首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
B cell memory was shown to develop in congenitally athymic (nu/nu) mice after injection with small amounts of thymus-dependent antigens, in particular heterologous serum proteins, such as fown gamma-globulin (FGG) or DNP-bovine-serum albumin (DNP-BSA). Large doses of proteins (10 mg) tended to produce a specific B cell unresponsiveness, although there was still some evidence of B cell priming. The antigen did not have to be in a multivalent form to interact with B cell so as to induce immunologic memory or tolerance. In contrast to the induction of B cell memory, the production of IgG antibody in this system was found to be strongly T cell dependent. Thymus-independent antigens like LPS or POL with pronounced adjuvant effects on IgG production in normal or surgically thymectomized mice, could not replace T cells in allowing an IgG response against thymus-dependent antigens in congenitally athymic mice. However, the action of T cells once activated is likely to be non-antigen-specific, since it was shown that supernatants of antigen-activated-syngeneic T cells stimulated IgG production in cultures of primed B cell populations non-antigen-specifically.  相似文献   

2.
Type II alveolar epithelial cells (AEC) can produce various antimicrobial and proinflammatory effector molecules. This, together with their abundance and strategic location, suggests a role in host defense against pulmonary pathogens. We report that murine type II AEC, like their human counterparts, express class II major histocompatibility complex (MHC). Using a murine model of pulmonary tuberculosis, we find that type II AEC become activated and have increased cell surface expression of class II MHC, CD54, and CD95 following infection. Type II AEC use the class II MHC pathway to process and present mycobacterial antigens to immune CD4+ T cells isolated from mice infected with Mycobacterium tuberculosis. Therefore, not only can type II AEC contribute to the pulmonary immunity by secreting chemokines that recruit inflammatory cells to the lung, but they can also serve as antigen-presenting cells. Although type II AEC are unlikely to prime na?ve T cells, their ability to present antigens to T cells demonstrates that they can participate in the effector phase of the immune response. This represents a novel role for type II AEC in the immunological response to pulmonary pathogens.  相似文献   

3.
Induction of tolerance in memory T cells has profound implications in the treatment of autoimmune diseases and transplant rejection. Previously, we reported that the presentation of low densities of agonist peptide/MHC class II complexes induced anergy in memory CD4(+) T cells. In the present study, we address the specific interaction of different types of APCs with memory CD4(+) T cells. A novel ex vivo anergy assay first suggested that B cells induce anergy in memory T cells, and an in vivo cell transfer assay further confirmed those observations. We demonstrated that B cells pulsed with defined doses of Ag anergize memory CD4 cells in vivo. We established that CD11c(+) dendritic cells do not contribute to anergy induction to CD4 memory T cells, because diphtheria toxin receptor-transgenic mice that were conditionally depleted of dendritic cells optimally induced anergy in memory CD4(+) T cells. Moreover, B cell-deficient muMT mice did not induce anergy in memory T cells. We showed that B2 follicular B cells are the specific subpopulation of B cells that render memory T cells anergic. Furthermore, we present data showing that anergy in this system is mediated by CTLA-4 up-regulation on T cells. This is the first study to demonstrate formally that B cells are the APCs that induce anergy in memory CD4(+) T cells.  相似文献   

4.
Resting memory B lymphocytes specific for the model protein Ag cytochrome c have been shown to be susceptible to tolerance induction in in vitro splenic fragment cultures. This induction of nonresponsiveness is dependent upon the strength of the interaction between surface Ig and specific Ag, where concentration, valency, affinity, and time of exposure all appear to be important factors, as is the case for tolerance induction in immature or primary B cells. The induction of nonresponsivenes in greater than 80% of Ag-specific memory B cells was achieved by incubation with 1 microM cytochrome polymer for 24 h in the absence of T cell help. Not only were memory B cells unresponsive to specific Ag, they were also unable to become activated through nonspecific uptake and presentation of an Ag to which T cells have been primed, demonstrating that the induction of nonresponsiveness involves more than a modulation or blockade of surface Ig receptors. Although soluble factors collected from activated T cells failed to prevent memory B cells from becoming nonresponsive after surface Ig cross-linking, the direct activation of T cells within splenic fragment cultures did partially inhibit tolerance induction in splenic fragment memory B cells. In addition, the induction of tolerance was partially blocked by protein tyrosine kinase inhibitors, suggesting a physiologic change within the B cells associated with the state of nonresponsiveness and resulting from tyrosine-specific phosphorylation.  相似文献   

