首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herrerasauridae comprises a basal clade of dinosaurs best known from the Upper Triassic of Argentina and Brazil, which have yielded remains of Herrerasaurus ischigualastensis and Staurikosaurus pricei, respectively. Systematic opinion regarding the position of Herrerasauridae at the base of Dinosauria has varied. Here we describe a new herrerasaurid, Sanjuansaurus gordilloi gen. n., sp. n., based on a partial skeleton from Carnian-age strata of the the Upper Triassic Ischigualasto Formation of northwestern Argentina. The new taxon is diagnosed by numerous features, including long, band-shaped and posterolaterally oriented transverse process on the posterior cervical vertebrae; neural spines of the sixth to eighth dorsal vertebrae, at least, bearing acute anterior and posterior processes; scapula and coracoid with everted lateral margins of the glenoid; and short pubis (63% of the femoral length). Phylogenetic analysis placed Sanjuansaurus within a monophyletic Herrerasauridae, at the base of Theropoda and including Herrerasaurus and Staurikosaurus. The presence of Sanjuansaurus at the base of the Ischigualasto Formation, along with other dinosaurs such as Herrerasaurus, Eoraptor, Panphagia, and Chromogisaurus suggests that saurischian dinosaurs in southwestern Pangea were already widely diversified by the late Carnian rather than increasing in diversity across the Carnian-Norian boundary.  相似文献   

2.
Studies of dinosaur teeth have focused primarily on external crown morphology and thus, use shed or in situ tooth crowns, and are limited to the enamel and dentine dental tissues. As a result, the full suites of periodontal tissues that attach teeth to the jaws remain poorly documented, particularly in early dinosaurs. These tissues are an integral part of the tooth and thus essential to a more complete understanding of dental anatomy, development, and evolution in dinosaurs. To identify the tooth attachment tissues in early dinosaurs, histological thin sections were prepared from the maxilla and dentary of a partial skull of the early theropod Coelophysis bauri from the Upper Triassic (Rhaetian‐ 209–201 Ma) Whitaker Quarry, New Mexico, USA. As one of the phylogenetically and geologically oldest dinosaurs, it is an ideal candidate for examining dental tissues near the base of the dinosaurian clade. The teeth of C. bauri exhibited a fibrous tooth attachment in which the teeth possessed five tissues: enamel, dentine, cementum, periodontal ligament (PDL), and alveolar bone. Our findings, coupled with those of more recent studies of ornithischian teeth, indicate that a tripartite periodontium, similar to that of crocodilians and mammals, is the plesiomorphic condition for dinosaurs. The occurrence of a tripartite periodontium in dinosaurs adds to the growing consensus that the presence of these tissues is the plesiomorphic condition for the major amniote clades. Furthermore, this study establishes the relative timing of tissue development and growth directions of periodontal tissues and provides the first comparative framework for future studies of dinosaur periodontal development, tooth replacement, and histology. J. Morphol. 277:916–924, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
Research this century has greatly improved our knowledge of the origin and early radiation of dinosaurs. The unearthing of several new dinosaurs and close outgroups from Triassic rocks from various parts of the world, coupled with improved phylogenetic analyses, has set a basic framework in terms of timing of events and macroevolutionary patterns. However, important parts of the early dinosauromorph evolutionary history are still poorly understood, rendering uncertain the phylogenetic position of silesaurids as either non‐dinosaur Dinosauriformes or ornithischians, as well as that of various early saurischians, such as Eoraptor lunensis and herrerasaurs, as either noneusaurischians or members of the sauropodomorph or theropod lineages. This lack of agreement in part derives from a patchy distribution of traits among early members of the main dinosauromorph lineages and requires a more meticulous assessment of characters and homologies than those recently conducted. Presently, the oldest uncontroversial dinosaur records come from Late Triassic (Carnian) rocks of South America, southern Africa and India, hinting at a south‐western Pangaea origin of the group. Besides, macroevolutionary approaches suggest that the rise of dinosaurs was a more gradual process than previously understood. Obviously, these tentative scenarios need to be tested by new fossil finds, which should also help close the major gaps recognized in the fossil record of Triassic dinosauromorphs.  相似文献   

