首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The obligate intracellular human pathogen Chlamydia trachomatis is the etiological agent of blinding trachoma and sexually transmitted disease. Genomic sequencing of Chlamydia indicated this medically important bacterium was not exclusively dependent on the host cell for energy. In order for the electron transport chain to function, electron shuttling between membrane-embedded complexes requires lipid-soluble quinones (e.g. menaquionone or ubiquinone). The sources or biosynthetic pathways required to obtain these electron carriers within C. trachomatis are poorly understood. The 1.58Å crystal structure of C. trachomatis hypothetical protein CT263 presented here supports a role in quinone biosynthesis. Although CT263 lacks sequence-based functional annotation, the crystal structure of CT263 displays striking structural similarity to 5′-methylthioadenosine nucleosidase (MTAN) enzymes. Although CT263 lacks the active site-associated dimer interface found in prototypical MTANs, co-crystal structures with product (adenine) or substrate (5′-methylthioadenosine) indicate that the canonical active site residues are conserved. Enzymatic characterization of CT263 indicates that the futalosine pathway intermediate 6-amino-6-deoxyfutalosine (kcat/Km = 1.8 × 103 m−1 s−1), but not the prototypical MTAN substrates (e.g. S-adenosylhomocysteine and 5′-methylthioadenosine), is hydrolyzed. Bioinformatic analyses of the chlamydial proteome also support the futalosine pathway toward the synthesis of menaquinone in Chlamydiaceae. This report provides the first experimental support for quinone synthesis in Chlamydia. Menaquinone synthesis provides another target for agents to combat C. trachomatis infection.  相似文献   

2.
Campylobacter and Helicobacter species express a 6-amino-6-deoxyfutalosine N-ribosylhydrolase (HpMTAN) proposed to function in menaquinone synthesis. BuT-DADMe-ImmA is a 36 pM transition state analogue of HpMTAN, and the crystal structure of the enzyme-inhibitor complex reveals the mechanism of inhibition. BuT-DADMe-ImmA has a MIC(90) value of <8 ng/mL for Helicobacter pylori growth but does not cause growth arrest in other common clinical pathogens, thus demonstrating potential as an H. pylori-specific antibiotic.  相似文献   

3.
The bacterial enzyme 5′‐methylthioadenosine/S‐adenosylhomocysteine nucleosidase (MTAN) plays a central role in three essential metabolic pathways in bacteria: methionine salvage, purine salvage, and polyamine biosynthesis. Recently, its role in the pathway that leads to the production of autoinducer II, an important component in quorum‐sensing, has garnered much interest. Because of this variety of roles, MTAN is an attractive target for developing new classes of inhibitors that influence bacterial virulence and biofilm formation. To gain insight toward the development of new classes of MTAN inhibitors, the interactions between the Helicobacter pylori‐encoded MTAN and its substrates and substrate analogs were probed using X‐ray crystallography. The structures of MTAN, an MTAN‐Formycin A complex, and an adenine bound form were solved by molecular replacement and refined to 1.7, 1.8, and 1.6 Å, respectively. The ribose‐binding site in the MTAN and MTAN‐adenine cocrystal structures contain a tris[hydroxymethyl]aminomethane molecule that stabilizes the closed form of the enzyme and displaces a nucleophilic water molecule necessary for catalysis. This research gives insight to the interactions between MTAN and bound ligands that promote closing of the enzyme active site and highlights the potential for designing new classes of MTAN inhibitors using a link/grow or ligand assembly development strategy based on the described H. pylori MTAN crystal structures.  相似文献   

