首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
G Ge  S Wang  Y Han  C Zhang  S Lu  Z Huang 《PloS one》2012,7(7):e41573
Although the use of recombinant hepatitis B virus surface (HBsAg) protein vaccine has successfully reduced global hepatitis B infection, there are still a number of vaccine recipients who do not develop detectable antibody responses. Various novel vaccination approaches, including DNA vaccines, have been used to further improve the coverage of vaccine protection. Our previous studies demonstrated that HBsAg-based DNA vaccines could induce both humoral and CMI responses in experimental animal models. However, one form of the the HBsAg antigen, the large S antigen (HBs-L), expressed by DNA vaccine, was not sufficiently immunogenic in eliciting antibody responses. In the current study, we produced a modified large S antigen DNA vaccine, HBs-L(T), which has a truncated N-terminal sequence in the pre-S1 region. Compared to the original HBs-L DNA vaccine, the HBs-L(T) DNA vaccine improved secretion in cultured mammalian cells and generated significantly enhanced HBsAg-specific antibody and B cell responses. Furthermore, this improved HBsL DNA vaccine, along with other HBsAg-expressing DNA vaccines, was able to maintain predominantly Th1 type antibody responses while recombinant HBsAg protein vaccines produced in either yeast or CHO cells elicited mostly Th2 type antibody responses. Our data indicate that HBsAg DNA vaccines with improved immunogenicity offer a useful alternative choice to recombinant protein-based HBV vaccines, particularly for therapeutic purposes against chronic hepatitis infection where immune tolerance led to poor antibody responses to S antigens.  相似文献   

2.
DNA vaccinations are able to induce strong cellular immune responses in mice and confer protection against infectious agents. However, DNA vaccination of large animals appears to be less effective and requires repeated injections of large amounts of plasmid DNA. Enhancement of the efficiency of DNA vaccines may be achieved by coapplication of cytokine-expressing plasmids. Here we investigated, with woodchucks, whether coadministration of an expression plasmid for woodchuck gamma interferon (IFN-gamma), pWIFN-gamma, can improve DNA vaccination with woodchuck hepatitis virus core antigen (WHcAg). Animals were immunized with pWHcIm (a plasmid expressing WHcAg) alone or with a combination of pWHcIm and pWIFN-gamma using a gene gun. Six weeks postimmunization, all animals were challenged with 10(5) genome equivalents of woodchuck hepatitis virus (WHV). The antibody and lymphoproliferative immune responses to WHV proteins were determined after immunization and after challenge. Vaccination with pWHcIm and pWIFN-gamma led to a pronounced lymphoproliferative response to WHcAg and protected woodchucks against subsequent virus challenge. Two of three animals vaccinated with pWHcIm alone did not show a detectable lymphoproliferative response to WHcAg. A low-level WHV infection occurred in these woodchucks after challenge, as WHV DNA was detectable in the serum by PCR. None of the pWHcIm-vaccinated animals showed an anti-WHcAg antibody response after DNA vaccination or an anamnestic response after virus challenge. Our results indicate that coadministration of the WIFN-gamma gene with pWHcIm enhanced the specific cellular immune response and improved the protective efficacy of WHV-specific DNA vaccines.  相似文献   

