首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autoinducer molecules are utilized by gram-negative and gram-positive bacteria to regulate density-dependent gene expression by a mechanism known as quorum sensing. PCR and DNA sequencing results showed that Campylobacter jejuni and Campylobacter coli possessed luxS, which is responsible for autoinducer-2 (AI-2) production. Using a Vibrio harveyi luminescence assay, the production of AI-2 was observed in milk, chicken broth, and brucella broth by C. coli, C. jejuni, Salmonella enterica serovar Typhimurium, and Escherichia coli O157:H7 under different conditions.  相似文献   

2.
This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria (FIB), and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manure-amended agricultural soils. Known concentrations of transformed green fluorescent protein-expressing Escherichia coli O157:H7/pZs and red fluorescent protein-expressing Salmonella enterica serovar Typhimurium/pDs were added to laboratory-scale manure-amended soil microcosms with moisture contents of 60% or 80% field capacity and incubated at temperatures of -20°C, 10°C, or 25°C for 120 days. A two-stage first-order decay model was used to determine stage 1 and stage 2 first-order decay rate coefficients and transition times for each organism and qPCR genetic marker in each treatment. Genetic markers for FIB (Enterococcus spp., E. coli, and Bacteroidales) exhibited decay rate coefficients similar to that of E. coli O157:H7/pZs but not of S. enterica serovar Typhimurium/pDs and persisted at detectable levels longer than both pathogens. Concentrations of these two bacterial pathogens, their counterpart qPCR genetic markers (stx1 and ttrRSBCA, respectively), and FIB genetic markers were also correlated (r = 0.528 to 0.745). This suggests that these qPCR genetic markers may be reliable conservative surrogates for monitoring fecal pollution from manure-amended land. Host-associated qPCR genetic markers for microbial source tracking decayed rapidly to nondetectable concentrations, long before FIB, Salmonella enterica serovar Typhimurium/pDs, and E. coli O157:H7/pZs. Although good indicators of point source or recent nonpoint source fecal contamination events, these host-associated qPCR genetic markers may not be reliable indicators of nonpoint source fecal contamination events that occur weeks following manure application on land.  相似文献   

3.
Flies (Diptera: Muscidae) that breed in faeces and other organic refuse (filth flies) have been implicated as vectors of pathogenic bacteria including Escherichia coli O157:H7, which cause haemorrhagic colitis in humans, and Campylobacter, which is the principal causative agent of human enteritis. The potential role of filth flies in the epidemiology of these pathogens in the United States was investigated by examining the prevalence of Campylobacter spp. and E. coli O157:H7 from two Arkansas turkey facilities. Polymerase chain reaction was conducted on DNA extractions of individual Musca domestica Linnaeus, Stomoxys calcitrans (Linnaeus), Hydrotaea aenescens (Wiedemann), Adia cinerella Fallen and turkey faecal samples using primers specific for E. coli H7, O157 and Campylobacter spp. Culturing verified that the flies were carrying viable Campylobacter spp. and E. coli O157:H7. Results from this study indicated that M. domestica, S. calcitrans, H. aenescens and Anthomyids are capable of carrying Campylobacter in North American poultry facilities and that the E. coli O157:H7 is carried by house flies and black dump flies associated with poultry. This PCR method provided a rapid and effective method to identify Campylobacter spp. and E. coli O157:H7 directly from individual filth flies.  相似文献   

