首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Cancer invasion and metastasis are the major causes of cancer patient mortality. Various growth factors, including hepatocyte growth factor (HGF), are known to promote cancer invasion and metastasis, but the regulatory mechanisms involved are not fully understood. Here, we show that HGF-promoted migration and invasion of breast cancer cells are regulated by CUB domain–containing protein 1 (CDCP1), a transmembrane activator of SRC kinase. In metastatic human breast cancer cell line MDA-MB-231, which highly expresses the HGF receptor MET and CDCP1, we show that CDCP1 knockdown attenuated HGF-induced MET activation, followed by suppression of lamellipodia formation and cell migration/invasion. In contrast, in the low invasive/nonmetastatic breast cancer cell line T47D, which had no detectable MET and CDCP1 expression, ectopic MET expression stimulated the HGF-dependent activation of invasive activity, and concomitant CDCP1 expression activated SRC and further promoted invasive activity. In these cells, CDCP1 expression dramatically activated HGF-induced membrane remodeling, which was accompanied by activation of the small GTPase Rac1. Analysis of guanine nucleotide exchange factors revealed that ARHGEF7 was specifically required for CDCP1-dependent induction of HGF-induced invasive ability. Furthermore, immunofluorescence staining demonstrated that CDCP1 coaccumulated with ARHGEF7. Finally, we confirmed that the CDCP1-SRC axis was also crucial for HGF and ARHGEF7-RAC1 signaling in MDA-MB-231 cells. Altogether, these results demonstrate that the CDCP1-SRC-ARHGEF7-RAC1 pathway plays an important role in the HGF-induced invasion of a subset of breast cancer cells.  相似文献   

2.
Benzyl isothiocyanate (BITC), which is found in cruciferous vegetables, has been shown to have anti-carcinogenic properties. Hepatocyte growth factor (HGF) has the ability to stimulate dissociation, migration, and invasion in various tumor cells, and abnormally increased expressions of HGF and its transmembrane tyrosine kinase receptor, c-Met, have previously been detected in human breast cancer, and are associated with high tumor grade and poor prognosis. In this study, in order to assess the mechanisms relevant to the BITC-induced regulation of breast cancer cell migration and invasion, MDA-MB-231 human breast cancer cells and 4T1 murine mammary carcinoma cells were cultured in the presence of 0-4?μmol/l BITC with or without 10?μg/l of HGF. BITC inhibited both the basal and HGF-induced migration of MDA-MB-231 and 4T1 cells in a dose-dependent manner. In MDA-MB-231 cells, BITC reduced both basal and HGF-induced secretion and activity of urokinase-type plasminogen activator (uPA). In addition, BITC increased the protein levels of plasminogen activator inhibitor-1. HGF stimulated c-Met and Akt phosphorylation, but did not affect the phosphorylation of extracellular signal-regulated kinase-1/2 or stress-activated protein/c-jun N-terminal kinase. BITC suppressed NF-κB activity and reduced the HGF-induced phosphorylation of c-Met and Akt in a dose-dependent manner. LY294002, a specific Akt inhibitor, reduced both basal and HGF-induced uPA secretion and migration of MDA-MB-231 cells. In this study, we demonstrated that BITC profoundly inhibits the migration and invasion of MDA-MB-231 cells, which is associated with reduced uPA activity, and also that these phenomena are accompanied by the suppression of Akt signaling.  相似文献   

3.
For cancer metastasis, tumor cells present in the circulation must first adhere to the endothelium. Integrins play a central role in leukocyte adhesion to the endothelium and subsequent migration into tissues. The majority of tumor cells derived from solid cancers, including breast cancer, do not express integrins. We investigated the mechanisms of adhesion and transendothelial migration of cancer cells using breast carcinoma cell lines. Our results showed the following features of breast cancer cells: (1) HGF stimulated breast cancer cells by up-regulating CD44 expression in a concentration-dependent manner. (2) the maximum level of HGF-induced CD44 up-regulation on breast cancer cell lines occurred within 3 h. (3) HGF-induced up-regulation of CD44 was mediated by the tyrosine kinase signaling pathway. (4) HGF induced CD44-mediated adhesion of tumor cell lines to bone marrow-derived endothelial cells. (5) HGF did not change rolling of breast cancer cell lines on bone marrow-derived endothelial cells, but enhanced firm adhesion of cancer cells on endothelial cells under shear stress conditions. (6) HGF increased transendothelial migration of cancer cells. Our results indicate that HGF stimulates CD44-mediated adhesion of breast cancer cells to bone marrow-derived endothelial cells, which subsequently results in transendothelial migration of tumor cells. These results suggest that CD44 may confer the metastatic properties of breast cancer cells and, therefore, could be used as a target in future molecular cancer therapy.  相似文献   