3.
BACKGROUND: Attempts to optimize DNA vaccines in mice include using different routes of administration and different formulations. It may be more relevant to human use to carry such studies out in nonhuman primates. Here we compare different approaches to delivery of a DNA vaccine against the hepatitis B virus (HBV) in Aotus monkeys. MATERIALS AND METHODS: Thirty-two adult Aotus l. lemurinus monkeys divided into 8 groups of four were immunized with 400 microg of a DNA vaccine which encoded hepatitis B surface antigen (HBsAg). DNA in saline was administered by intradermal (ID) or intramuscular (IM) injection with needle and syringe, IM injection with the Biojector needleless injection system or combined ID (needle) and IM (Biojector). DNA formulated with cationic liposomes (CellFECTIN) was injected IM with needle or Biojector. DNA with added E. coli DNA (100 microg) was injected IM with the Biojector or ID. A ninth group of 4 monkeys was injected IM (needle) with Engerix-B, a commercial vaccine containing recombinant HBsAg (10 microg) adsorbed onto alum. Monkeys were boosted in an identical fashion to their prime at 8 weeks, but all received the protein vaccine (Engerix-B) at 16 weeks. Sera was assessed for antibodies against HBsAg (anti-HBs) by enzyme-linked imunosorbent assay (ELISA). RESULTS: The primary humoral response induced by IM delivery of the DNA vaccine was very poor. In most cases there was no detectable anti-HBs even after 2 DNA doses but the kinetics of the response to subsequent protein indicated that a memory B cell response had been induced. In contrast, following IM-administration of DNA using the Biojector, detectable anti-HBs were observed in 3 of 8 animals and evidence for immunological priming was apparent in an additional 4 of the 8 monkeys. ID injection of DNA vaccine in saline induced a potent antibody response which was augmented 6-fold by the addition of E. coli DNA. Combining ID and IM administration did not improve humoral immunity over ID injection alone. CONCLUSIONS: For immunization of primates with DNA vaccines, ID may be a preferable route to IM, although it is not clear whether the Aotus monkey is a relevant model for humans in this respect. Nevertheless, the use of the Biojector needleless injection system may improve responses with IM delivery of DNA vaccines. As well, the immunostimulatory action of E. coli DNA may be used to augment the humoral response induced by a DNA vaccine.  相似文献   

4.
Vaccine against human hepatitis B was prepared using antigen derived from hepatitis B carrier hepatoma cells grown in the interstices of a Diaflo hollow filter unit. Hepatitis B surface antigen (HBsAg) produced by these cells was purified by immune affinity chromatography, digestion with DNase and pepsin, and Sephadex G-150 separation. The Formalin-treated antigen was formulated in 20-micrograms dose on alum adjuvant with thimerosal added as a preservative. This cell culture vaccine was as potent as human plasma-derived vaccine as measured in a mouse potency assay. The vaccine proved safe in tests in chimpanzees and in human subjects who were in late stages of cancer of the central nervous system and who were receiving therapy for their condition. None of five subjects who received the vaccine developed untoward clinical reactions. Two of the subjects who received all three doses of vaccine developed antibody against HBsAg. Three persons, two given only the primary doses and one who was given all three doses but was lost to follow-up, demonstrated no response. The slow and relatively low antibody responses to the vaccine were similar to those in other immunosuppressed persons who were given vaccine of human plasma origin.  相似文献   

5.
Currently marketed vaccines against hepatitis B virus (HBV) based on the small (S) hepatitis B surface antigen (HBsAg) fail to induce a protective immune response in about 10% of vaccinees. DNA vaccination and the inclusion of PreS1 and PreS2 domains of HBsAg have been reported to represent feasible strategies to improve the efficacy of HBV vaccines. Here, we evaluated the immunogenicity of SAINT-18-formulated MIDGE-Th1 vectors encoding the S or the large (L) protein of HBsAg in mice and pigs. In both animal models, vectors encoding the secretion-competent S protein induced stronger humoral responses than vectors encoding the L protein, which was shown to be retained mainly intracellularly despite the presence of a heterologous secretion signal. In pigs, SAINT-18-formulated MIDGE-Th1 vectors encoding the S protein elicited an immune response of the same magnitude as the licensed protein vaccine Engerix-B, with S protein-specific antibody levels significantly higher than those considered protective in humans, and lasting for at least six months after the third immunization. Thus, our results provide not only the proof of concept for the SAINT-18-formulated MIDGE-Th1 vector approach but also confirm that with a cationic-lipid formulation, a DNA vaccine at a relatively low dose can elicit an immune response similar to a human dose of an aluminum hydroxide-adjuvanted protein vaccine in large animals.  相似文献   

6.
A large-scale purification method for hepatitis B surface antigen produced in a recombinant yeast (Saccharomyces cerevisiae) was established. The resulting HBsAg was greater than 99% pure and suitable for vaccine use. The yeast-derived HBsAg was structurally and biochemically similar to plasma-derived HBsAg. The anti-HBs antibody producing potency of the yeast-derived vaccine in mice was significantly higher than that of the plasma-derived vaccine. The yeast-derived vaccine induced protective antibody against hepatitis B virus of either adr or ayw subtype in a chimpanzee efficacy study. These observations demonstrate the usefulness of the yeast-derived vaccine as a second-generation hepatitis B vaccine.  相似文献   

