首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the effects of co-culture with oviductal epithelial cells, cumulus cells, trophoblastic vesicles or amniotic sac cells on the development of bovine eight-cell embryos derived from in vitro maturation and fertilization into blastocysts. Frozen-thawed spermatozoa were treated with caffeine plus Ca-ionophore A23187 for capacitation and were then co-incubated for 4 h with oocytes matured in vitro. Ova resulting from this in vitro fertilization were cultured in HEPES-buffered TCM-199 + 10% fetal calf serum(FCS) for 68 h and then removed from the cumulus cell mass. The eight-cell embryos were cultured using four co-culture systems either without cells(controls) or within rabbit oviducts. The co-culture of oviductal epithelial cells, trophoblastic vesicles or amniotic sac cells significantly (P<0.05) increased development into blastocysts (39.0 to 50.7%) when compared with co-culture with cumulus cells, control or rabbit oviducts(1.9 to 29.3%). Six of 16 recipients became pregnant with frozen embryos derived from co-culture with oviductal epithelial cells(1/2), trophoblastic vesicles(2/7) or amniotic sac cells(3/7). Eight calves, including two sets of twins, were obtained.  相似文献   

2.
Bone marrow mesenchymal stem cells (BM-MSCs) are considered as a promising option in the field of regenerative medicine and tissue engineering. However, little is known about how TM4 mouse Sertoli cells, which are known to enhance stem cells proliferation in co-culture, may influence the proliferation of BM-MSCs and which signaling pathways are involved in. To address these questions, an in vitro transwell system was used. We found that TM4 cells could produce soluble factors which enhanced the growth of BM-MSCs without inhibiting the multipotency. Furthermore, cell cycle analysis showed that co-culture with the TM4 cells accelerated the progress of BM-MSCs from the G1 to the S phase. The expression of the phospho-akt, mdm2, as well as pho-CDC2, and cyclin D1 were markedly upregulated in co-cultured BM-MSCs. The observed promoting effect was significantly inhibited by the administration of the PI3K/AKT inhibitor, LY294002. Among the various growth factors produced by TM4 cells, the epithelial growth factor (EGF) stimulated the proliferation of the BM-MSCs more significantly compared with the other growth factors examined in this study. Neutralization of EGF via a blocking antibody significantly limited the promoting growth effect in BM-MSCs. These results suggest that TM4 cells provide a favorable in vitro environment for BM-MSCs growth and imply the involvement of the EGF/PI3K/AKT pathway.  相似文献   

3.
4.
Human mesenchymal stem cells (MSCs) are considered a promising tool for cell-based therapies of nervous system diseases. Bone marrow (BM) has been the traditional source of MSCs (BM-MSCs). However, there are some limitations for their clinical use, such as the decline in cell number and differentiation potential with age. Recently, amniotic fluid (AF)-derived MSCs (AF-MSCs) have been shown to express embryonic and adult stem cell markers, and can differentiate into cells of all three germ layers. In this study, we isolated AF-MSCs from second-trimester AF by limiting dilution and compared their proliferative capacity, multipotency, neural differentiation ability, and secretion of neurotrophins to those of BM-MSCs. AF-MSCs showed a higher proliferative capacity and more rapidly formed and expanded neurospheres compared to those of BM-MSCs. Both immunocytochemical and quantitative real-time PCR analyses demonstrated that AF-MSCs showed higher expression of neural stemness markers than those of BM-MSCs following neural stem cell (NSC) differentiation. Furthermore, the levels of brain-derived growth factor and nerve growth factor secreted by AF-MSCs in the culture medium were higher than those of BM-MSCs. In addition, AF-MSCs maintained a normal karyotype in long-term cultures after NSC differentiation and were not tumorigenic in vivo. Our findings suggest that AF-MSCs are a promising and safe alternative to BM-MSCs for therapy of nervous system diseases.  相似文献   