4.
AIMS: To determine the prevalence of four bacterial zoonotic pathogens in beef cattle at time of slaughter in Northern Ireland (NI), in order to assess their potential for reducing beef safety. METHODS AND RESULTS: Faeces were collected postmortem from beef cattle (n =220) at seven EU registered abattoirs. Standard enrichment culturing methods were employed, plus immunomagnetic enrichment in the case of Escherichia coli O157:H7. Campylobacter spp. were found in 52 samples (24.8%), Listeria monocytogenes in 10 (4.8%), E. coli O157:H7 in 2 (0.9%) whilst Salmonella spp. were isolated from six out of 200 samples (3.0%). Five salmonellas were Salmonella Chandans and one was Salmonella Liverpool. CONCLUSIONS: Campylobacter spp. were the most frequently isolated pathogen, despite being relatively rare in beef. Genotyping showed the campylobacters to be very diverse, indicating cattle encounter campylobacters from many sources. The remaining three pathogens, which are associated with meats, occurred at relatively low frequencies, especially E. coli O157:H7. The Salmonella serovars found rarely infect humans. SIGNIFICANCE AND IMPACT OF THE STUDY: The low prevalence of E. coli O157:H7 in NI beef cattle was confirmed and the reasons for this merit further study. The four pathogens should have little impact on beef quality.  相似文献   

5.
Frequency of Escherichia coli O157:H7 isolation from stool specimens   总被引:8,自引:0,他引:8  
During a 6-month period, 7252 faeces specimens were examined for Escherichia coli serotype O157:H7. Forty-nine specimens (0.7%) from 19 patients yielded this organism. Escherichia coli O157:H7 was the third most frequently isolated bacterial pathogen, following Campylobacter jejuni and (or) Salmonella sp. Although regional variation between laboratories determined whether Campylobacter jejuni or Salmonella was the primary bacterial pathogen isolated, E. coli O157:H7 was consistently isolated more frequently than either Shigella or Yersinia enterocolitica.  相似文献   

6.
A multiplex fluorogenic PCR assay for simultaneous detection of pathogenic Salmonella strains and Escherichia coli O157:H7 was developed and evaluated for use in detecting very low levels of these pathogens in meat and feces. Two sets of primers were used to amplify a junctional segment of virulence genes sipB and sipC of Salmonella and an intragenic segment of gene eae of E. coli O157:H7. Fluorogenic reporter probes were included in the PCR assay for automated and specific detection of amplified products. The assay could detect <10 CFU of Salmonella enterica serovar Typhimurium or E. coli O157:H7 per g of meat or feces artificially inoculated with these pathogens and cultured for 6 to 18 h in a single enrichment broth. Detection of amplification products could be completed in 相似文献   

7.
W A Day  Jr  I L Pepper    L A Joens 《Applied microbiology》1997,63(3):1019-1023
Development of a PCR assay for Campylobacter jejuni is based on the isolation of species-specific DNA. An arbitrarily primed PCR incorporating 10-mer primers was used to generate fingerprints of C. jejuni M129 genomic DNA. Fingerprint products were then screened individually for their species specificity in dot blot hybridizations with 6 C. jejuni isolates, 4 Campylobacter species other than C. jejuni, and 27 enteric bacterial species other than Campylobacter spp. A 486-bp fingerprint product hybridized specifically to C. jejuni DNA under stringent conditions; no binding to Campylobacter DNA other than that of C. jejuni or to DNA from enteric bacteria was detected. The 486-bp fingerprint product was sequenced, and primers corresponding to three overlapping regions of the DNA probe were synthesized. Evaluation of the three primer pairs for specificity to C. jejuni DNA identified an oligonucleotide primer pair which amplified a 265-bp product from six C. jejuni isolates only. In sensitivity studies using a crude M129 lysate as the template, the C. jejuni-specific PCR amplified the 265-bp product in a lysate with as few as 100 bacteria.  相似文献   