7.
DNA vaccines offer considerable promise for improvement over conventional vaccines. For the crucial step of delivering DNA vaccines intracellularly, electroporation (EP) has proven to be highly effective. This method has yielded powerful humoral and cellular responses in various species, including nonhuman primates. In an attempt to further improve DNA vaccination we used micron-size gold particles (which do not bind or adsorb DNA) as a particulate adjuvant which was coinjected with DNA intramuscularly into mice, followed by EP of the target site. The presence of gold particles accelerated the antibody response significantly. Maximum titers against hepatitis B surface antigen (HBsAg) were reached after one boost in 6 weeks, whereas 8 weeks were required without particles. These immunizations were effective in protecting mice against tumor challenge with cancer cells expressing HBsAg as a surrogate cancer antigen. Computer modeling of electric fields and gene expression studies indicate that gold particles do not stimulate EP and subsequent antigen expression. The particles may act as an attractant for immune cells, especially antigen presenting cells. We conclude that particulate adjuvants combined with DNA vaccine delivery by EP reduces the immune response time and may increase vaccine efficacy. This method may become valuable for developing prophylactic as well as therapeutic vaccines. The rapid response may be of particular interest in countering bio-terrorism.  相似文献   

8.
Following the demonstration of a fully satisfactory immunogenic activity of a hepatitis B vaccination protocol consisting of three doses of Hevac B Pasteur vaccine given at 3,5 and 11 months of age, it was possible to administer this vaccine at the same times as the vaccinations for diphtheria, tetanus and polio which are mandatory in Italy at those ages. We have also shown that both another plasma-derived vaccine, H-B-VAX (MSD), as well as the DNA-recombinant Engerix B (SK&F) are highly immunogenic when given at the same times as the mandatory childhood vaccinations. In this paper we demonstrate that the same schedule can be used for another hepatitis B vaccine prepared by a DNA-recombinant technique, Recombivax HB (MSD) recently introduced in Italy. In fact two doses of this vaccine, the first given at three months of age and the second two months later, resulted in a 100% seroconversion rate and a mean anti-HBs titre of 440 mUI/ml. Although the date are incomplete since the third dose will be given at 11 months of age, we conclude that this hepatitis B vaccine can also be used in the mass vaccination campaigns of infants in Italy, the first of which was initiated in January 1987 in an hyperendemic area near Naples (HBsAg prevalence about 14%). We underline that this mass vaccination campaign is the first in Europe.  相似文献   

9.
In order to evaluate the seroepidemiology and response to Butang vaccine in adolescents from low income families in Central Brazil, blood samples of 664 adolescents were tested for hepatitis B surface antigen (HBsAg), hepatitis B core antibody (anti-HBc), and hepatitis B surface antibody (anti-HBs) markers, and multiple logistical regression analysis was carried out to determine variables associated with hepatitis B virus (HBV) infection markers. further, three 20 microg Butang vaccine doses were offered to all susceptible individuals (n = 304). Among those who accepted them (n = 182), the seroresponse was evaluated in 170 individuals by quantitative anti-HBs. an overall hbv prevalence of 5.9% was found: four adolescents were HBsAg positive, 24 were anti-HBc, anti-HBs-reactive, and 11 were anti-HBc only. The analyse of risk factors showed that age 16-19 years, place of birth outside Goiás, school B and body piercing were statistically associated with HBV infection markers (p < 0.05). All 170 adolescents responded to Butang, and a geometric mean titer (gmt) of 4344 mUI/ml was obtained. these results reinforce the importance of hepatitis b vaccine in adolescents despite of the hbv regional endemicity, and suggest that three doses of 20 microg of the Butang should guarantee protective anti-hbs levels to individuals at a critical time for hepatitis b acquiring such as latter adolescence and adulthood.  相似文献   