5.
The present study examines the use of buffalo preantral follicles as a source of oocytes for in vitro embryo production. Preantral follicles were isolated from abattoir-derived buffalo ovaries and were grown for 100 days in five different culture systems: (1) minimum essential medium (MEM); (2) coconut water; (3) MEM + ovarian mesenchymal cell (OMC) co-culture; (4) MEM + granulosa cell (GC) co-culture; or (5) MEM + cumulus cell (CC) co-culture. Low growth rates for the preantral follicles were observed when follicles were cultured in MEM or coconut water medium. Moderate growth rates were seen for OMC and GC co-cultures, and high rates of growth were observed when follicles were grown in CC co-culture. The survival of preantral follicles was low in the MEM culture (<25%), but was over 75% in the other culture systems. Oocytes were not recovered from the MEM group, while an oocyte recovery rate of 80-100% was observed when the follicles were cultured with coconut water/somatic cells. Transferable embryos could be produced only with the oocytes obtained from preantral follicles grown in the OMC and CC co-culture systems. This study demonstrates, for the first time, that it is possible to produce buffalo embryos by in vitro fertilization of oocytes derived from in vitro grown preantral follicles.  相似文献   

6.
体外诱导骨髓间充质干细胞向肝细胞样细胞方向分化   总被引:1,自引:0,他引:1  
探讨成纤维生长因子-2(FGF-2)在体外定向诱导大鼠骨髓间充质干细胞(BM-MSCs)向肝细胞样细胞分化的作用及量化关系。体外分离培养大鼠BM-MSCs,将第3代BM-MSCs采用不同剂量的FGF-2诱导。诱导后,在显微镜下观察细胞形态学的改变;用免疫细胞化学法检测白蛋白和CK19的分泌;Shiff染色法检测糖原的分泌。诱导后BM-MSCs由梭形向多角形、卵圆形方向变化,白蛋白、CK19和糖原12 d即有阳性表达,以后随着诱导时间的延长阳性率逐渐升高。20 ng/mL FGF-2诱导比10 ng/mL FGF-2诱导细胞白蛋白、CK19和糖原的表达量均多。20 ng/mL FGF-2具有较强的诱导BM-MSCs向肝细胞样细胞分化的能力。  相似文献   

7.
It has been widely known that the giant panda (Ailuropoda melanoleuca) is one of the most endangered species in the world. An optimized platform for maintaining the proliferation of giant panda mesenchymal stem cells (MSCs) is very necessary for current giant panda protection strategies. Basic fibroblast growth factor (bFGF), a member of the FGF family, is widely considered as a growth factor and differentiation inducer within the stem cell research field. However, the role of bFGF on promoting the proliferation of MSCs derived from giant panda bone marrow (BM) has not been reported. In this study, we aimed to investigate the role of bFGF on the proliferation of BM-MSCs derived from giant panda. MSCs were cultured for cell proliferation analysis at 24, 48 and 72 hrs following the addition of bFGF. With increasing concentrations of bFGF, cell numbers gradually increased. This was further demonstrated by performing 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) cell proliferation assay, 5-Bromo-2-deoxyUridine (BrdU) labeling and cell cycle testing. Furthermore, the percentage of MSCs that were OCT4 positive increased slightly following treatment with 5 ng/ml bFGF. Moreover, we demonstrated that the extracellular signal-regulated kinase (ERK) signaling pathway may play an important role in the proliferation of panda MSCs stimulated by bFGF. In conclusion, this study suggests that giant panda BM-MSCs have a high proliferative capacity with the addition of 5 ng/ml bFGF in vitro.  相似文献   