4.
Isolated Dinosaur teeth have been discovered in the Upper Triassic locality of Habay-la-Vieille, in southern Belgium. Ornithischia are represented by three dental morphotypes; two of them closely resemble isolated teeth from the Middle or Upper Jurassic of Portugal and England. The presence of sauropods in the Upper Triassic of Europe is confirmed. Sauropods already had a wide geographical distribution during the Latest Triassic, as fossils have been discovered in South Africa, Thailand and western Europe. At Habay-la-Vieille, sauropods and prosauropods co-existed at the end of the Triassic. Two dental morphotypes may tentatively be referred to as theropod dinosaurs. The study of isolated teeth indicates that dinosaurs were already well diversified in the Latest Triassic of western Europe. To cite this article: P. Godefroit, F. Knoll, C. R. Palevol 2 (2003) 3–11.  相似文献   

5.
6.
The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis, and Panphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister‐group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid‐Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node‐based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as “all descendants of the most recent common ancestor of birds and Triceratops”. Recent cladistic analyses of early dinosaurs agree that Pisanosaurus mertii is a basal ornithischian; that Herrerasaurus ischigualastensis and Staurikosaurus pricei belong in a monophyletic Herrerasauridae; that herrerasaurids, Eoraptor lunensis, and Guaibasaurus candelariensis are saurischians; that Saurischia includes two main groups, Sauropodomorpha and Theropoda; and that Saturnalia tupiniquim is a basal member of the sauropodomorph lineage. On the contrary, several aspects of basal dinosaur phylogeny remain controversial, including the position of herrerasaurids, E. lunensis, and G. candelariensis as basal theropods or basal saurischians, and the affinity and/or validity of more fragmentary taxa such as Agnosphitys cromhallensis, Alwalkeria maleriensis, Chindesaurus bryansmalli, Saltopus elginensis, and Spondylosoma absconditum. The identification of dinosaur apomorphies is jeopardized by the incompleteness of skeletal remains attributed to most basal dinosauromorphs, the skulls and forelimbs of which are particularly poorly known. Nonetheless, Dinosauria can be diagnosed by a suite of derived traits, most of which are related to the anatomy of the pelvic girdle and limb. Some of these are connected to the acquisition of a fully erect bipedal gait, which has been traditionally suggested to represent a key adaptation that allowed, or even promoted, dinosaur radiation during Late Triassic times. Yet, contrary to the classical “competitive” models, dinosaurs did not gradually replace other terrestrial tetrapods over the Late Triassic. In fact, the radiation of the group comprises at least three landmark moments, separated by controversial (Carnian‐Norian, Triassic‐Jurassic) extinction events. These are mainly characterized by early diversification in Carnian times, a Norian increase in diversity and (especially) abundance, and the occupation of new niches from the Early Jurassic onwards. Dinosaurs arose from fully bipedal ancestors, the diet of which may have been carnivorous or omnivorous. Whereas the oldest dinosaurs were geographically restricted to south Pangea, including rare ornithischians and more abundant basal members of the saurischian lineage, the group achieved a nearly global distribution by the latest Triassic, especially with the radiation of saurischian groups such as “prosauropods” and coelophysoids.  相似文献   