10.
11.
研究鱼山镇乙肝疫苗接种率不同人群的乙肝病毒表面抗原(HBsAg)携带率的差异。将该镇所有户籍登记在册人员按出生日期分成3组,再按随机抽样法对每个年龄组抽取一定数量的人组成样本,调查乙肝疫苗接种史;对每位参加者采集静脉血5ml,无菌分离血清,使用固相放射免疫试剂和酶联免疫试剂检测乙肝病毒表面抗原和抗乙肝病毒表面抗原抗体(HBsAb,抗-HBs)。小年龄组、中年龄组、大年龄组乙肝疫苗接种率依次为80.00%、50.46%、25.36%,差异具有统计学意义(χ2=262.24,P<0.005);小年龄组、中年龄组、大年龄组HBsAg携带率依次为2.07%、11.93%、17.87%,差异具有统计学意义(χ2=77.48,P<0.005);小年龄组、中年龄组、大年龄组HBsAb依次为43.38%、24.77%、10.95%,差异具有统计学意义(χ2=107.28,P<0.005)。乙肝疫苗接种率在小年龄组、中年龄组、大年龄组依次降低,HBsAg携带率依次增高,HBsAb阳性率依次降低。因此,接种乙肝疫苗对人群有较好的保护作用,人群乙肝疫苗接种率越高,HBsAb阳性率越高,HBsAg携带率越低。  相似文献   

12.
乙型肝炎病毒(hepatitis B virus,HBV)极易形成慢性感染,主要机制在于感染者不能产生强有力的细胞免疫应答以清除病毒[1].慢性HBV感染者体内虽然存在HBV抗原特异性T淋巴细胞,但对HBV抗原的反应性较低.研究发现,增强这类T淋巴细胞的反应性,可以促进HBV的清除[2].  相似文献   

13.
Woodchucks chronically infected with the woodchuck hepatitis virus (WHV) were treated with the antiviral drug 1-(2-fluoro-5-methyl-beta-L-arabinofuranosyl)-uracil (L-FMAU) or placebo for 32 weeks. Half the woodchucks in each group then received four injections of surface antigen vaccine during the next 16 weeks. Vaccination alone elicited a low-level antibody response to surface antigen in most carriers but did not affect serum WHV DNA and surface antigen. Carriers treated first with L-FMAU to reduce serum WHV DNA and surface antigen and then vaccinated had a similar low-level antibody response to surface antigen. Following vaccinations, cell-mediated immunity to surface antigen was demonstrated in both groups, independent of serum viral and antigen load, but was significantly enhanced in woodchucks treated with L-FMAU and was broadened to include other viral antigens (core, e, and x antigens and selected core peptides). Cell-mediated immunity and antibody responses to surface antigen were observed after drug discontinuation in half of the carriers that received L-FMAU alone. Surface antigen vaccine alone or in combination with drug broke humoral and cell-mediated immune tolerance in chronic WHV infection, but the combination with drug was more effective. This suggested that a high viral and antigen load in carriers is important in maintaining immunologic tolerance during chronicity. The humoral and cellular immunity associated with the combination of L-FMAU and vaccine resembled that observed in self-limited WHV infection. Such combination therapy represents a potentially useful approach to the control of chronic hepatitis B virus infection in humans.  相似文献   

14.
The effect of abatacept, a selective T-cell co-stimulation modulator, on vaccination has not been previously investigated. In this open-label, single-dose, randomized, parallel-group, controlled study, the effect of a single 750 mg infusion of abatacept on the antibody response to the intramuscular tetanus toxoid vaccine (primarily a memory response to a T-cell-dependent peptide antigen) and the intramuscular 23-valent pneumococcal vaccine (a less T-cell-dependent response to a polysaccharide antigen) was measured in 80 normal healthy volunteers. Subjects were uniformly randomized to receive one of four treatments: Group A (control group), subjects received vaccines on day 1 only; Group B, subjects received vaccines 2 weeks before abatacept; Group C, subjects received vaccines 2 weeks after abatacept; and Group D, subjects received vaccines 8 weeks after abatacept. Anti-tetanus and anti-pneumococcal (Danish serotypes 2, 6B, 8, 9V, 14, 19F and 23F) antibody titers were measured 14 and 28 days after vaccination. While there were no statistically significant differences between the dosing groups, geometric mean titers following tetanus or pneumococcal vaccination were generally lower in subjects who were vaccinated 2 weeks after receiving abatacept, compared with control subjects. A positive response (defined as a twofold increase in antibody titer from baseline) to tetanus vaccination at 28 days was seen, however, in ≥ 60% of subjects across all treatment groups versus 75% of control subjects. Similarly, over 70% of abatacept-treated subjects versus all control subjects (100%) responded to at least three pneumococcal serotypes, and approximately 25–30% of abatacept-treated subjects versus 45% of control subjects responded to at least six serotypes.  相似文献   

