --> TA transversions. Alternatively, epistatic interactions between mutator mutation and beneficial mutations need to be postulated to explain mutator elimination.  相似文献   

4.
A number of mutator strains of E. coli were isolated using histochemical techniques which allow the identification of a single mutator colony on agar plates with as many as 2000 colonies. Several mutators isolated in this way were found by P1-mediated transduction to map to the proA-proB region of the E. coli chromosome. The map position of these mutators is very close to that of the conditional mutator, mutD. However, in contrast to mutD, one of these newly isolated mutators was suppressed in thermosensitive recA strain at 43°C, but not at 30°C. This mutator mutation has been named mut-8. Besides being dependent upon recA, mut-8 is also dependent upon growth in enriched medium for the expression of its mutator activity. The mutator activity of mut-8 was found to be recessive to the wild-type allele.  相似文献   

5.
Genetic constraints can block many mutational pathways to optimal genotypes in real fitness landscapes, yet the extent to which this can limit evolution remains to be determined. Interestingly, mutator bacteria elevate only specific types of mutations, and therefore could be very sensitive to genetic constraints. Testing this possibility is not only clinically relevant, but can also inform about the general impact of genetic constraints in adaptation. Here, we evolved 576 populations of two mutator and one wild-type Escherichia coli to doubling concentrations of the antibiotic cefotaxime. All strains carried TEM-1, a β-lactamase enzyme well known by its low availability of mutational pathways. Crucially, one of the mutators does not elevate any of the relevant first-step mutations known to improve cefatoximase activity. Despite this, both mutators displayed a similar ability to evolve more than 1000-fold resistance. Initial adaptation proceeded in parallel through general multi-drug resistance mechanisms. High-level resistance, in contrast, was achieved through divergent paths; with the a priori inferior mutator exploiting alternative mutational pathways in PBP3, the target of the antibiotic. These results have implications for mutator management in clinical infections and, more generally, illustrate that limits to natural selection in real organisms are alleviated by the existence of multiple loci contributing to fitness.  相似文献   

6.
Mutator Phenotype Induced by Aberrant Replication   总被引:7,自引:4,他引:3       下载免费PDF全文
We have identified thermosensitive mutants of five Schizosaccharomyces pombe replication proteins that have a mutator phenotype at their semipermissive temperatures. Allele-specific mutants of DNA polymerase δ (polδ) and mutants of Polα, two Polδ subunits, and ligase exhibited increased rates of deletion of sequences flanked by short direct repeats. Deletion of rad2+, which encodes a nuclease involved in processing Okazaki fragments, caused an increased rate of duplication of sequences flanked by short direct repeats. The deletion mutation rates of all the thermosensitive replication mutators decreased in a rad2Δ background, suggesting that deletion formation requires Rad2 function. The duplication mutation rate of rad2Δ was also reduced in a thermosensitive polymerase background, but not in a ligase mutator background, which suggests that formation of duplication mutations requires normal DNA polymerization. Thus, although the deletion and duplication mutator phenotypes are distinct, their mutational mechanisms are interdependent. The deletion and duplication replication mutators all exhibited decreased viability in combination with deletion of a checkpoint Rad protein, Rad26. Interestingly, deletion of Cds1, a protein kinase functioning in a checkpoint Rad-mediated reversible S-phase arrest pathway, decreased the viability and exacerbated the mutation rate only in the thermosensitive deletion replication mutators but had no effect on rad2Δ. These findings suggest that aberrant replication caused by allele-specific mutations of these replication proteins can accumulate potentially mutagenic DNA structures. The checkpoint Rad-mediated pathways monitor and signal the aberrant replication in both the deletion and duplication mutators, while Cds1 mediates recovery from aberrant replication and prevents formation of deletion mutations specifically in the thermosensitive deletion replication mutators.  相似文献   