8.
Survival of the green fluorescent protein-transformed human pathogens Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium was studied in a laboratory-simulated lettuce production chain. Dairy cows were fed three different roughage types: high-digestible grass silage plus maize silage (6:4), low-digestible grass silage, and straw. Each was adjusted with supplemental concentrates to high and low crude protein levels. The pathogens were added to manure, which was subsequently mixed (after 56 and 28 days for E. coli O157:H7 and Salmonella serovar Typhimurium, respectively) with two pairs of organically and conventionally managed loamy and sandy soil. After another 14 days, iceberg lettuce seedlings were planted and then checked for pathogens after 21 days of growth. Survival data were fitted to a logistic decline function (exponential for E. coli O157:H7 in soil). Roughage type significantly influenced the rate of decline of E. coli O157:H7 in manure, with the fastest decline in manure from the pure straw diet and the slowest in manure from the diet of grass silage plus maize silage. Roughage type showed no effect on the rate of decline of Salmonella serovar Typhimurium, although decline was significantly faster in the manure derived from straw than in the manure from the diet of grass silage plus maize silage. The pH and fiber content of the manure were significant explanatory factors and were positively correlated with the rate of decline. With E. coli O157:H7 there was a trend of faster decline in organic than in conventional soils. No pathogens were detected in the edible lettuce parts. The results indicate that cattle diet and soil management are important factors with respect to the survival of human pathogens in the environment.  相似文献   

9.
针对8种常见的食源性致病菌(金黄色葡萄球菌、副溶血弧菌、单核细胞增生李斯特菌、沙门氏菌、阪崎肠杆菌、志贺氏菌、肠出血性大肠杆菌O157:H7和空肠弯曲杆菌),建立了基于单碱基延伸标签反应原理的基因芯片检测方法。筛选和整合8种食源性致病菌基因组中的特异性序列和相应PCR引物,致病菌靶DNA片段被扩增和纯化作为单碱基延伸标签反应的模板,反应产物在DNA芯片上与探针进行杂交反应,然后通过扫描基片的荧光强度进行判断。实验结果表明,可采用基于单碱基延伸标签反应的基因芯片方法同时特异性检测8种食源性致病菌,基因组DNA多重检测灵敏度可达到0.1pg,以鼠伤寒沙门氏菌为单一检测对象的细菌纯培养物灵敏度可达到5×102CFU/mL。本方法可以快速灵敏地检测食源性致病菌,为食源性疾病的诊断和防治提供了一个有效的方法。  相似文献   

10.
AIM: To measure the decline rates of zoonotic agents introduced into liquid livestock wastes in on-farm storage tanks. METHODS AND RESULTS: Salmonella spp., Escherichia coli O157, Campylobacter jejuni, Listeria monocytogenes and Cryptosporidium parvum, propagated in laboratory-controlled conditions, were inoculated into 35,000-l volumes of fresh livestock wastes (pig slurries, cattle slurries and dirty waters). D-values for bacteria were six to 44 days, and for C. parvum were 133 to 345 days. Campylobacter jejuni declined significantly more rapidly than the other bacterial pathogens, while E. coli O157 declined significantly more slowly. On average, bacterial declines were not affected by the season of waste deposition and storage or by the dry matter content of the wastes, but were more rapid in dirty waters than in pig slurries. The physiciochemical composition of wastes in each category varied significantly. CONCLUSIONS: Zoonotic agents can survive for several months during storage of liquid livestock wastes. Livestock wastes should be batch-stored and not subjected to continuous additions. SIGNIFICANCE AND IMPACT OF THE STUDY: This study indicates that batches of liquid livestock waste, if contaminated with bacterial pathogens, should be stored for 6 months to reduce contamination levels. Alternative strategies for reducing C. parvum levels in liquid livestock wastes should be explored.  相似文献   

11.
This pilot study was aimed at documenting the presence of fecal indicators and enteric pathogens in blue mussels (Mytilus edulis) from 6 communities in Nunavik, Quebec. One to four 2?kg samples of mussels were collected at low tide in each community. Samples were investigated by enumeration methods for the fecal indicators enterococci, Escherichia coli, F-specific coliphages, Clostridium perfringens, and by molecular identification for the pathogens norovirus, Salmonella spp., Campylobacter jejuni, Campylobacter coli, and Campylobacter lari, verocytotoxin-producing E.?coli (particularly serovar O157:H7), Shigella spp., and Yersinia enterocolitica. In 5 communities, the presence of Giardia duodenalis and Cryptosporidium spp. was also tested by microscopy and molecular methods and that of Toxoplasma gondii was tested by molecular methods. Apart from small quantities of Clostridium perfringens in 2 samples, no bacterial or viral pathogens were detected in the mussels. Toxoplasma gondii was also not detected. However, G.?duodenalis and Cryptosporidium spp. were present in 18% and 73% of the samples investigated for these pathogens, respectively. When considering the indicators and the viral and bacterial pathogens investigated, the mussels examined were of good microbiological quality, but considering the presence of potentially zoonotic protozoa, it should be recommended that consumers cook the molluscs well before eating them.  相似文献   