15.
Wang Z  Zhang S  Luo C  Wu Q  Liu Q  Zhou YH  Hu Y 《PloS one》2011,6(9):e25130

Background

Passively acquired maternal antibodies in infants may inhibit active immune responses to vaccines. Whether maternal antibody against hepatitis B surface antigen (anti-HBs) in infants may influence the long-term immunogenicity of hepatitis B vaccine remains unknown.

Methodology/Principal Findings

Totally 338 pairs of mothers and children were enrolled. All infants were routinely vaccinated against hepatitis B based on 0-, 1- and 6-month schedule. We characterized the transplacental transfer of maternal anti-HBs, and compared anti-HBs response in children of mothers with or without anti-HBs. In a prospective observation, all 63 anti-HBs positive mothers transferred anti-HBs to their infants; 84.1% of the infants had higher anti-HBs concentrations than their mothers. One and half years after vaccination with three doses of hepatitis B vaccine, the positive rate and geometric mean concentration (GMC) of anti-HBs in 32 infants with maternal anti-HBs were comparable with those in 32 infants without maternal antibody (90.6% vs 87.5%, P = 0.688, and 74.5 vs 73.5 mIU/ml, P = 0.742, respectively). In a retrospective analysis, five and half years after vaccination with three doses vaccine, the positive rates of anti-HBs in 88 children of mothers with anti-HBs ≥1000 mIU/ml, 94 children of mothers with anti-HBs 10–999 mIU/ml, and 61 children of mothers with anti-HBs <10 mIU/ml were 72.7%, 69.2%, and 63.9% (P = 0.521), respectively; anti-HBs GMC in these three groups were 38.9, 43.9, and 31.7 mIU/ml (P = 0.726), respectively.

Conclusions/Significance

The data demonstrate that maternal anti-HBs in infants, even at high concentrations, does not inhibit the long-term immunogenicity of hepatitis B vaccine. Thus, current hepatitis B vaccination schedule for infants will be still effective in the future when most infants are positive for maternal anti-HBs due to the massive vaccination against hepatitis B.  相似文献   

16.
There are estimated to be 350 million chronic carriers of hepatitis B infection worldwide. Patients with chronic hepatitis B are at risk of liver cirrhosis with associated mortality because of hepatocellular carcinoma and other complications. An important goal, therefore, is the development of an effective therapeutic vaccine against chronic hepatitis B virus (HBV). A major barrier to the development of such a vaccine is the impaired immune response to HBV antigens observed in the T cells of affected patients. One strategy to overcome these barriers is to activate mucosal T cells through the use of nasal vaccination because this may overcome the systemic immune downregulation that results from HBV infection. In addition, it may be beneficial to present additional HBV epitopes beyond those contained in the traditional hepatitis B surface antigen (HbsAg) vaccine, for example, by using the hepatitis B core antigen (HBcAg). This is advantageous because HBcAg has a unique ability to act as a potent Th1 adjuvant to HbsAg, while also serving as an immunogenic target. In this study we describe the effect of coadministration of HBsAg and HBcAg as part of a strategy to develop a more potent and effective HBV therapeutic vaccine.  相似文献   

17.
A standard mouse potency test was performed to evaluate the immunogenicity of recombinant hepatitis B surface antigen (HBsAg) produced in the baculovirus/insect cell expression system. Groups of NIH Swiss mice were immunized with serial four-fold amounts of either baculovirus-derived HBsAg adsorbed to aluminum sulfate or a commercially available yeast-derived recombinant HBsAg vaccine preparation. Results from these experiments showed that the effective dose of baculovirus- and yeast-derived HBsAg vaccine preparations necessary to seroconvert 50% of the animals were similar. The duration of the antibody response to HBsAg was studied in mice immunized with the highest doses of the two recombinant vaccine preparations 3 and 6 months after injection. No decrease in the anti-HBs response was observed 6 months after injection. No decrease in the anti-HBs response was observed 6 months after immunization with either of the two vaccine preparations. These results indicate that the baculovirus-derived recombinant HBsAg could serve as an alternative vaccine candidate for hepatitis B virus.  相似文献   