8.
We characterized the differentiation of rat bone marrow-derived mesenchymal stem cells (BM-MSCs) into tenocyte-like cells in response to bone morphogenetic protein-12 (BMP-12). BM-MSCs were prepared from Sprague-Dawley rats and cultured as monolayers. Recombinant BMP-12 treatment (10 ng/ml) of BM-MSCs for 12 hours in vitro markedly increased expression of the tenocyte lineage markers scleraxis (Scx) and tenomodulin (Tnmd) over 14 days. Treatment with BMP-12 for a further 12-hour period had no additional effect. Colony formation assays revealed that ~80% of treated cells and their progeny were Scx- and Tnmd-positive. BM-MSCs seeded in collagen scaffolds and similarly treated with a single dose of BMP-12 also expressed high levels of Scx and Tnmd, as well as type I collagen and tenascin-c. Furthermore, when the treated BM-MSC-seeded scaffolds were implanted into surgically created tendon defects in vivo, robust formation of tendon-like tissue was observed after 21 days as evidenced by increased cell number, elongation and alignment along the tensile axis, greater matrix deposition and the elevated expression of tendon markers. These results indicate that brief stimulation with BMP-12 in vitro is sufficient to induce BM-MSC differentiation into tenocytes, and that this phenotype is sustained in vivo. This strategy of pretreating BM-MSCs with BMP-12 prior to in vivo transplantation may be useful in MSC-based tendon reconstruction or tissue engineering.  相似文献   

9.
To develop an in vitro culture system for bovine oocytes and early embryos, we examined the effects of co-culture of in vitro matured and in vitro fertilized embryos with trophoblastic vesicles and cumulus cells. We also studied the effects of culture medium components and oxygen gas pressure by modifying TCM-199 medium and using a gas-tight chamber. We found that co-culture with trophoblastic vesicles or cumulus cells promoted early embryos to develop beyond the eight-cell block; 17 to 19% of the initial oocytes developed to the morula stage. The effects of removing glucose and other energy sources from the medium, adding EDTA to the medium, reducing the concentration of serum, and reducing the oxygen gas pressure on the development of embryos were also examined. These modifications during the initial phase of co-culture greatly increased the rate of embryo development to the morula (36 to 38% of oocytes developed to morulae) and blastocyst stages.  相似文献   

10.
Aim of the present study was the isolation, culture, and characterization of amniotic membrane-derived epithelial cells (AE) from term placenta collected postpartum in buffalo. We found that cultured cells were of polygonal in shape, resistance to trypsin digestion and expressed cytokeratin-18 indicating that they were of epithelial origin. These cells have negative expression of mesenchymal stem cell markers (CD29, CD44, and CD105) and positive for pluripotency marker (OCT4) genes indicated that cultured cells were not contaminated with mesenchymal stem cells. Immunofluorescence staining with pluripotent stem cell surface markers, SSEA-1, SSEA-4, TRA-1-60, and TRA-1-81 indicated that these cells may retain pluripotent stem cell characteristics even after long period of differentiation. Differentiation potential of these cells was determined by their potential to differentiate into cells of neurogenic lineages using retinoic acid. In conclusion, we demonstrate that AE cells expressed pluripotent stem cell markers and have propensity to differentiate into cells of neurogenic lineage upon directed differentiation in vitro.  相似文献   

11.
In this study, we compared the ability of human mesenchymal stem cells (eMSCs) derived from menstrual blood and mesenchymal stem cells (MSCs) from other tissues to differentiate into decidual cells in vitro. It was demonstrated that, during differentiation, secretion of prolactin and insulin-like growth factor binding protein-1 (key decidualization markers) markedly increased in eMSCs slightly augmented in bone marrow MSC (BM-MSCs) and did not change in MSCs from adipose tissue (AT-MSCs). Thus, eMSCs exhibited higher capacity for differentiation into decidual cells than BM-MSCs or AT-MSCs. This makes eMSCs promising for application in cellular therapy of infertility associated with insufficient decidualization of endometrium.  相似文献   