12.
Genomic rearrangements (duplications and inversions) in enteric bacteria such as Salmonella enterica serovar Typhimurium LT2 and Escherichia coli K12 are frequent (10(-3) to 10(-5)) in culture, but in wild-type strains these genomic rearrangements seldom survive. However, inversions commonly survive in the terminus of replication (TER) region, where bidirectional DNA replication terminates; nucleotide sequences from S. enterica serovar Typhimurium LT2, S. enterica serovar Typhi CT18, E. coli K12, and E. coli O157:H7 revealed genomic inversions spanning the TER region. Assuming that S. enterica serovar Typhimurium LT2 represents the ancestral genome structure, we found an inversion of 556 kb in serovar Typhi CT18 between two of the 25 IS200 elements and an inversion of about 700 kb in E. coli K12 and E. coli O157:H7. In addition, there is another inversion of 500 kb in E. coli O157:H7 compared with E. coli K12. PCR analysis confirmed that all S. enterica serovar Typhi strains tested, but not strains of other Salmonella serovars, have an inversion at the exact site of the IS200 insertions. We conclude that inversions of the TER region survive because they do not significantly change replication balance or because they are part of the compensating mechanisms to regain chromosome balance after it is disrupted by insertions, deletions, or other inversions.  相似文献   

13.
AIMS: To test the inhibitory activity of 2-nitro-1-propanol (2NPOH) against Salmonella Typhimurium, Escherichia coli O157:H7 and Enterococcus faecalis. METHODS AND RESULTS: Specific growth rates (h(-1)) of S. Typhimurium, E. coli O157:H7 and Ent. faecalis were determined during culture in tryptic soya broth (TSB) supplemented with 0-10 mm 2NPOH. Growth rates were inhibited by 2NPOH, with nearly complete inhibition observed with 10 mm. Studies with S. Typhimurium revealed that its survivability during culture in TSB containing 5 or 10 mm 2NPOH was lower (P < 0.05) under aerobic than anaerobic conditions. The survivability of Salmonella during anaerobic culture in TSB containing 2.5 mm 2NPOH was less at pH 5.6 than at pH 7.0 and 8.0. No Salmonella survived anaerobic incubation in TSB supplemented with 10 mm 2NPOH regardless of pH. When incubated in suspensions of freshly collected populations of ruminal and faecal bacteria, Salmonella concentrations were lower (P < 0.05) in suspensions containing 10 mm 2NPOH than in suspensions containing no 2NPOH. CONCLUSIONS: 2NPOH inhibited S. Typhimurium, E. coli O157:H7 and Ent. faecalis. SIGNIFICANCE AND IMPACT OF THE STUDY: Results suggest that 2NPOH may be a useful antimicrobial supplement to reduce carriage of certain food-borne pathogens in food animals.  相似文献   