5.
B-1b cells play a key role in producing Abs against T cell-independent type 2 Ags. However, the factors regulating Ab production by this unique B cell subset are not well understood. In this study, a detailed analysis of the B cell response to 2,4,6-trinitrophenol (TNP)-Ficoll was performed using normal mice. TNP-Ficoll delivered i.p. or i.v. induced rapid Ag-specific B-1b cell activation, expansion, isotype switching, and plasmablast/plasma cell differentiation. Ag-specific B-1b cell numbers peaked at day 5 and then gradually declined in the spleen but remained elevated in the peritoneal cavity beyond 40 d postimmunization. In addition to expressing CD43, CD44, and CD86, Ag-activated B-1b cells transiently expressed programmed cell death 1 (PD-1), which functionally suppressed BCR-induced B-1b cell in vitro proliferation when additional costimulatory signals were lacking. Inhibiting PD-1:PD-1 ligand interactions during TNP-Ficoll immunization significantly enhanced Ag-specific B-1b cell expansion and the frequency of IgG isotype switching and plasmablast/plasma cell differentiation. Remarkably, PD-1 mAb blockade during the first week following immunization resulted in significantly increased numbers of both splenic and bone marrow Ag-specific IgG3-secreting cells, but not IgM-secreting cells, at both early (day 5) and late (week 6) time points. Moreover, Ag-specific serum IgG3 levels, as well as IgG2c, IgG2b, and IgA levels, remained significantly elevated in PD-1 mAb-treated mice relative to control Ab-treated mice for ≥6 wk postimmunization. Thus, PD-1:PD-1 ligand interactions occurring shortly after initial T cell-independent type 2 Ag encounter play a critical role in suppressing Ag-specific B-1b cell expansion and the development of long-term IgG-producing bone marrow and spleen cells.  相似文献   

6.
The IGF-1 receptor (IGF-1R) is expressed on T and B lymphocytes, and the expression of the insulin- and IGF-1-signaling machinery undergoes defined changes throughout lineage differentiation, offering a putative role for IGF-1 in the regulation of immune responses. To study the role of the IGF-1R in lymphocyte differentiation and function in vivo, we have reconstituted immunodeficient RAG2-deficient mice with IGF-1R(-/-) fetal liver cells. Despite the absence of IGF-1Rs, the development and ex vivo activation of B and T lymphocytes were unaltered in these chimeric mice. By contrast, the humoral immune response to the T cell-independent type 2 Ag 4-hydroxy-3-nitrophenyl acetyl-Ficoll was significantly reduced in mice reconstituted with IGF-1R-deficient fetal liver cells, whereas responses to the T cell-dependent Ag 4-hydroxy-3-nitrophenyl acetyl-chicken globulin were normal. Moreover, in an in vitro model of T cell-independent type 2 responses, IGF-1 promoted Ig production potently upon polyvalent membrane-IgD cross-linking. These data indicate that functional IGF-1R signaling is required for T cell-independent B cell responses in vivo, defining a novel regulatory mechanism for the immune response against bacterial polysaccharides.  相似文献   

7.
Naive B lymphocytes are generally thought to be poor APCs, and there is limited knowledge of their role in activation of CD8(+) T cells. In this article, we demonstrate that class I MHC Ag presentation by human naive B cells is enhanced by TLR9 agonists. Purified naive B cells were cultured with or without a TLR9 agonist (CpG oligodeoxynucleotide [ODN] 2006) for 2 d and then assessed for phenotype, endocytic activity, and their ability to induce CD8(+) T cell responses to soluble Ags. CpG ODN enhanced expression of class I MHC and the costimulatory molecule CD86 and increased endocytic activity as determined by uptake of dextran beads. Pretreatment of naive B cells with CpG ODN also enabled presentation of tetanus toxoid to CD8(+) T cells, resulting in CD8(+) T cell cytokine production and granzyme B secretion and proliferation. Likewise, CpG-activated naive B cells showed enhanced ability to cross-present CMV Ag to autologous CD8(+) T cells, resulting in proliferation of CMV-specific CD8(+) T cells. Although resting naive B cells are poor APCs, they can be activated by TLR9 agonists to serve as potent APCs for class I MHC-restricted T cell responses. This novel activity of naive B cells could be exploited for vaccine design.  相似文献   