4.
The multiple isoforms of the transmembrane glycoprotein CD44 are produced by alternative RNA splicing. Expression of CD44 isoforms containing variable 5 exon (v5) correlates with enhanced malignancy and invasiveness of some tumors. Here we demonstrate that SRm160, a splicing coactivator, regulates CD44 alternative splicing in a Ras-dependent manner. Overexpression of SRm160 stimulates inclusion of CD44 v5 when Ras is activated. Conversely, small interfering RNA (siRNA)-mediated silencing of SRm160 significantly reduces v5 inclusion. Immunoprecipitation shows association of SRm160 with Sam68, a protein that also stimulates v5 inclusion in a Ras-dependent manner, suggesting that these two proteins interact to regulate CD44 splicing. Importantly, siRNA-mediated depletion of CD44 v5 decreases tumor cell invasion. Reduction of SRm160 by siRNA transfection downregulates the endogenous levels of CD44 isoforms, including v5, and correlates with a decrease in tumor cell invasiveness.  相似文献   

5.
Cells derived from the inner medullary collecting duct undergo in vitro branching tubulogenesis to both the c-met receptor ligand hepatocyte growth factor (HGF) as well as epidermal growth factor (EGF) receptor ligands. In contrast, many other cultured renal epithelial cells respond in this manner only to HGF, suggesting that these two receptors may use independent signaling pathways during morphogenesis. We have therefore compared the signaling pathways for mIMCD-3 cell morphogenesis in response to EGF and HGF. Inhibition of the p42/44 mitogen-activated protein kinase (MAPK) pathway with the mitogen-activated protein kinase kinase (MKK1) inhibitor PD98059 (50 microm) markedly inhibits HGF-induced cell migration with only partial inhibition of EGF-induced cell motility. Similarly, HGF-dependent, but not EGF-dependent, branching morphogenesis was more greatly inhibited by the MKK1 inhibitor. Examination of EGF-stimulated cells demonstrated that extracellular-regulated kinase 5 (ERK5) was activated in response to EGF but not HGF, and that activation of ERK5 was only 60% inhibited by 50 microm PD98059. In contrast, the MKK inhibitor U0126 markedly inhibited both ERK1/2 and ERK5 activation and completely prevented HGF- and EGF-dependent migration and branching process formation. Expression of dominant negative ERK5 (dnBMK1) likewise inhibited EGF-dependent branching process formation, but did not affect HGF-dependent branching process formation. Our results indicate that activation of the ERK1/ERK2 signaling pathway is critical for HGF-induced cell motility/morphogenesis in mIMCD-3 cells, whereas ERK5 appears to be required for EGF-dependent morphogenesis.  相似文献   

6.
The hepatocyte growth factor (HGF) and the HGF receptor Met pathway are important in the pathogenesis of interstitial lung disease (ILD). Alternatively spliced isoforms of CD44 containing variable exon 6 (CD44v6) and its ligand hyaluronan (HA) alter cellular function in response to interaction between CD44v6 and HGF. TGF-β1 is the crucial cytokine that induces fibrotic action in ILD fibroblasts (ILDFbs). We have identified an autocrine TGF-β1 signaling that up-regulates both Met and CD44v6 mRNA and protein expression. Western blot analysis, flow cytometry, and immunostaining revealed that CD44v6 and Met colocalize in fibroblasts and in tissue sections from ILD patients and in lungs of bleomycin-treated mice. Interestingly, cell proliferation induced by TGF-β1 is mediated through Met and CD44v6. Further, cell proliferation mediated by TGF-β1/CD44v6 is ERK-dependent. In contrast, action of Met on ILDFb proliferation does not require ERK but does require p38MAPK. ILDFbs were sorted into CD44v6+/Met+ and CD44v6/Met+ subpopulations. HGF inhibited TGF-β1-stimulated collagen-1 and α-smooth muscle cell actin expression in both of these subpopulations by interfering with TGF-β1 signaling. HGF alone markedly stimulated CD44v6 expression, which in turn regulated collagen-1 synthesis. Our data with primary lung fibroblast cultures with respect to collagen-1, CD44v6, and Met expressions were supported by immunostaining of lung sections from bleomycin-treated mice and from ILD patients. These results define the relationships between CD44v6, Met, and autocrine TGF-β1 signaling and the potential modulating influence of HGF on TGF-β1-induced CD44v6-dependent fibroblast function in ILD fibrosis.  相似文献   