7.
We have generated mutator strains of Bacillus anthracis Sterne by using directed gene knockouts to investigate the effect of deleting genes involved in mismatch repair, oxidative repair, and maintaining triphosphate pools. The single-knockout strains are deleted for mutS, mutY, mutM, or ndk. We also made double-knockout strains that are mutS ndk or mutY mutM. We have measured the levels of mutations in the rpoB gene that lead to the Rif(r) phenotype and have examined the mutational specificity. In addition, we examined the mutational specificity of two mutagens, 5-azacytidine and N-methyl-N'-nitro-N-nitroso-guanidine. The mutY and mutM single knockouts are weak mutators by themselves, but the combination of mutY mutM results in very high mutation rates, all due to G:C --> T:A transversions. The situation parallels that seen in Escherichia coli. Also, mutS knockouts are strong mutators and even stronger in the presence of a deletion of ndk. The number of sites in rpoB that can result in the Rif(r) phenotype by single-base substitution is more limited than in certain other bacteria, such as E. coli and Deinococcus radiodurans, although the average mutation rate per mutational site is roughly comparable. Hotspots at sites with virtually identical surrounding sequences are organism specific.  相似文献   

8.
A mutator is an allele that increases the mutation rate throughout the genome by disrupting some aspect of DNA replication or repair. Mutators that increase the mutation rate by the order of 100-fold have been observed to spontaneously emerge and achieve high frequencies in natural populations and in long-term laboratory evolution experiments with Escherichia coli. In principle, the fixation of mutator alleles is limited by (i) competition with mutations in wild-type backgrounds, (ii) additional deleterious mutational load, and (iii) random genetic drift. Using a multiple-locus model and employing both simulation and analytic methods, we investigate the effects of these three factors on the fixation probability Pfix of an initially rare mutator as a function of population size N, beneficial and deleterious mutation rates, and the strength of mutations s. Our diffusion-based approximation for Pfix successfully captures effects ii and iii when selection is fast compared to mutation (). This enables us to predict the conditions under which mutators will be evolutionarily favored. Surprisingly, our simulations show that effect i is typically small for strong-effect mutators. Our results agree semiquantitatively with existing laboratory evolution experiments and suggest future experimental directions.  相似文献   

9.
We developed a system to examine forward mutations that occurred in the rpsL gene of Escherichia coli placed on a multicopy plasmid. Using this system we determined the mutational specificity for a dnaE173 mutator strain in which the editing function of DNA polymerase III is impeded. The frequency of rpsL- mutations increased 32,000-fold, due to the dnaE173 mutator, and 87 independent rpsL- mutations in the mutator strain were analyzed by DNA sequencing, together with 100 mutants recovered from dnaE+ strain, as the control. While half the number of mutations that occurred in the wild-type strain were caused by insertion elements, no such mutations were recovered from the mutator strain. A novel class of mutation, named "sequence substitution" was present in mutants raised in the dnaE173 strain; seven sequence substitutions induced in the mutator strain occurred at six sites, and all were located in quasipalindromic sequences, carrying the GTG or CAC sequence at one or both endpoints. While other types of mutation were found in both strains, single-base frameshifts were the most frequent events in the mutator strain. Thus, the mutator effect on this class of mutation was 175,000-fold. A total of 95% of the single-base frameshifts in the mutator strain were additions, most of which occurred at runs of A or C bases so as to increase the number of identical residues. Base substitutions, the frequency of which was enhanced 25,000-fold by the mutator effect, occurred primarily at several hotspots in the mutator strain, whereas those induced in the wild-type strain were more randomly distributed throughout the rpsL sequence. The dnaE173 mutator also increased the frequency of duplications 28,000-fold. Of the three duplications recovered from the mutator strain, one was a simple duplication, the region of which was flanked by direct repeats. The other duplications were complex, one half part of which was in the inverted orientation of a region containing two sets of inverted repeats. The same duplications were also recovered from the wild-type strain. The present data suggest that dnaE173 is a novel class of mutator that sharply induces sequence-directed mutagenesis, yielding high frequencies of single base frameshifts, duplications with inversions, sequence substitutions and base substitutions at hotspots.  相似文献   