8.
Tolerance susceptibility of newly generating memory B cells   总被引:11,自引:0,他引:11  
Newly generating memory B cells rapidly accumulate somatic mutations that can alter their Ag-combining sites and potentially engender recognition of self determinants. To investigate the possibility that, during their emergence secondary B cells pass through a window of tolerance susceptibility, we have examined the in vitro generation of memory B cells in the presence or absence of tolerogen. The findings indicate that, before antigenic stimulation, precursors to memory B cells are resistant to tolerance induction. However, 2 to 7 days after T cell-dependent antigenic stimulation, newly emerging hapten-specific secondary B cells can be inactivated by the presence of hapten on a carrier not recognized by available Th cells. This inactivation can be blocked by the presence of free hapten and can be competed by the presence of immunogen. Inactivation of newly generating secondary B cells appears less specific than the tolerance induction of immature neonatal or bone marrow B cells because inactivation can be accomplished by cross-reactive determinants. Interestingly, the presence of tolerogen after primary stimulation did not preclude the generation of cells responsive to a third in vitro stimulation. Therefore, whereas newly emerging memory B cells are highly susceptible to inactivation, the progression of the clones of progenitors to memory B cells appears resistant to tolerance induction.  相似文献   

9.
The signals required to generate long-lived plasma cells remain unresolved. One widely cited model posits that long-lived plasma cells derive from germinal centers (GCs) in response to T cell-dependent (TD) Ags. Thus, T cell-independent (TI) Ags, which fail to sustain GCs, are considered ineffective at generating long-lived plasma cells. However, we show that long-lived hapten-specific plasma cells are readily induced without formation of GCs. Long-lived plasma cells developed in T cell-deficient mice after a single immunization with haptenated LPS, a widely used TI Ag. Long-lived plasma cells also formed in response to TD Ag when the GC response was experimentally prevented. These observations establish that long-lived plasma cells are induced in both TI and TD responses, and can arise independently of B cell maturation in GCs.  相似文献   

10.
The possibility of inducing systemic tolerance in animals by feeding them with ovalbumin and human serum was studied on mice, rats and rabbits. Antibodies to ovalbumin, human serum albumin and immunoglobulins (IgG, IgA, IgM) were determined by the passive hemagglutination test in the sera of the test and control animals after the second immunization made through a parenteral route. Tolerance to all the antigens under study was obtained in mice and rats, while in rabbits such feeding was found to produce the priming effect. The degree of tolerance was the greater, the more was the dose of the antigen and the longer was the period of feeding. Different proteins showed varying tolerogenic activity; the same degree of tolerance in mice was obtained by feeding them with IgG in a dose of 0.3-0.5 mg and with ovalbumin or human serum albumin in a dose of 6-12 mg (per gram of body weight). Tolerance was determined on day 3 after the course of feeding was over; in 3 weeks tolerance essentially decreased, and in 1.5-2 months it was replaced by normal reactiveness. Tolerance induced by the oral administration of antigens proved to be immunologically specific.  相似文献   

11.
12.
Although type 2 antigens, such as polyvinylpyrrolidone (PVP), generally do not prime for IgG memory responses or activate specific helper T cells (TH), previous studies have established that low doses of PVP (0.0025 microgram) can prime for IgG memory and induce TH in vivo. Doses of PVP that are optimally immunogenic for IgM antibody production (0.25-25 micrograms) do not prime for IgG memory responses and preferentially activate PVP-specific suppressor T cells (TS) which suppress IgG antibody production. The studies reported here further characterize PVP-specific TS and begin to investigate the mode of action of these TS. TS induced with high doses of PVP have a typical suppressor cell surface phenotype in that they are Lyt 2+, I-J+, L3T4-, I-A- T cells. PVP-specific TS are inducible in mice expressing the X-linked immune defect and are Igh restricted in their actions. These TS suppress PVP-specific IgG responses of PVP-HRBC (horse red blood cells)-primed B cells when the TH population is from low-dose PVP-primed mice but not when the TH population is from PVP-HRBC-primed mice. Thus the TS do not apparently directly suppress the B-cell responses but act indirectly to suppress IgG responses by preventing the expression of PVP-specific TH function. The TS induced by 0.25 microgram PVP also prevent the generation of PVP-specific memory B cells apparently by preventing the expression of functional TH which are required for induction of memory B cells. Elimination of TS activation by pretreatment of mice with cyclophosphamide at the time of priming with 0.25 microgram PVP results in the expression of TH function and priming of memory B cells.  相似文献   