18.
Early vaccination is necessary to protect infants from various infectious diseases. However, this is often unsuccessful largely due to the immaturity of the neonatal immune system. Furthermore, maternally derived antibodies can interfere with active immunization. We have previously shown in young mice that immune responses against several different antigens can be improved by the addition of oligodeoxynucleotides containing immunostimulatory CpG motifs (CpG ODN). In this study we have evaluated immunization of newborn (1-7-day-old) BALB/c mice against hepatitis B surface antigen (HBsAg), with alum and/or CpG ODN, in the presence of high levels of maternal antibody against HBsAg (anti-HBs). Seroconversion rates and anti-HBs titers were compared to those induced by a HBsAg-expressing plasmid, since other studies had suggested DNA vaccines to be superior to protein vaccines in young mice with maternal antibody. HBsAg/alum/CpG ODN was superior to DNA vaccine in inducing HBsAg-specific CTL responses in young mice in the presence of maternally transferred anti-HBs antibodies. However, B cell responses to both HBsAg/alum/CpG ODN and DNA vaccines remained weak in the presence of maternally transferred anti-HBs antibodies.  相似文献   

19.
Fetal immunization of baboons induces a fetal-specific antibody response   总被引:3,自引:0,他引:3  
Neonates face a high risk of infection because of the immaturity of their immune systems. Although the transplacental transfer of maternal antibodies to the fetus may convey improved postnatal immunity, this transfer occurs late in gestation and may fail to prevent in utero infection. Both fetal immunization and in utero exposure to antigen can result in a state of immunologic tolerance in the neonate. Tolerance induction of fetal and premature infant lymphocytes has become a paradigm for neonatal responsiveness. However, fetal IgM responses have been demonstrated to maternal immunization with tetanus toxoid and to congenital infections such as rubella, toxoplasma, cytomegalovirus and human immunodeficiency virus. Moreover, 1-week-old infants can respond to standard pediatric vaccination, and neonates immunized with polysaccharide antigens do not develop immunologic tolerance. Here, direct immunization of the baboon fetus with recombinant hepatitis B surface antigen produced a specific fetal IgG antibody response. No specific maternal antibody response was detected, eliminating the possibility of vertical antibody transmission to the fetus. Some infants also responded to later vaccinations with hepatitis B surface antigen, indicating that no immunological tolerance was induced by prior fetal immunization. These results characterize the ability of the fetal immune system to respond to in utero vaccination. We demonstrate that active fetal immunization can serve as a safe and efficient vaccination strategy for the fetus and neonate.  相似文献   

20.
CIA07 is an immunostimulatory agent composed of bacterial DNA fragments and modified lipopolysaccharide, which has antitumor activity against bladder cancer in mice. In this study, the adjuvant activity of CIA07 was evaluated using hepatitis B virus surface antigen (HBsAg) as the immunogen. Mice were immunized intramuscularly three times at 1-week intervals with HBsAg alone or in combination with alum, bacterial DNA fragments, modified lipopolysaccharide, CIA07 or CpG1826, and immune responses were assessed. At 1 week after the final injection, the HBsAg-specific total serum IgG antibody titer in CIA07-treated mice was 14 times higher than that in animals administered antigen alone, six times higher than in mice given alum or bacterial DNA fragments and twice as high as those treated with modified lipopolysaccharide or CpG1826, and remained maximal until 8 weeks postimmunization. Animals receiving antigen alone or plus alum displayed barely detectable HBsAg-specific serum IgG2a antibody responses. However, coadministration of CIA07 with antigen led to markedly enhanced serum IgG2a antibody titer and IFN-gamma(+) production in splenocytes, indicating that CIA07 effectively induces Th1-type immune responses. In addition, the number of HBsAg-specific CD8(+) T cells in peripheral blood mononuclear cells was elevated in CIA07-treated mice. These data clearly demonstrate that CIA07 is able to induce both cellular and humoral immune responses to HBsAg, and confirm its potential as an adjuvant in therapeutic vaccines for hepatitis B virus infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号