7.
8.
9.
Hepatocyte growth factor (HGF) is critical for triggering metastasis of hepatocellular carcinoma cell (HCC). Extracellular signal-regulated kinase (ERK) mediates HGF-induced cell migration via focal adhesion signaling. Protein kinase C (PKC) is a negative regulator of ERK activation, however, both PKC and ERK were required for HGF-induced cell migration. To address this intriguing issue, the signal mechanisms for HGF-induced HepG2 cell migration were investigated in a long-term fashion. HGF-induced phosphorylations of ERK, Src (at Tyr 416) and paxillin (at Ser178 and Tyr31) were up and down for 3 times within 24 h. HGF also induced fluctuant PKC activation and Rac degradation. Consistently, HGF induced intermittent actin polarization within 24 h, which can be blocked by the inhibitors of PKC (Bisindolymaleimide) and ERK. Inhibitor studies revealed that ERK was required for HGF-induced paxillin phosphorylation at Ser178, whereas PKC and Rac-1 may suppress HGF-induced phosphorylation of ERK and paxillin (at Ser178) and upregulate phosphorylation of paxillin at Tyr31. Based on shRNA technique, PKCα and δ were responsible for suppressing HGF-induced phosphorylation of ERK and paxillin (at Ser178), whereas PKC ε and ζ were required for phosphorylation of paxillin at Tyr31. The HGF-induced fluctuant signaling is reminiscent of c-Met endocytosis. Using Concanavalin A, an inhibitor of endocytosis, we found that c-Met endocytosis was required for PKC to suppress ERK phosphorylation. Moreover, HGF-induced c-Met degradation was also fluctuant, which can be prevented by Bisindolymaleimide. In conclusion, PKC is critical for mediating HGF-induced fluctuant ERK-paxillin signaling during cell migration, probably via triggering endosomal degradation of c-Met.  相似文献   

10.
Nasopharyngeal carcinoma (NPC) is a common malignant tumor with high invasive and metastatic potential. The hepatocyte growth factor (HGF)-Met signaling pathway has a critical role in mediating the invasive growth of many different types of cancer, including head and neck squamous cell carcinoma. HGF also stimulates NPC cell growth and invasion in the cell line model. In this study, we determined the inhibitory effect of Met, using a Met-targeting monoclonal antibody (SAIT301), on the invasive and growth potential of NPC cell lines. Met inhibition by SAIT301 resulted in highly significant inhibition of cell migration and invasion in both the HONE1 and HNE1 cell lines. In addition, we also found that co-treatment of SAIT301 and HGF decreased the anchorage-independent growth induced by HGF in HNE1 cell lines. After SAIT301 treatment, Met, together with its downstream signaling proteins, showed downregulation of p-Met and p-ERK, but not p-AKT, in both HONE1 and HNE1 cell lines. Interestingly, we found that HGF treatment of NPC cell lines induced early growth response protein (EGR-1) expression, which is involved in cell migration and invasion. In addition, co-treatment with SAIT301 and HGF inhibited the HGF-induced expression of EGR-1. Next, knockdown of EGR-1 using small-interfering RNA inhibited HGF-induced cell invasion in NPC cell lines, suggesting that the expression level of EGR-1 is important in HGF-induced cell invasion of NPC cells. Therefore, the results support that SAIT301 inhibited Met activation as well as the downstream EGR-1 expression and could have therapeutic potential in NPC. Taken together, we suggest that Met is an anticancer therapeutic target for NPC that warrants further investigation and clinical trials and SAIT301 may be a promising tool for NPC therapy.  相似文献   