12.
Embryonic stem cells (ESCs) and mesenchymal stem cells (MSCs) have been studied for years as primary cell sources for regenerative biology and medicine. MSCs have been derived from cell and tissue sources, such as bone marrow (BM), and more recently from ESCs. This study investigated MSCs derived from BM, H1- and H9-ESC lines in terms of morphology, surface marker and growth factor receptor expression, proliferative capability, modulation of immune cell growth and multipotency, in order to evaluate ESC-MSCs as a cell source for potential regenerative applications. The results showed that ESC-MSCs exhibited spindle-shaped morphology similar to BM-MSCs but of various sizes, and flow cytometric immunophenotyping revealed expression of characteristic MSC surface markers on all tested cell lines except H9-derived MSCs. Differences in growth factor receptor expression were also shown between cell lines. In addition, ESC-MSCs showed greater capabilities for cell proliferation, and suppression of leukocyte growth compared to BM-MSCs. Using standard protocols, induction of ESC-MSC differentiation along the adipogenic, osteogenic, or chondrogenic lineages was less effective compared to that of BM-MSCs. By adding bone morphogenetic protein 7 (BMP7) into transforming growth factor beta 1 (TGFβ1)-supplemented induction medium, chondrogenesis of ESC-MSCs was significantly enhanced. Our findings suggest that ESC-MSCs and BM-MSCs show differences in their surface marker profiles and the capacities of proliferation, immunomodulation, and most importantly multi-lineage differentiation. Using modified chondrogenic medium with BMP7 and TGFβ1, H1-MSCs can be effectively induced as BM-MSCs for chondrogenesis.  相似文献   

13.
Two experiments were conducted to investigate the effect of carbon dioxide (CO2) gas atmosphere and beta-mercaptoethanol on the development of bovine embryos in an in vitro co-culture system. In Experiment 1, in vitro-matured bovine oocytes were inseminated and then co-cultured with cumulus cells in culture medium (CM; 25 mM HEPES buffered TCM-199 supplemented with 5% superovulated cow serum and 0.5 mM sodium pyruvate). Oocytes matured and fertilized in 2 or 5% CO2 in air exhibited similar cleavage rates, but the proportion of embryos that developed to the blastocyst stage was higher for embryos co-cultured in 2 versus 5% CO2 in air. In Experiment two, 4- to 8-cell embryos produced under the condition of 2% CO2 in air were co-cultured with cumulus cells in CM supplemented with various levels of beta-mercaptoethanol (0, 5, 10, 50 microM). The percentage of embryos that developed to the blastocyst stage in CM with 10 microM beta-mercaptoethanol was higher (P<0.05) than that of embryos co-cultured with 0 or 50 microM beta-mercaptoethanol. These results indicate that cumulus cell co-culture in an atmosphere of 2% CO2 in air has a marked stimulatory effect on in vitro development of bovine embryos and that addition of beta-mercaptoethanol to the co-culture medium 2 d after insemination improved the in vitro development of bovine 4- to 8-cell embryos to the blastocyst stage.  相似文献   

14.
骨髓间充质干细胞无血清培养   总被引:1,自引:0,他引:1  
吴伟  周燕  谭文松 《生物工程学报》2009,25(1):0121-0128
为建立一种化学成分明确的、能用于体外扩增骨髓间充质干细胞的无血清培养基, 且骨髓间充质干细胞经无血清培养扩增后仍能保持其多向分化的潜能。采用密度梯度离心结合贴壁法从1月龄新西兰大白兔股骨中分离骨髓间充质干细胞, 比较在含10%胎牛血清的培养基(SCM)和自制的化学成分明确的无血清培养基(CDSFM)中骨髓间充质干细胞的形态、增殖能力, 以及扩增后的骨髓间充质干细胞的细胞周期、集落形成能力和成骨、成脂肪分化能力。经过10 d的培养, 骨髓间充质干细胞在自制的无血清培养基中扩增了50倍, 在含10%胎牛血清的培养基中扩增了40倍。在无血清和有血清培养基中扩增后的细胞中G0/G1期比例分别为(80.31%±0.6%)和(75.24%±4.0%), 两者无显著差异(P>0.05)。无血清培养扩增后的骨髓间充质干细胞集落形成率(12.7%±4.0%)低于有血清培养组(28.7%±4.2%), 两者比较差异显著(P<0.01)。经过无血清培养扩增的骨髓间充质干细胞在成骨、成脂肪诱导分化培养基中能够分化成成骨和脂肪细胞。自制的化学成分明确的无血清培养基能够在体外培养扩增骨髓间充质干细胞, 并且维持其干细胞特性, 可以用于细胞治疗以及生物医学研究。  相似文献   