14.
AIMS: The aim of the study was to evaluate the effect of habituation at different pH conditions on the acid resistance of Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica serotype Typhimurium, and to identify potential differences between the adaptive responses of the three pathogens. METHODS: Stationary phase cells of L. monocytogenes, E. coli O157:H7 and S. Typhimurium, grown in glucose-free media, were exposed to pH 3.5 broth directly or after habituation for 90 min at various pH conditions from 4.0 to 6.0. Survivors at pH 3.5 were determined by plating on tryptic soy agar and incubating at 30 degrees C for 48 h. The kinetics (death rate) of the pathogens at pH 3.5 was calculated by fitting the data to an exponential model. RESULTS: Habituation to acidic environments provided protection of the pathogens against lethal acid conditions. This acid protection, however, was found to be pH dependent. For example, for E. coli O157:H7 an increased acid resistance was observed after habituation at a pH range from 4.0 to 5.5, while the maximum acid tolerance was induced at pH 5.0. Furthermore, the effect of low pH habituation was different among pathogens. For L. monocytogenes, E. coli O157:H7 and S. Typhimurium, the pH range within which habituation resulted to increased acid resistance was 5.0-6.0, 4.0-5.5 and 4.0-5.0, respectively, while the maximum acid tolerance was induced after habituation at pH 5.5, 5.0 and 4.5, respectively. SIGNIFICANCE: Acid stress conditions are common within current food processing technologies. The information on adaptive responses of L. monocytogenes, E. coli O157:H7 and S. Typhimurium after habituation to different pH environments provided in the present study, could lead to a more realistic evaluation of food safety concerns and to a better selection of processes in order to avoid adaptation phenomena and to minimize the potential for food safety risks.  相似文献   

15.
Multiplex PCR assay (m-PCR) with three sets of primers was developed for simultaneous identification of Campylobacter jejuni and C. coli. Poultry faecal samples were enriched in Preston broth for 24 h and streaking on selective media was performed before and after enrichment. m-PCR was applied on bacterial cultures harvested from media plates. The data showed a selective effect of Preston broth which favoured the growth of C. coli. Identification of the species by the hippurate hydrolysis test and by the m-PCR was performed on 294 isolates of Campylobacter. The efficiency of the identification by the biochemical test is only 34% in comparison to 100% efficiency with the PCR. The use of our m-PCR in combination with the culture method allowed reliable detection and identification of C. jejuni and C. coli within 3-4 d.  相似文献   

16.
Raw ground beef patties inoculated with stationary-phase cells of Escherichia coli O157:H7, salmonellae, or Campylobacter jejuni were subjected to gamma irradiation (60Co) treatment, with doses ranging from 0 to 2.52 kGy. The influence of two levels of fat (8 to 14% [low fat] and 27 to 28% [high fat]) and temperature (frozen [-17 to -15 degrees C] and refrigerated [3 to 5 degrees C]) on the inactivation of each pathogen by irradiation was investigated. In ascending order of irradiation resistance, the D10 values ranged from 0.175 to 0.235 kGy (C. jejuni), from 0.241 to 0.307 kGy (E. coli O157:H7), and from 0.618 to 0.800 kGy (salmonellae). Statistical analysis revealed that E. coli O157:H7 had a significantly (P < 0.05) higher D10 value when irradiated at -17 to -15 degrees C than when irradiated at 3 to 5 degrees C. Regardless of the temperature during irradiation, the level of fat did not have a significant effect on the D10 value. Salmonellae behaved like E. coli O157:H7 in low-fat beef, but temperature did not have a significant effect when the pathogen was irradiated in high-fat ground beef. Significantly higher D10 values were calculated for C. jejuni irradiated in frozen than in refrigerated low-fat beef. C. jejuni was more resistant to irradiation in low-fat beef than in high-fat beef when treatment was at -17 to -15 degrees C. Regardless of the fat level and temperature during inactivation, these pathogens were highly sensitive to gamma irradiation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
A membrane separator/bioreactor system was developed for rapid detection of Escherichia coli O157:H7. The system consisted of a membrane separator/bioreactor (0.45 μm of the pore size) to separate the-complexes of E. coli O157:H7 and alkaline phosphatase-conjugated anti-E. coli O157:H7 antibodies from the sample and to produce p-nitrophenol through the enzymatic reaction (p-nitrophenyl phosphate hydrolysis), and an optical detector for measuring the p-nitrophenol absorbance at 400 nm. The membrane material and the flow rate of the substrate for the enzymatic hydrolysis had great effects on the absorbance of p-nitrophenol. The optimum conditions for the enzymatic reaction were determined as 1.0 M Tris buffer, pH 8.0, and 0.1 M MgCl2 for this system. The detection range was 104± 107 CFU/mL with a relative standard deviation of 4.3 ± 14.2%, and whole procedure could be completed in 50 min without any enrichment and culture. Other bacteria such as Salmonella typhimurium, Campylobacter jejuni and Listeria monocytogenes had no significant interference with the detection of E. coli O157:H7.  相似文献   