7.
Major extinctions occurred both in the sea and on land during the Late Triassic in two major phases, in the middle to late Carnian and, 12–17 Myr later, at the Triassic‐Jurassic boundary. Many recent reports have discounted the role of the earlier event, suggesting that it is (1) an artefact of a subsequent gap in the record, (2) a complex turnover phenomenon, or (3) local to Europe. These three views are disputed, with evidence from both the marine and terrestrial realms. New data on terrestrial tetrapods suggests that the late Carnian event was more important than the end‐Triassic event. For tetrapods, the end‐Triassic extinction was a whimper that was followed by the radiation of five families of dinosaurs and mammal‐like reptiles, while the late Carnian event saw the disappearance of nine diverse families, and subsequent radiation of 13 families of turtles, crocodilomorphs, pterosaurs, dinosaurs, lepidosaurs and mammals. Also, for many groups of marine animals, the Carnian event marked a more significant turning point in diversification than did the end‐Triassic event.  相似文献   

8.
A consideration of all the available data on Triassic vertebrate faunas, and their stratigraphic location reveals a relatively sudden extinction event among the last of the mammal-like reptiles and the herbivorous rhynchosaurs in the Norian of the Upper Triassic. This event was apparently quickly followed by the radiation of the dinosaurs, also in the Norian. This conclusion suggests that competition was not the main factor in the initial success of the dinosaurs, but opportunistic radiation following the extinction of major reptile groups. A global review of Triassic sedimentary facies shows that there were climatic and floral changes towards the end of the Triassic. It is envisaged that increasing aridity in the later Triassic, resulting from plate motions and particularly affecting Gondwanaland and southwestern Laurasia, brought about floral changes and then the reptile extinctions. With the rapid evolution of new floras of conifers and bennettitaleans, the dinosaurs came to dominate all terrestrial faunas within the space of only a few million years.  相似文献   

9.
Studying the evolution and biogeographic distribution of dinosaurs during the latest Cretaceous is critical for better understanding the end-Cretaceous extinction event that killed off all non-avian dinosaurs. Western North America contains among the best records of Late Cretaceous terrestrial vertebrates in the world, but is biased against small-bodied dinosaurs. Isolated teeth are the primary evidence for understanding the diversity and evolution of small-bodied theropod dinosaurs during the Late Cretaceous, but few such specimens have been well documented from outside of the northern Rockies, making it difficult to assess Late Cretaceous dinosaur diversity and biogeographic patterns. We describe small theropod teeth from the San Juan Basin of northwestern New Mexico. These specimens were collected from strata spanning Santonian – Maastrichtian. We grouped isolated theropod teeth into several morphotypes, which we assigned to higher-level theropod clades based on possession of phylogenetic synapomorphies. We then used principal components analysis and discriminant function analyses to gauge whether the San Juan Basin teeth overlap with, or are quantitatively distinct from, similar tooth morphotypes from other geographic areas. The San Juan Basin contains a diverse record of small theropods. Late Campanian assemblages differ from approximately co-eval assemblages of the northern Rockies in being less diverse with only rare representatives of troodontids and a Dromaeosaurus-like taxon. We also provide evidence that erect and recurved morphs of a Richardoestesia-like taxon represent a single heterodont species. A late Maastrichtian assemblage is dominated by a distinct troodontid. The differences between northern and southern faunas based on isolated theropod teeth provide evidence for provinciality in the late Campanian and the late Maastrichtian of North America. However, there is no indication that major components of small-bodied theropod diversity were lost during the Maastrichtian in New Mexico. The same pattern seen in northern faunas, which may provide evidence for an abrupt dinosaur extinction.  相似文献   