15.
In repeated implantation failure, the co-culture of human embryos with somatic cells has been reported to promote the improvement of embryos quality, implantation and pregnancy rate. It was reported that feeder cells can be more beneficial to the oocyte and embryo by detoxifying the culture medium and supporting embryo development via different pathways. In this study, 432 patients, each with a minimum of three repeated implantation failures, were accepted for a prospective randomized study with or without autologous cumulus cell embryo co-culture and transfer at day 3 or day 5-6. We also investigated the expression of leukaemia inhibitor factor (LIF) and platelet activating factor receptor (PAF-R) on day 3 confluent cumulus cells. The statistic analysis of the data showed significant difference of implantation and clinical pregnancy rates between classical culture and day 3 compared with co-culture and day 5-6 transfer. The molecular analysis showed that cumulus cells express the LIF and the PAF-R genes and confirmed the possible positive role of growth factors and cytokines in early embryo development. Embryo co-culture systems with autologous cells can be beneficial in routine in vitro fertilization for embryo selection and implantation improvement. More molecular investigations need to be done to improve elucidation of the complex dialogue between the embryo and feeder cells prior to implantation and to understand the involved biological function and molecular process during embryo development.  相似文献   

16.
Goff AK  Smith LC 《Theriogenology》1998,49(5):1021-1030
The objective of this study was to determine if treatment of endometrial cells with progesterone or progesterone plus estradiol would improve the development of bovine embryos to the blastocyst stage during co-culture. After IVF, bovine embryos were cultured with oviduct epithelial cells for 3 d. In Experiment 1 the embryos were cultured with a) oviduct epithelial cells; b) endometrial epithelial cells (EEC); c) EEC with 10 ng/ml progesterone (EEC + P); or d) EEC with 10 ng/ml progesterone and 10 pg/ml estradiol (EEC + PE) for 6 d. In Experiment 2 the embryos were cultured with a) oviduct epithelial cells; b) endometrial stromal cells (ESC); c) ESC with 10 ng/ml progesterone (ESC + P); or d) ESC with 10 ng/ml progesterone and 10 pg/ml estradiol (ESC + PE) for 6 d. Results from Experiment 1 showed that endometrial epithelial cells supported development to the blastocyst stage as effectively as the oviduct cells; however, the size of the blastocysts was smaller for the endometrial cells. There was no effect of steroid hormone treatment on development to the blastocyst stage or on the size of the blastocysts. Results from Experiment 2 showed that stromal cells supported development to the blastocyst stage as effectively as oviduct cells. The hatching rate was lower when the embryos were co-cultured with stromal cells than oviduct epithelial cells; but there was no effect of steroid treatment. These data show that untreated endometrial epithelial cells are as effective as oviduct cells in maintaining embryo development to the blastocyst stage. However, embryo development was not improved by steroid treatment of the cells.  相似文献   

17.
Multiple myeloma (MM) is a hematological malignancy characterized by the accumulation of immunoglobulin-secreting clonal plasma cells at the bone marrow (BM). The interaction between MM cells and the BM microenvironment, and specifically BM mesenchymal stem cells (BM-MSCs), has a key role in the pathophysiology of this disease. Multiple data support the idea that BM-MSCs not only enhance the proliferation and survival of MM cells but are also involved in the resistance of MM cells to certain drugs, aiding the progression of this hematological tumor. The relation of MM cells with the resident BM-MSCs is a two-way interaction. MM modulate the behavior of BM-MSCs altering their expression profile, proliferation rate, osteogenic potential, and expression of senescence markers. In turn, modified BM-MSCs can produce a set of cytokines that would modulate the BM microenvironment to favor disease progression. The interaction between MM cells and BM-MSCs can be mediated by the secretion of a variety of soluble factors and extracellular vesicles carrying microRNAs, long non-coding RNAs or other molecules. However, the communication between these two types of cells could also involve a direct physical interaction through adhesion molecules or tunneling nanotubes. Thus, understanding the way this communication works and developing strategies to interfere in the process, would preclude the expansion of the MM cells and might offer alternative treatments for this incurable disease.  相似文献   