18.
The effects of four average temperatures (7, 16, 23 and 33 degrees C) and daily oscillations with three amplitudes (0, +/-4, +/-7 degrees C) on the survival of the enteropathogens Escherichia coli O157:H7 and Salmonella serovar Typhimurium were investigated in small microcosms. Manure was inoculated with a green fluorescent protein transformed strain of either pathogen at 10(7) cells g(-1) dry weight. Samples were collected immediately after inoculation, and 1 and 2 weeks after inoculation for E. coli O157:H7, and immediately and after 2 and 3 weeks for Salmonella serovar Typhimurium. Population densities were determined by dilution plating and direct counting. In addition, total bacterial CFUs were determined. Growth and survival data were fitted to a modified logistic model. Analysis of the estimated parameter values showed that E. coli O157:H7 survived for shorter periods of time and was more sensitive to competition by the native microbial community than Salmonella serovar Typhimurium. Survival of both pathogens significantly declined with increasing mean temperatures and with increasing amplitude in daily temperature oscillations. The results indicated that responses of enteropathogens to fluctuating temperatures cannot be deduced from temperature relationships determined under constant temperatures.  相似文献   

19.
Emerging water-borne pathogens constitute a major health hazard in both developed and developing nations. A new dimension to the global epidemiology of cholera-an ancient scourge-was provided by the emergence of Vibrio cholerae O139. Also, water-borne enterohaemorrhagic Escherichia coli ( E. coli O157:H7), although regarded as a problem of the industrialized west, has recently caused outbreaks in Africa. Outbreaks of chlorine-resistant Cryptosporidium have motivated water authorities to reassess the adequacy of current water-quality regulations. Of late, a host of other organisms, such as hepatitis viruses (including hepatitis E virus), Campylobacter jejuni, microsporidia, cyclospora, Yersinia enterocolitica, calciviruses and environmental bacteria like Mycobacterium spp, aeromonads, Legionella pneumophila and multidrug-resistant Pseudomonas aeruginosa have been associated with water-borne illnesses. This review critically examines the potential of these as emerging water-borne pathogens. It also examines the possible reasons, such as an increase in the number of immunocompromised individuals, urbanization and horizontal gene transfer, that may underlie their emergence. Further, measures required to face the challenge posed by these pathogens are also discussed.  相似文献   

20.
A sensitive bacteria enrichment and detection system for viable Escherichia coli O157:H7 was developed using a piezoelectric biosensor-quartz crystal microbalance (QCM) with antibody-functionalized gold nanoparticles (AuNPs) used as detection verifiers and amplifiers. In the circulating-flow QCM system, capture antibodies for E. coli O157:H7 were first immobilized onto the QCM chip. The sample containing E. coli O157:H7 was circulated through the system in the presence of 10ml of brain heart infusion (BHI) broth for 18h. The cells of E. coli O157:H7 specifically captured and enriched on the chip surface of the QCM were identified by QCM frequency changes. Listeria monocytogenes and Salmonella Typhimurium were used as negative controls. After bacterial enrichment, detection antibody-functionalized AuNPs were added to enhance the changes in detection signal. The use of BHI enrichment further enhanced the sensitivity of the developed system, achieving a detection limit of 0-1log CFU/ml or g. The real-time monitoring method for viable E. coli O157:H7 developed in this study can be used to enrich and detect viable cells simultaneously within 24h. The unique advantages of the system developed offer great potential in the microbial analysis of food samples in routine settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号