10.
The rise of dinosaurs during the Triassic is a widely studied evolutionary radiation, but there are still many unanswered questions about early dinosaur evolution and biogeography that are hampered by an unevenly sampled Late Triassic fossil record. Although very common in western North America and parts of South America, dinosaur (and more basal dinosauriform) remains are relatively rare in the Upper Triassic deposits of Europe, making any new discoveries critically important. One of the most diverse dinosauriform assemblages from Europe comes from the Por?ba site in Poland, a recently described locality with exposures of the Zb?szynek Beds, which have a palynomorph assemblage characteristic for the mid–late Norian in the biostratigraphic schemes of the Germanic Basin. Using a synapomorphy‐based approach, we evaluate several isolated dinosauriform specimens from Por?ba. This assemblage includes a silesaurid, a herrerasaurid and remains of another type of theropod (potentially a neotheropod). The Por?ba herrerasaurid is the first record of this rare group of primitive dinosaurs from Europe and one of the youngest records worldwide, whereas the silesaurid is the youngest record of a silesaurid from Europe. These findings indicate that silesaurids persisted alongside true dinosaurs into the mid–late Norian of Europe and that silesaurid–herrerasaurid–neotheropod assemblages (which are also known from the Norian of North America, at low latitudes) were more widespread geographically and latitudinally than previously thought. Silesaurid–herrerasaurid–neotheropod assemblages may have been a common ecological structuring of dinosaurs during their early evolution, and their widespread distribution may indicate weak palaeolatitudinal controls on early dinosaur biogeography during the latest Triassic.  相似文献   

11.
12.
Theropod dinosaurs are well known for having a ziphodont dentition: serrated, blade-shaped teeth that they used for cutting through prey. Serrations along the carinae of theropod teeth are composed of true denticles, a complex arrangement of dentine, enamel, and interdental folds. This structure would have supported individual denticles and dissipated the stresses associated with feeding. These particular serrations were previously thought to be unique to theropod dinosaurs and some other archosaurs. Here, we identify the same denticles and interdental folds forming the cutting edges in the teeth of a Permian gorgonopsian synapsid, extending the temporal and phylogenetic distribution of this dental morphology. This remarkable instance of convergence not only represents the earliest record of this adaptation to hypercarnivory but also demonstrates that the first iteration of this feature appeared in non-mammalian synapsids. Comparisons of tooth serrations in gorgonopsians with those of earlier synapsids and hypercarnivorous mammals reveal some gorgonopsians acquired a complex tissue arrangement that differed from other synapsids.  相似文献   

13.
Some isolated teeth of theropod and sauropod dinosaurs from the Cenomanian (Late Cretaceous) of Charentes are described. Two new teeth of Troodontidae confirm the presence of this theropod family, previously based on a single specimen. New dental morphotypes are recognized within Dromaeosauridae and Brachiosauridae in comparison with those already known from Charentes. Lastly, a very small tooth is tentatively assigned to an embryonic or neonatal sauropod. The palaeobiogeographical history of European hadrosauroids is briefly discussed. This history was probably more complex than it appears, involving exchanges with both North America and Asia as early as the mid-Cretaceous (Albian–Cenomanian).  相似文献   

14.
Direct evidence of prey choice in carnivorous dinosaurs is rare in the fossil record. The most celebrated example pertains to purported stomach contents in the carnivorous dinosaur Coelophysis bauri, which besides revealing prey choice, also points to cannibalistic behaviour as being commonplace (Colbert 1989, 1995). Here, we test this hypothesis by conducting the first comprehensive anatomical and histological examination of the famed Coelophysis 'cannibals'. The results unequivocally show that the gut contents derive from early crocodylomorphs rather than juveniles of Coelophysis. These findings suggest that this taxon is not cannibalistic and bring into question the commonality of this behaviour among non-avian dinosaurs.  相似文献   

15.
The evolutionary radiation of dinosaurs in the Late Triassic and Early Jurassic was a pivotal event in the Earth's history but is poorly understood, as previous studies have focused on vague driving mechanisms and have not untangled different macroevolutionary components (origination, diversity, abundance and disparity). We calculate the morphological disparity (morphospace occupation) of dinosaurs throughout the Late Triassic and Early Jurassic and present new measures of taxonomic diversity. Crurotarsan archosaurs, the primary dinosaur 'competitors', were significantly more disparate than dinosaurs throughout the Triassic, but underwent a devastating extinction at the Triassic-Jurassic boundary. However, dinosaur disparity showed only a slight non-significant increase after this event, arguing against the hypothesis of ecological release-driven morphospace expansion in the Early Jurassic. Instead, the main jump in dinosaur disparity occurred between the Carnian and Norian stages of the Triassic. Conversely, dinosaur diversity shows a steady increase over this time, and measures of diversification and faunal abundance indicate that the Early Jurassic was a key episode in dinosaur evolution. Thus, different aspects of the dinosaur radiation (diversity, disparity and abundance) were decoupled, and the overall macroevolutionary pattern of the first 50Myr of dinosaur evolution is more complex than often considered.  相似文献   