11.
Tight regulation of receptor tyrosine kinases (RTKs) is crucial for normal development and homeostasis. Dysregulation of RTKs signaling is associated with diverse pathological conditions including cancer. The Met RTK is the receptor for hepatocyte growth factor (HGF) and is dysregulated in numerous human tumors. Here we show that Abl family of non-receptor tyrosine kinases, comprised of Abl (ABL1) and Arg (ABL2), are activated downstream of the Met receptor, and that inhibition of Abl kinases dramatically suppresses HGF-induced cell scattering and tubulogenesis. We uncover a critical role for Abl kinases in the regulation of HGF/Met-dependent RhoA activation and RhoA-mediated actomyosin contractility and actin cytoskeleton remodeling in epithelial cells. Moreover, treatment of breast cancer cells with Abl inhibitors markedly decreases Met-driven cell migration and invasion. Notably, expression of a transforming mutant of the Met receptor in the mouse mammary epithelium results in hyper-activation of both Abl and Arg kinases. Together these data demonstrate that Abl kinases link Met activation to Rho signaling and Abl kinases are required for Met-dependent cell scattering, tubulogenesis, migration, and invasion. Thus, inhibition of Abl kinases might be exploited for the treatment of cancers driven by hyperactivation of HGF/Met signaling.  相似文献   

12.
CD44 is an integral hyaluronan receptor that can promote or inhibit motogenic signaling in tumor cells. Rhamm is a nonintegral cell surface hyaluronan receptor (CD168) and intracellular protein that promotes cell motility in culture. Here we describe an autocrine mechanism utilizing cell surface Rhamm-CD44 interactions to sustain rapid basal motility in invasive breast cancer cell lines that requires endogenous hyaluronan synthesis and the formation of Rhamm-CD44-ERK1,2 complexes. Motile/invasive MDA-MB-231 and Ras-MCF10A cells produce more endogenous hyaluronan, cell surface CD44 and Rhamm, an oncogenic Rhamm isoform, and exhibit more elevated basal activation of ERK1,2 than less invasive MCF7 and MCF10A breast cancer cells. Furthermore, CD44, Rhamm, and ERK1,2 uniquely co-immunoprecipitate and co-localize in MDA-MB-231 and Ras-MCF10A cells. Combinations of anti-CD44, anti-Rhamm antibodies, and a MEK1 inhibitor (PD098059) had less-than-additive blocking effects, suggesting the action of all three proteins on a common motogenic signaling pathway. Collectively, these results show that cell surface Rhamm and CD44 act together in a hyaluronan-dependent autocrine mechanism to coordinate sustained signaling through ERK1,2, leading to high basal motility of invasive breast cancer cells. Therefore, an effect of CD44 on tumor cell motility may depend in part on its ability to partner with additional proteins, such as cell surface Rhamm.  相似文献   

13.
Hepatocyte growth factor (HGF) and c-Met have recently attracted a great deal of attention as prognostic indicators of patient outcome, and they are important in the control of tumor growth and invasion. Epigallocatechin-3-gallate (EGCG) has been shown to modulate multiple signal pathways in a manner that controls the unwanted proliferation and invasion of cells, thereby imparting cancer chemopreventive and therapeutic effects. In this study, we investigated the effects of EGCG in inhibiting HGF-induced tumor growth and invasion of oral cancer in vitro and in vivo. We examined the effects of EGCG on HGF-induced cell proliferation, migration, invasion, induction of apoptosis and modulation of HGF/c-Met signaling pathway in the KB oral cancer cell line. We investigated the antitumor effect and inhibition of c-Met expression by EGCG in a syngeneic mouse model (C3H/HeJ mice, SCC VII/SF cell line). HGF promoted cell proliferation, migration, invasion and induction of MMP (matrix metalloproteinase)-2 and MMP-9 in KB cells. EGCG significantly inhibited HGF-induced phosphorylation of Met and cell growth, invasion and expression of MMP-2 and MMP-9. EGCG blocked HGF-induced phosphorylation of c-Met and that of the downstream kinases AKT and ERK, and inhibition of p-AKT and p-ERK by EGCG was associated with marked increases in the phosphorylation of p38, JNK, cleaved caspase-3 and poly-ADP-ribose polymerase. In C3H/HeJ syngeneic mice, as an in vivo model, tumor growth was suppressed and apoptosis was increased by EGCG. Our results suggest that EGCG may be a potential therapeutic agent to inhibit HGF-induced tumor growth and invasion in oral cancer.  相似文献   