18.
In nonhuman primates (NHPs), there have so far been few reports about nuclear transfer (NT), especially using adult somatic cells. The objective of this study was to determine the developmental competence of NT embryos derived from various somatic cells embryonic stem (ES), amniotic epithelial, cumulus, or fetal fibroblast cells] and the nuclear transfer method, such as electro fusion or piezo microinjection, activation with chemical reagent [ionomycine/6-dimethylaminopurine (DMAP), calcium ionophore A23187/DMAP, or cycloheximide (CHX)] and reprogramming time (1, 2, or 4 h; in this study, the duration from injection or fusion to activation was defined as the reprogramming time). Our results showed that a 1-h reprogramming and activation with ionomycin/DMAP are suitable for NT in monkeys. Developing cleaved embryos up to the six-cell stage was similar among all experiments. However, beyond the eight-cell stage, developmental rates were higher in NT embryos reconstructed with fetal fibroblast cells and amniotic epithelial cells, and we were able to produce NT blastocysts from these cells. Interestingly, electro fusion is sufficient for amniotic epithelial cells and piezo microinjection is better suited for fetal fibroblast cells to produce NT blastocysts, thus suggesting that the best method for somatic cell NT may be different between cell types.  相似文献   

19.
It is generally accepted that culturing embryos in groups or with somatic cells improves both the yield and quality of the blastocysts obtained. The aims of this study were 1) to compare the yield and quality of the embryos obtained after culture in several number conditions and in several culture systems and 2) to assess the effect of co-culture started at various stages of embryo development. Under cell-free culture conditions (modified synthetic oviduct fluid [mSOF] supplemented with 10% fetal calf serum [FCS] 48 h post insemination, the rate of Day 10 blastocysts was lower when embryos were cultured in small groups (1 to 6 per drop) than in large groups (4 versus 23% ; P < 0.01). There was no group effect when embryos were co-cultured either with Buffalo rat liver (BRL) cells in TCM 199, or in a culture system allowing the progressive development of cumulus cells in mSOF, even if co-culture started at 66 or 114 h post insemination. However, embryos cultured singly had lower cell numbers than embryos cultured in large groups when co-culture started at 114 h post insemination. This suggests that 1) somatic cells improve the development of singly cultured bovine embryos up to the blastocyst stage after the 9-16 cell stage; 2) co-culture affects blastocyst cell number of singly cultured embryos by acting roughly between the 5-8 and the 9-16 cell stage; and 3) cooperation between embryos could replace the effect of co-culture either on the yield of blastocysts or on blastocyst cell number. Blastocysts appeared significantly earlier in co-culture with cumulus cells in mSOF than in co-culture with BRL cells in TCM 199 (detection of the blastocysts: 7.3 +/- 0.1 d post insemination with cumulus cells versus 8.1 +/- 0.1 d with BRL cells; P < 0.001) and had a significant higher number of cells (143 +/- 9 versus 85 +/- 11; P < 0.001). This system thus seems suitable for the culture of small numbers of embryos resulting from in vitro maturation and fertilization of oocytes from individual donor cows.  相似文献   

20.
It was recently reported that pluripotent mesenchymal stem cells (MSCs) in rodent bone marrow (BM) have the capacity to generate insulin-producing cells (IPCs) in vitro. However, little is known about this capacity in human BM-MSCs. We developed a nongenetic method to induce human BM-MSCs to transdifferentiate into IPCs both phenotypically and functionally. BM-MSCs from 12 human donors were sequentially cultured in specially defined conditions. Their differentiation extent toward β-cell phenotype was evaluated systemically. Specifically, after induction human BM-MSCs formed spheroid islet-like clusters containing IPCs, which was further confirmed by dithizone (DTZ) staining and electron microscopy. These IPCs expressed multiple genes related to the development or function of pancreatic β cells (including NKX6.1, ISL-1, Beta2/Neurod, Glut2, Pax6, nestin, PDX-1, ngn3, insulin and glucagon). The coexpression of insulin and c-peptide was observed in IPCs by immunofluorescence. Moreover, they were able to release insulin in a glucose-dependent manner and ameliorate the diabetic conditions of streptozotocin (STZ)-treated nude mice. These results indicate that human BM-MSCs might be an available candidate to overcome limitations of islet transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号