16.
It has long been accepted that the adaptive radiation of modern placental mammals, like that of modern birds, did not begin until after the Cretaceous/Tertiary (K/T) boundary 65 million years (Ma) ago, following the extinction of the dinosaurs. The first undoubted fossil relatives of modern primates appear in the record 55 Ma ago. However, in agreement with evidence from molecular phylogenies calibrated with dates from denser parts of the fossil record, a statistical analysis of the primate record allowing for major gaps now indicates a Cretaceous origin of euprimates 80-90 Ma ago. If this interpretation is correct, primates overlapped with dinosaurs by some 20 Ma prior to the K/T boundary, and the initial radiation of primates was probably truncated as part of the major extinction event that occurred at the end of the Cretaceous. Following a review of evidence for an early origin of primates, implications of this are discussed with respect to the likely ancestral condition for primates, including a southern continental area of origin and moderately large body size. The known early Tertiary primates are re-interpreted as northern continental offshoots of a 'second wave' of primate evolution.  相似文献   

17.
《Comptes Rendus Palevol》2003,2(1):103-117
Until 1960, the record of dinosaurs was rather poor in Switzerland. Between 1960 and 1980, several new localities with plateosaurid remains as well as prosauropod and theropod tracks were found in Late Triassic sabkha and floodplain environments. The discovery of large surfaces with sauropod tracks in the Late Jurassic of the Jura Mountains in 1987 triggered a stream of new data. More than 20 new localities with tracks from both sauropod and theropod dinosaurs in different stratigraphic levels have been found since then. The latest discoveries include trackways of iguanodontids from the Early Cretaceous of the central Swiss Alps and a large Late Jurassic surface with trackways of small sauropods in the northernmost part of the Jura Mountains. The best skeletal record comes from the Late Triassic, with scattered data from the Late Jurassic. The track and trackway record appears to be best in the Late Jurassic. To cite this article: C.A. Meyer, B. Thüring, C. R. Palevol 2 (2003) 103–117.  相似文献   

18.
An isolated, large recurved and finely serrated tooth found associated with the prosauropodEuskelosaurus from the Late Triassic part of the Elliot Formation is described here. It is compared to the Triassic thecodonts and carnivorous dinosaurs and its possible affinity is discussed. The tooth possibly belongs to a basal theropod and shows some features similar to the allosauroids. This tooth is of significance, as dinosaur remains except for some footprints and trackways, are poorly known in the Late Triassic horizons of southern Africa.  相似文献   

19.
20.
The Late Triassic Tiki Formation has yielded five isolated nearly complete claws or ungual phalanges from a fossil locality, which are described in detail and compared with other Late Triassic tetrapods. Of these, four ungual phalanges are slender, asymmetric, ventrally recurved, transversely compressed, and contain deep collateral grooves on either side, a low median keel on the proximal articular surface and a prominent proximoventral flexor tubercle showing their high similarity to the theropod dinosaurs. The remaining claw is unlike that of any theropods in terms of high robusticity and near symmetry. However, as in dinosaurs it is ventrally recurved and contains deep lateral grooves, a small flexor tubercle, lateromedially extended proximal articular surface with a distinct median keel and is considered as belonging to an indeterminate dinosaur. Although it is not possible to ascertain whether the unguals belong to a single taxon or multiple taxa, this new find points towards the presence of small dinosaurs in the Late Triassic Tiki fauna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号