14.
CD151, a transmembrane protein of the tetraspanin family, is implicated in the regulation of cell-substrate adhesion and cell migration through physical and functional interactions with integrin receptors. In contrast, little is known about the potential role of CD151 in controlling cell proliferation and survival. We have previously shown that β4 integrin, a major CD151 partner, not only acts as an adhesive receptor for laminins but also as an intracellular signaling platform promoting cell proliferation and invasive growth upon interaction with Met, the tyrosine kinase receptor for hepatocyte growth factor (HGF). Here we show that RNAi-mediated silencing of CD151 expression in cancer cells impairs HGF-driven proliferation, anchorage-independent growth, protection from anoikis, and tumor progression in xenograft models in vivo. Mechanistically, we found that CD151 is crucially implicated in the formation of signaling complexes between Met and β4 integrin, a known amplifier of HGF-induced tumor cell growth and survival. CD151 depletion hampered HGF-induced phosphorylation of β4 integrin and the ensuing Grb2-Gab1 association, a signaling pathway leading to MAPK stimulation and cell growth. Accordingly, CD151 knockdown reduced HGF-triggered activation of MAPK but not AKT signaling cascade. These results indicate that CD151 controls Met-dependent neoplastic growth by enhancing receptor signaling through β4 integrin-mediated pathways, independent of cell-substrate adhesion.  相似文献   

15.
Huang S  Ouyang N  Lin L  Chen L  Wu W  Su F  Yao Y  Yao H 《PloS one》2012,7(1):e29124
The chemokine receptor CXCR4 and its ligand CXCL12 have been shown to mediate the metastasis of many malignant tumors including breast carcinoma. Interaction between hepatocyte growth factor (HGF) and the Met receptor tyrosine kinase mediates development and progression of cancers. HGF is able to induce CXCR4 expression and contributes to tumor cell invasiveness in breast carcinoma. However, the mechanism of the CXCR4 expression modulated by c-Met-HGF axis to enhance the metastatic behavior of breast cancer cells is still unclear. In this study, we found that HGF induced functional CXCR4 receptor expression in breast cancer cells. The effect of HGF was specifically mediated by PKCζ activity. After transfection with PKCζ-siRNA, the phosphorylation of PKCζ and CXCR4 was abrogated in breast cancer cells. Interference with the activation of Rac1, a downstream target of HGF, prevented the HGF-induced increase in PKCζ activity and CXCR4 levels. The HGF-induced, LY294002-sensitive translocation of PKCζ from cytosol to plasma membrane indicated that HGF was capable of activating PKCζ, probably via phosphoinositide (PI) 3-kinases. HGF treatment also increased MT1-MMP secretion. Inhibition of PKCζ, Rac-1 and phosphatidylinositol 3-kinase may attenuate MT1-MMP expression in cells exposed to HGF. Functional manifestation of the effects of HGF revealed an increased ability for migration, chemotaxis and metastasis in MDA-MB-436 cells in vitro and in vivo. Our findings thus provided evidence that the process of HGF-induced functional CXCR4 expression may involve PI 3-kinase and atypical PKCζ. Moreover, HGF may promote the invasiveness and metastasis of breast tumor xenografts in BALB/c-nu mice via the PKCζ-mediated pathway, while suppression of PKCζ by RNA interference may abrogate cancer cell spreading.  相似文献   