13.
Greater than 75% of all hematologic malignancies derive from germinal center (GC) or post-GC B cells, suggesting that the GC reaction predisposes B cells to tumorigenesis. Because GC B cells acquire expression of the highly mutagenic enzyme activation-induced cytidine deaminase (AID), GC B cells may require additional DNA repair capacity. The goal of this study was to investigate whether normal human B cells acquire enhanced expression of DNA repair factors upon AID induction. We first demonstrated that several DNA mismatch repair, homologous recombination, base excision repair, and ATR signaling genes were overexpressed in GC B cells relative to naïve and memory B cells, reflecting activation of a process we have termed somatic hyperrepair (SHR). Using an in vitro system, we next characterized activation signals required to induce AID expression and SHR. Although AID expression was induced by a variety of polyclonal activators, SHR induction strictly required signals provided by contact with activated CD4+ T cells, and B cells activated in this manner displayed reduced levels of DNA damage-induced apoptosis. We further show the induction of SHR is independent of AID expression, as GC B cells from AID -/- mice retained heightened expression of SHR proteins. In consideration of the critical role that CD4+ T cells play in inducing the SHR process, our data suggest a novel role for CD4+ T cells in the tumor suppression of GC/post-GC B cells.  相似文献   

14.
B cells possess functional characteristics of innate immune cells, as they can present Ag to T cells and can be stimulated with microbial molecules such as TLR ligands. Because crude preparations of Staphylococcus aureus are frequently used as polyclonal B cell activators and contain potent TLR2 activity, the scope of this study was to analyze the impact of S. aureus-derived TLR2-active substances on human B cell activation. Peripheral B cells stimulated with chemically modified S. aureus cell wall preparations proliferated in response to stimulation with crude cell wall preparations but failed to be activated with pure peptidoglycan, indicating that cell wall molecules other than peptidoglycan are responsible for B cell proliferation. Subsequent analysis revealed that surface protein A (SpA), similar to BCR cross-linking with anti-human Ig, sensitizes B cells for the recognition of cell wall-associated TLR2-active lipopeptides (LP). In marked contrast to TLR7- and TLR9-triggered B cell stimulation, stimulation with TLR2-active LP and SpA or with crude cell wall preparations failed to induce IgM secretion, thereby revealing qualitative differences in TLR2 signaling compared with TLR7/9 signaling. Notably, combined stimulation with SpA plus TLR2 ligands induced vigorous proliferation of a defined B cell subset that expressed intracellular IgM in the presence of IL-2. Conclusion: S. aureus triggers B cell activation via SpA-induced sensitization of B cells for TLR2-active LP. Combined SpA and TLR2-mediated B cell activation promotes B cell proliferation but fails to induce polyclonal IgM secretion as seen after TLR7 and TLR9 ligation.  相似文献   

15.
The role of L3T4+ (CD4+) Th cells in generation of CTL specific for discrete minor histocompatibility Ag was investigated. Suppression of the function of Th cells in vivo by chronic treatment with anti-L3T4 mAb prevented congenic strains of mice from being primed and from generating CTL specific for Ag encoded by the minor histocompatibility loci--H-3, H-1, and B2m. Analysis of proliferative responses and lymphokine secretion of cells from animals primed with one of these minor H Ag, beta 2-microglobulin, but not treated with anti-L3T4 antibodies, indicated that L3T4- class I MHC-restricted T cells were themselves responsible for the very great majority of the observed minor H Ag-specific proliferation and secretion of lymphokines associated with both T cell proliferation and activation of CTL. All together, the data indicate that in responses against discrete minor H Ag, L3T4+Th-independent CTL are generated through an L3T4+Th-dependent pathway.  相似文献   