4.
Furaquinocin is a natural polyketide-isoprenoid hybrid (meroterpenoid) produced by Streptomyces sp. strain KO-3988. All of the fur genes required for furaquinocin biosynthesis have been cloned, and the heterologous production of furaquinocin has been demonstrated in Streptomyces albus. Here, we report the identification of 8-amino-2,5,7-trihydroxynaphthalene-1,4-dione (8-amino-flaviolin) produced by the S. albus heterologous expression of the three contiguous genes encoding type III polyketide synthase (Fur1), monooxygenase (Fur2), and aminotransferase (Fur3) in the furaquinocin biosynthetic gene cluster. An S. albus transformant (S. albus/pWHM-Fur2_del3) harboring the fur gene cluster and lacking the fur3 gene did not produce furaquinocin, whereas furaquinocin production was restored when 8-amino-flaviolin was added to the culture medium of S. albus/pWHM-Fur2_del3. These results demonstrate that Fur3 aminotransferase is essential for furaquinocin biosynthesis and that 8-amino-flaviolin is an early-stage intermediate in furaquinocin biosynthesis. We propose that the biosynthetic pathway generating 8-amino-flaviolin is the common route for the biosynthesis of Streptomyces meroterpenoids.  相似文献   

5.
Arginine biosynthetic genes from Campylobacter jejuni TGH9011 were cloned by functional complementation of the respective Escherichia coli arginine biosynthetic mutants. Complementation of argA, argB, argC, argD, argE, argF, and argH auxotrophs was accomplished using a pBR322-based C. jejuni TGH9011 plasmid library. By cross-complementation analyses, the first four steps of arginine biosynthesis were shown to be closely linked on the genome. Two additional clones complementing the first (ArgA) and fifth (ArgE) steps in arginine biosynthesis were obtained. Neither recombinant showed linkage to the arg cluster, to each other, nor to other arginine biosynthetic functions by cross-complementation. Genes argF and argH were not linked to other arginine biosynthetic genes by cross-complementation analysis. Restriction enzyme patterns of recombinant plasmids fell into five groups. Group I contained the arg(ABCD) complementing locus. Group II and Group III were the two genetic loci corresponding to the argA and argE complementing genes. Group II contains the hipO gene encoding N-benzoylglycine-amino-acid amidohydrolase, also known as hippurate hydrolase. Group III contains the hipO homolog of C. jejuni. Group IV represents the argF gene. Group V is the argH gene. Functional complementation of mutations in the first four steps of the arginine biosynthetic pathway was obtained on recombinant plasmid pARGC2. The predicted order of gene complementation was argCargA(argBargD). The sequence of the insert in plasmid pARGC2 revealed direct homologs for argC, argB, and argD. However, sequence analysis of the gene complementing ArgA function in two separate E. coli argA mutants determined that the C. jejuni gene was not a canonical argA gene. The gene complementing the argA defect, which we call argO, showed limited homology to the streptothricin acetyltransferase gene (sat) of Escherichia coli. The flanking open reading frames in pARGC2 showed no homologies to arginine biosynthetic genes. The structure of the argCOBD gene arrangement is discussed with reference to the presence and location of other arginine biosynthetic genes on the genome of C. jejuni and other bacterial organisms.  相似文献   

6.
Currently, eight genes are known to be involved in coenzyme Q6 biosynthesis in Saccharomyces cerevisiae. Here, we report a new gene designated COQ9 that is also required for the biosynthesis of this lipoid quinone. The respiratory-deficient pet mutant C92 was found to be deficient in coenzyme Q and to have low mitochondrial NADH-cytochrome c reductase activity, which could be restored by addition of coenzyme Q2. The mutant was used to clone COQ9, corresponding to reading frame YLR201c on chromosome XII. The respiratory defect of C92 is complemented by COQ9 and suppressed by COQ8/ABC1. The latter gene has been shown to be required for coenzyme Q biosynthesis in yeast and bacteria. Suppression by COQ8/ABC1 of C92, but not other coq9 mutants tested, has been related to an increase in the mitochondrial concentration of several enzymes of the pathway. Coq9p may either catalyze a reaction in the coenzyme Q biosynthetic pathway or have a regulatory role similar to that proposed for Coq8p.  相似文献   