10.
Defects in the methyl-directed mismatch repair lead to both the hypermutability phenotype and removal of a barrier to genetic exchange between species. Mutator bacteria carrying such defects occur frequently among bacterial pathogens, suggesting that subpopulations of mutators are contained within pathogen clones and give rise to the genetic variants that are acted upon by selective forces to allow survival or successful infection. We report here on the detection of the mutator subpopulation in Salmonella typhimurium and determination of its frequency in laboratory cultures. The analysis involved screening for mutators among revertants of S. typhimurium histidine auxotrophs selected for the His+ phenotype, since the frequency of mutators is expected to be increased in the selected mutant population they helped to spawn. The increases in spontaneous reversion of histidine mutations were first measured in isogenic strains carrying mismatch repair-defective mutH, mutL, mutS, or uvrD alleles, relative to their mismatch repair-proficient counterparts. Screening for the mutator phenotype in nearly 12,000 revertants of repair-proficient strains carrying his mutations highly stimulated for reversion in mutator backgrounds, the base substitution in hisG428 and frameshift in hisC3076, yielded five mutator strains (0.04%). the his+ reversion mutations contained within the newly-arisen mutator strains were characteristic of the predominant nucleotide changes expected in such mutators, as assessed by comparison with the spectra for reversion events in wild-type and mismatch correction-defective backgrounds. The results show that subpopulations of mutators, residing in normal populations at a finite frequency, can be culled from the culture by strong selection for a required phenotype. We calculate that the frequency of mutators in the unselected population of S. typhimurium is 1–4×10−6, an incidence of 10-fold lower than that expected based on studies of laboratory cultures of Escherichia coli.  相似文献   

11.
Selection of mutator alleles, increasing the mutation rate up to 10, 000-fold, has been observed during in vitro experimental evolution. This spread is ascribed to the hitchhiking of mutator alleles with favorable mutations, as demonstrated by a theoretical model using selective parameters corresponding to such experiments. Observations of unexpectedly high frequencies of mutators in natural isolates suggest that the same phenomenon could occur in the wild. But it remains questionable whether realistic in natura parameter values could also result in selection of mutators. In particular, the main parameters of adaptation, the size of the adapting population and the height and steepness of the adaptive peak characterizing adaptation, are very variable in nature. By simulation approach, we studied the effect of these parameters on the selection of mutators in asexual populations, assuming additive fitness. We show that the larger the population size, the more likely the fixation of mutator alleles. At a large population size, at least four adaptive mutations are needed for mutator fixation; moreover, under stronger selection stronger mutators are selected. We propose a model based on multiple mutations to illustrate how second-order selection can optimize population fitness when few favorable mutations are required for adaptation.  相似文献   

12.
We study the evolutionary dynamics of an asexual population of nonmutators and mutators on a class of epistatic fitness landscapes. We consider the situation in which all mutations are deleterious and mutators are produced from nonmutators continually at a constant rate. We find that in an infinitely large population, a minimum nonmutator‐to‐mutator conversion rate is required to fix the mutators but an arbitrarily small conversion rate results in the fixation of mutators in a finite population. We calculate analytical expressions for the mutator fraction at mutation‐selection balance and fixation time for mutators in a finite population when the difference between the mutation rate for mutator and nonmutator is smaller (regime I) and larger (regime II) than the selection coefficient. Our main result is that in regime I, the mutator fraction and the fixation time are independent of epistasis but in regime II, mutators are rarer and take longer to fix when the decrease in fitness with the number of deleterious mutations occurs at an accelerating rate (synergistic epistasis) than at a diminishing rate (antagonistic epistasis). Our analytical results are compared with numerics and their implications are discussed.  相似文献   

13.
Mutator bacteria are frequently found in natural populations of bacteria and although coevolution with parasitic viruses (phages) is thought to be one reason for their persistence, it remains unclear how the presence of mutators affects coevolutionary dynamics. We hypothesized that phages must themselves adapt more rapidly or go extinct, in the face of rapidly evolving mutator bacteria. We compared the coevolutionary dynamics of wild‐type Pseudomonas fluorescens SBW25 with a lytic phage to the dynamics of an isogenic mutator of P. fluorescens SBW25 together with the same phage. At the beginning of the experiment both wild‐type bacteria and mutator bacteria coevolved with phages. However, mutators rapidly evolved higher levels of sympatric resistance to phages. The phages were unable to “keep‐up” with the mutator bacteria, and these rates of coevolution declined to less than the rates of coevolution between the phages and wild‐type bacteria. By the end of the experiment, the sympatric resistance of the mutator bacteria was not significantly different to the sympatric resistance of the wild‐type bacteria. This suggests that the importance of mutators in the coevolutionary interactions with a particular phage population is likely to be short‐lived. More generally, the results demonstrate that coevolving enemies may escape from Red‐Queen dynamics.  相似文献   