16.
Expression of class II antigens by subsets of activated T cells   总被引:1,自引:0,他引:1  
K S Zier 《Cellular immunology》1986,100(2):525-531
Gene products coded for within the HLA complex play an important role in the control of immune responses. Class I antigens, coded for by the HLA-A, B, and C loci, are expressed by virtually all mononuclear blood cells. Class II antigens, coded for by the DR, DQ, and DP loci, have a more limited tissue distribution. They are expressed by B cells, monocytes, and by activated, but not by resting, T cells. The class II molecules of B cells and antigen-presenting cells have long been of interest to immunologists, since they are involved in the presentation of antigen, in communication between T cells and B cells and between T cells and adherent cells, and in susceptibility to certain diseases. The class II antigens expressed by activated T cells, however, remain largely uncharacterized in terms of their specificity, functional significance, and molecular nature. We have studied the expression of DR and DQ antigens by activated T cells and then examined the expression of DR versus DQ antigens by Leu 2a and Leu 3a subsets of mitogen-activated populations. Our results demonstrated that, as for class II-positive macrophages, the intensity of staining with monoclonal antibodies directed against DR antigens was much greater than that obtained with those directed against DQ antigens. Interestingly, the percentages of Leu 2a- and Leu 3a-positive cells which expressed DR antigens were quite similar, as were the percentages of Leu 2a and Leu 3a cells which expressed DQ. Thus, there does not seem to be preferential expression of DR versus DQ antigens by mitogen-activated T-cell subsets. Finally, though both DR-positive-DQ-positive and DR-positive-DQ-negative populations were detected, few or no DR-negative-DQ-positive cells were observed in these populations.  相似文献   

17.
The present study investigates the effects of i.v. presensitization with class II H-2-disparate allogeneic cells on various L3T4+ T cell functions including the capability of rejecting the corresponding allogeneic skin graft. C57BL/6 (B6) mice were i.v. presensitized with class II H-2 disparate B6-C-H-2bm12 (bm12) spleen cells. Such presensitization did not affect the bm12-specific L3T4+ T cell-mediated proliferative and interleukin 2 (IL-2)-producing capacities. A single cell suspension of (B6 x bm12)F1 spleen cells was depleted of APC by two round-passages over Sephadex G-10 columns. This APC-depleted fraction of (B6 x bm12)F1 cells failed to stimulate B6 responding cells in mixed lymphocyte reactions (MLR). The addition of recombinant IL-1 to the MLR restored anti-bm12 MLR responses, indicating that APC-depleted (B6 x bm12)F1 cells bear bm12 alloantigens but are unable to stimulate B6 anti-bm12 L3T4+ T cells. A single i.v. administration of APC-depleted (B6 x bm12)F1 cells into B6 mice resulted in almost complete abrogation of the capacity of recipient B6 lymphoid cells to give anti-bm12 MLR and IL2 production. This suppression was bm12 alloantigen-specific and attributed to the elimination or functional impairment of anti-bm12 T cell clones rather than the induction of suppressor cells. The tolerance was also observed in graft-rejection responses. The strikingly prolonged survival of bm12 skin grafts was produced when grafts were implanted into B6 mice which had been presensitized with APC-depleted, but not with untreated (B6 x bm12)F1 spleen cells. These results indicate that allo-class II H-2 antigen-reactive L3T4+ T cells are rendered tolerant by i.v. presensitization with APC-depleted fraction of the corresponding allogeneic cells.  相似文献   

18.
Processing and presentation by T cells appear to be limited to antigens that can directly interact with the T-cell surface, thereby overcoming the T-cell inefficiency in antigen capture and internalization. Our study provides evidence that the hepatitis B virus (HBV) envelope proteins can also be efficiently processed and presented by CD4+ and CD8+ T cells to other T cells in a human leukocyte antigen class II-restricted fashion. This phenomenon suggests a receptor-mediated interaction between T cells and the HBV envelope and defines a system that can, we hope, be exploited for the identification of the receptor binding site within the HBV envelope and for the characterization of the putative cellular HBV receptor.  相似文献   

19.
20.
Stimulation of T cells by superantigens has been reported to be dependent on the presence of APC where binding to class II molecules is a prerequisite to recognition by the TCR. We examined the response of human T cells and a leukemic T cell line, Jurkat to the superantigen, streptococcal M protein. We show that immobilized or cross-linked streptococcal M protein stimulates Jurkat cells (V beta 8), but not normal purified human T cells, to produce IL-2. Activation of purified T cells by this superantigen required costimulatory signals provided by PMA, IL-1, and IL-6. These cytokines and growth factors alone can induce IL-2 production by T cells; however, proliferation occurred only in the presence of superantigen, which together with PMA, IL-1, and IL-6 induced the expression of IL-2R alpha on T cells. Similar results were obtained when the response of purified T cells to another known superantigen, staphylococcal enterotoxin B were examined, indicating that this phenomenon is not unique to M protein. Superantigens interact with a large number of T cells with particular V beta, and thus provide excellent models for studies of the role of biochemical events and signal transduction in T cell activation. Understanding these events may also explain the pathogenesis of autoimmune diseases associated with certain superantigens, such as streptococcal M protein that is thought to be involved in rheumatic fever and rheumatic heart disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号