16.
旨在探究整合素αvβ3的单克隆抗体LM609在BSP不同表达水平的乳腺癌细胞中对AKT(蛋白激酶B)信号通路的影响。利用免疫细胞化学法检测BSP不同表达水平的乳腺癌细胞中整合素αvβ3的表达量。BSP基因沉默乳腺癌MDA-MB-231BO细胞,Western blotting在蛋白水平检测磷酸化AKT的表达,MTT试验和细胞划痕试验分别检测细胞增殖、迁移能力的变化。结果显示,与231BO-Scrambled细胞相比,231BO-BSP27细胞中BSP蛋白水平明显降低,抑制率达到(59.43±1.71)%;LM609分别处理两株细胞后,与对照组231BO-Scrambled细胞相比,BSP基因沉默组21BO-BSP27细胞中AKT磷酸化水平下调明显,为(33.78±1.51)%(P<0.01);231BO-BSP27细胞和对照组231BO-Scrambled中细胞的增殖和迁移能力均有不同程度的下降(P<0.05)。LM609能够抑制胞内整合素αvβ3功能的表达,进而对AKT信号通路进行调控,并影响细胞增殖和迁移的发生。  相似文献   

17.
Zen K  Liu DQ  Guo YL  Wang C  Shan J  Fang M  Zhang CY  Liu Y 《PloS one》2008,3(3):e1826

Background

Endothelial E-selectin has been shown to play a pivotal role in mediating cell–cell interactions between breast cancer cells and endothelial monolayers during tumor cell metastasis. However, the counterreceptor for E-selectin and its role in mediating breast cancer cell transendothelial migration remain unknown.

Methodology/Principal Findings

By assessing migration of various breast cancer cells across TNF-α pre-activated human umbilical vein endothelial cells (HUVECs), we found that breast cancer cells migrated across HUVEC monolayers differentially and that transmigration was E-selectin dependent. Cell surface labeling with the E-selectin extracellular domain/Fc chimera (exE-selectin/Fc) showed that the transmigration capacity of breast cancer cells was correlated to both the expression level and localization pattern of E-selectin binding protein(s) on the tumor cell surface. The exE-selectin/Fc strongly bound to metastatic MDA-MB-231, MDA-MB-435 and MDA-MB-468 cells, but not non-metastatic MCF-7 and T47D cells. Binding of exE-selectin/Fc was abolished by removal of tumor cell surface sialyl lewis x (sLex) moieties. Employing an exE-selectin/Fc affinity column, we further purified the counterreceptor of E-selectin from metastatic breast cancer cells. The N-terminal protein sequence and cDNA sequence identified this E-selectin ligand as a ∼170 kD human CD44 variant 4 (CD44v4). Purified CD44v4 showed a high affinity for E-selectin via sLex moieties and, as expected, MDA-MB-231 cell adhesion to and migration across HUVEC monolayers were significantly reduced by down-regulation of tumor cell CD44v4 via CD44v4-specific siRNA.

Conclusions/Significance

We demonstrated, for the first time, that breast cancer cell CD44v4 is a major E-selectin ligand in facilitating tumor cell migration across endothelial monolayers. This finding offers new insights into the molecular basis of E-selectin–dependent adhesive interactions that mediate breast cancer cell transendothelial metastasis.  相似文献   

18.
Lamellipodia formation necessary for epithelial cell migration and invasion is accomplished by rearrangement of the actin cytoskeleton at the leading edge through membrane transport of WAVE2. However, how WAVE2 is transported to the cell periphery where lamellipodia are formed remains to be established. We report here that hepatocyte growth factor (HGF) promoted lamellipodia formation and intracellular transport of WAVE2 to the cell periphery, depending on Rac1 activity, in MDA-MB-231 human breast cancer cells. Immunoblot analyses indicating the coimmunoprecipitation of WAVE2 with kinesin heavy chain KIF5B, one of the motor proteins, and IQGAP1 suggest that KIF5B and IQGAP1 formed a complex with WAVE2 in serum-starved cells and increased in their amount after HGF stimulation. Both downregulation of KIF5B by the small interfering RNA and depolymerization of microtubules with nocodazole abrogated the HGF-induced lamellipodia formation and WAVE2 transport. Therefore, we propose here that the promotion of lamellipodia formation by HGF in MDA-MB-231 cells is Rac1-dependent and requires KIF5B-mediated transport of WAVE2 and IQGAP1 to the cell periphery along microtubules.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号