7.
Lee JE  Luong W  Huang DJ  Cornell KA  Riscoe MK  Howell PL 《Biochemistry》2005,44(33):11049-11057
5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) is important in a number of cellular functions such as polyamine biosynthesis, methionine salvaging, biological methylation, and quorum sensing. The nucleosidase is found in many microbes but not in mammalian systems, thus making MTAN a broad-spectrum antimicrobial drug target. Substrate binding and catalytic residues were identified from the crystal structure of MTAN complexed with 5'-methylthiotubercidin [Lee, J. E., Cornell, K. A., Riscoe, M. K. and Howell, P. L. (2003) J. Biol. Chem. 278 (10) 8761-8770]. The roles of active site residues Met9, Glu12, Ile50, Ser76, Val102, Phe105, Tyr107, Phe151, Met173, Glu174, Arg193, Ser196, Asp197, and Phe207 have been investigated by site-directed mutagenesis and steady-state kinetics. Mutagenesis of residues Glu12, Glu174, and Asp197 completely abolished activity. The location of Asp197 and Glu12 in the active site is consistent with their having a direct role in enzyme catalysis. Glu174 is suggested to be involved in catalysis by stabilizing the transition state positive charge at the O3', C2', and C3' atoms and by polarizing the 3'-hydroxyl to aid in the flow of electrons to the electron withdrawing purine base. This represents the first indication of the importance of the 3'-hydroxyl in the stabilization of the transition state. Furthermore, mutation of Arg193 to alanine shows that the nucleophilic water is able to direct its attack without assistance from the enzyme. This mutagenesis study has allowed a reevaluation of the catalytic mechanism.  相似文献   

8.
The side chain of the antifungal antibiotic ansatrienin A from Streptomyces collinus contains a cyclohexanecarboxylic acid (CHC)-derived moiety. This moiety is also observed in trace amounts of omega-cyclohexyl fatty acids (typically less than 1% of total fatty acids) produced by S. collinus. Coenzyme A-activated CHC (CHC-CoA) is derived from shikimic acid through a reductive pathway involving a minimum of nine catalytic steps. Five putative CHC-CoA biosynthetic genes in the ansatrienin biosynthetic gene cluster of S. collinus have been identified. Plasmid-based heterologous expression of these five genes in Streptomyces avermitilis or Streptomyces lividans allows for production of significant amounts of omega-cyclohexyl fatty acids (as high as 49% of total fatty acids). In the absence of the plasmid these organisms are dependent on exogenously supplied CHC for omega-cyclohexyl fatty acid production. Doramectin is a commercial antiparasitic avermectin analog produced by fermenting a bkd mutant of S. avermitilis in the presence of CHC. Introduction of the S. collinus CHC-CoA biosynthetic gene cassette into this organism resulted in an engineered strain able to produce doramectin without CHC supplementation. The CHC-CoA biosynthetic gene cluster represents an important genetic tool for precursor-directed biosynthesis of doramectin and has potential for directed biosynthesis in other important polyketide-producing organisms.  相似文献   

9.
The pur6 gene of the puromycin biosynthetic gene (pur) cluster from Streptomyces alboniger is shown to be essential for puromycin biosynthesis. Cell lysates from this mycelial bacterium were active in linking L-tyrosine to both 3'-amino-3'-deoxyadenosine and N6,N6-dimethyl-3'-amino-3'-deoxyadenosine with a peptide-like bond. Identical reactions were performed by cell lysates from Streptomyces lividans or Escherichia coli transformants that expressed pur6 from a variety of plasmid constructs. Physicochemical and biochemical analyses suggested that their products were tridemethyl puromycin and O-demethylpuromycin, respectively. Therefore, it appears that Pur6 is the tyrosinyl-aminonucleoside synthetase of the puromycin biosynthetic pathway.  相似文献   