14.
Defects in the mismatch repair protein MSH2 cause tolerance to DNA damage. We report how cancer-derived and polymorphic MSH2 missense mutations affect cisplatin cytotoxicity. The chemotolerance phenotype was compared with the mutator phenotype in a yeast model system. MSH2 missense mutations display a strikingly different effect on cell death and genome instability. A mutator phenotype does not predict chemotolerance or vice versa. MSH2 mutations that were identified in tumors (Y109C) or as genetic variations (L402F) promote tolerance to cisplatin, but leave the initial mutation rate of cells unaltered. A secondary increase in the mutation rate is observed after cisplatin exposure in these strains. The mutation spectrum of cisplatin-resistant mutators identifies persistent cisplatin adduction as the cause for this acquired genome instability. Our results demonstrate that MSH2 missense mutations that were identified in tumors or as polymorphic variations can cause increased cisplatin tolerance independent of an initial mutator phenotype. Cisplatin exposure promotes drug-induced genome instability. From a mechanistical standpoint, these data demonstrate functional separation between MSH2-dependent cisplatin cytotoxicity and repair. From a clinical standpoint, these data provide valuable information on the consequences of point mutations for the success of chemotherapy and the risk for secondary carcinogenesis.  相似文献   

15.
Desai MM  Fisher DS 《Genetics》2011,188(4):997-1014
Mutator alleles, which elevate an individual's mutation rate from 10 to 10,000-fold, have been found at high frequencies in many natural and experimental populations. Mutators are continually produced from nonmutators, often due to mutations in mismatch-repair genes. These mutators gradually accumulate deleterious mutations, limiting their spread. However, they can occasionally hitchhike to high frequencies with beneficial mutations. We study the interplay between these effects. We first analyze the dynamics of the balance between the production of mutator alleles and their elimination due to deleterious mutations. We find that when deleterious mutation rates are high in mutators, there will often be many "young," recently produced mutators in the population, and the fact that deleterious mutations only gradually eliminate individuals from a population is important. We then consider how this mutator-nonmutator balance can be disrupted by beneficial mutations and analyze the circumstances in which fixation of mutator alleles is likely. We find that dynamics is crucial: even in situations where selection on average acts against mutators, so they cannot stably invade, the mutators can still occasionally generate beneficial mutations and hence be important to the evolution of the population.  相似文献   

16.
Summary The nucleotide sequences of the recessivednaQ49 and the dominantmutD5 mutator were determined. ThednaQ49 mutator has a single base substitution in thednaQ gene, thus causing one amino acid change,96Val (GTG)→ Gly (GGG), in the DnaQ protein (ε subunit of DNA polymerase III holoenzyme). ThemutD5 mutator possesses two base substitutions in the same gene, resulting in two amino acid changes,73Leu (TTG)→Trp (TGG) and164Ala (GCA)→Val (GTA), which were designated themutD52 andmutD51 mutations, respectively. Construction of chimaeric genes carrying one or two of these mutations revealed: (1) eithermutD51 ormutD52 alone causes the dominant mutator phenotype when present in a multi-copy plasmid; (2)mutD51, but notmutD52, exerts the dominant mutator phenotype when present in a low-copy plasmid; (3) the dominantmutD51 mutator activity is suppressed by thednaQ49 mutation when both mutations are present in the same gene. Based on these findings, we devised a model for the action of these mutators.  相似文献   

17.
Many bacterial species that cannot sporulate, such as the model bacterium Escherichia coli, can nevertheless survive for years, following exhaustion of external resources, in a state termed long-term stationary phase (LTSP). Here we describe the dynamics of E. coli adaptation during the first three years spent under LTSP. We show that during this time, E. coli continuously adapts genetically through the accumulation of mutations. For nonmutator clones, the majority of mutations accumulated appear to be adaptive under LTSP, reflected in an extremely convergent pattern of mutation accumulation. Despite the rapid and convergent manner in which populations adapt under LTSP, they continue to harbor extensive genetic variation. The dynamics of evolution of mutation rates under LTSP are particularly interesting. The emergence of mutators affects overall mutation accumulation rates as well as the mutational spectra and the ultimate spectrum of adaptive alleles acquired under LTSP. With time, mutators can evolve even higher mutation rates through the acquisition of additional mutation rate–enhancing mutations. Different mutator and nonmutator clones within a single population and time point can display extreme variation in their mutation rates, resulting in differences in both the dynamics of adaptation and their associated deleterious burdens. Despite these differences, clones that vary greatly in their mutation rates tend to coexist within their populations for many years, under LTSP.  相似文献   

18.
recB recJ mutants ofSalmonella typhimurium are deficient in transduction of chromosomal markers and ColE1-derived plasmids, and also in the maintenance of ColE1 and F plasmids. Plasmid instability is less severe inrecD recJ strains; ColE1 plasmid DNA preparations from these strains show an increased yield of high molecular weight (HMW) linear multimers and a concomitant reduction in plasmid monomers compared to the wild type. Plasmids remain unstable inrecA recD recJ mutants; since these do not produce HMW linear concatemers, we propose that a decrease in monomer production leads to plasmid instability.recB recJ strains also display decreased viability, a component of which may be related to their deficiency in DNA repair. In contrast to their severe defects in recombination, DNA repair and plasmid maintenance,recB recJ mutants ofS. typhimurium behave similarly to the wild type in the segregation of chromosome duplications. The latter observation suggests that neither RecBCD nor RecJ functions are required for chromosomal recombination events that do not involve the use of free ends as recombination substrates.  相似文献   

19.
Mutator alleles that elevate the genomic mutation rate may invade nonrecombining populations by hitchhiking with beneficial mutations. Mutators have been repeatedly observed to take over adapting laboratory populations and have been found at high frequencies in both microbial pathogen and cancer populations in nature. Recently, we have shown that mutators are only favored by selection in sufficiently large populations and transition to being disfavored as population size decreases. This population size‐dependent sign inversion in selective effect suggests that population structure may also be an important determinant of mutation rate evolution. Although large populations may favor mutators, subdividing such populations into sufficiently small subpopulations (demes) might effectively inhibit them. On the other hand, migration between small demes that otherwise inhibit hitchhiking may promote mutator fixation in the whole metapopulation. Here, we use stochastic, agent‐based simulations and evolution experiments with the yeast Saccharomyces cerevisiae to show that mutators can, indeed, be favored by selection in subdivided metapopulations composed of small demes connected by sufficient migration. In fact, we show that population structure plays a previously unsuspected role in promoting mutator success in subdivided metapopulations when migration is rare.  相似文献   

20.
Yang H  Yung M  Sikavi C  Miller JH 《DNA Repair》2011,10(11):1121-1130
DNA mismatch repair (MMR) systems can be classified as either MutH-dependent or MutH-independent. In bacteria, extensive studies have been conducted with the MutH-dependent MMR in Escherichia coli and its close relatives. The picture of MutH-independent MMR in other bacteria is less clear, as MMR components other than MutS and MutL have not been identified in the majority of bacteria. Bacillus anthracis is one of the MutH-less Gram(+) bacteria in the phylum of Firmicutes. We used papillation as a tool to search for B. anthracis new mutator strains and identified a spontaneous mutator that carries a minitransposon insertion in the BAS4289 locus. The mutational frequency and specificity exhibited in this mutant were comparable to that of MMR-deficient strains with knockouts of mutL or mutS. It retained a similar UV sensitivity profile as that of the wild type. BAS4289 encodes a putative DNA helicase RecD2 that shares 30% sequence identity with Deinococcus radiodurans RecD2, a well characterized superfamily 1B helicase whose homologs are widely present in Firmicutes complete genomes. We demonstrated that the N-terminal region of RecD2, a unique sequence extension used to distinguish RecD2 from RecD1, was important for B. anthracis RecD2, as mutations in the N-terminal conserved motifs affected its DNA repair function. This is the first report of a RecD2 helicase being associated with MMR. RecD2 and our recently described YycJ protein are likely to be two additional components in the B. anthracis MutH-independent MMR system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号