10.
Mitomycin C is a natural product with potent alkylating activity, and it is an important anticancer drug and antibiotic. mitN, one of three genes with high similarity to methyltransferases, is located within the mitomycin biosynthetic gene cluster. An inframe deletion in mitN of the mitomycin biosynthetic pathway was generated in Streptomyces lavendulae to produce the DHS5373 mutant strain. Investigation of DHS5373 revealed continued production of mitomycin A and mitomycin C in addition to the accumulation of a new mitomycin analog, 9-epi-mitomycin C. The mitN gene was overexpressed in Escherichia coli, and the histidine-tagged protein (MitN) was purified to homogeneity. Reaction of 9-epi-mitomycin C with MitN in the presence of S-adenosylmethionine yielded mitomycin E showing that the enzyme functions as an aziridine N-methyltransferase. Likewise, MitN was also shown to convert mitomycin A to mitomycin F under the same reaction conditions. We conclude that MitN plays an important role in a parallel biosynthetic pathway leading to the subclass of mitomycins with 9alpha-stereochemistry but is not involved directly in the biosynthesis of mitomycins A and C.  相似文献   

11.
The membranous quinone/quinol pool is essential to the majority of life forms and has been widely used as an important biomarker in microbial taxonomy. In the anaerobic world, the most important quinones are menaquinone (MK) and a methylated form of MK, designated methylmenaquinone (MMK), which is anticipated to serve specifically in low‐potential electron transport chains involved in anaerobic respiration. However, it has remained unclear how MMK is generated. Here, we show that a novel enzyme homologous to class C radical SAM methyltransferases (RSMTs) synthesizes MMK using MK as substrate. Such enzymes, termed either MenK or MqnK, are present in MMK‐producing bacteria (and some archaea) that possess either the classical MK biosynthesis pathway (Men) or the futalosine pathway (Mqn). An mqnK deletion mutant of the model Epsilonproteobacterium Wolinella succinogenes was unable to produce MMK6 but its formation was restored upon genomic complementation using either the native mqnK gene or menK from the human gut bacterium Adlercreutzia equolifaciens or Shewanella oneidensis. Moreover, any of the menK genes enabled Escherichia coli cells to produce MMK8 and a methylated form of 2‐demethylmenaquinone8 (DMK8). The results expand the knowledge on quinone synthesis and demonstrate an unprecedented function for a class C RSMT‐type enzyme in primary cell metabolism.  相似文献   

12.
The development of new and effective antiprotozoal drugs has been a difficult challenge because of the close similarity of the metabolic pathways between microbial and mammalian systems. 5'-Methylthioadenosine/S-adenosylhomocysteine (MTA/AdoHcy) nucleosidase is thought to be an ideal target for therapeutic drug design as the enzyme is present in many microbes but not in mammals. MTA/AdoHcy nucleosidase (MTAN) irreversibly depurinates MTA or AdoHcy to form adenine and the corresponding thioribose. The inhibition of MTAN leads to a buildup of toxic byproducts that affect various microbial pathways such as quorum sensing, biological methylation, polyamine biosynthesis, and methionine recycling. The design of nucleosidase-specific inhibitors is complicated by its structural similarity to the human MTA phosphorylase (MTAP). The crystal structures of human MTAP complexed with formycin A and 5'-methylthiotubercidin have been solved to 2.0 and 2.1 A resolution, respectively. Comparisons of the MTAP and MTAN inhibitor complexes reveal size and electrostatic potential differences in the purine, ribose, and 5'-alkylthio binding sites, which account for the substrate specificity and reactions catalyzed. In addition, the differences between the two enzymes have allowed the identification of exploitable regions that can be targeted for the development of high-affinity nucleosidase-specific inhibitors. Sequence alignments of Escherichia coli MTAN, human MTAP, and plant MTA nucleosidases also reveal potential structural changes to the 5'-alkylthio binding site that account for the substrate preference of plant MTA nucleosidases.  相似文献   

13.
Helicobacter pylori and Campylobacter jejuni have been shown to modify their flagellins with pseudaminic acid (Pse), via O-linkage, while C. jejuni also possesses a general protein glycosylation pathway (Pgl) responsible for the N-linked modification of at least 30 proteins with a heptasaccharide containing 2,4-diacetamido-2,4,6-trideoxy-alpha-D-glucopyranose, a derivative of bacillosamine. To further define the Pse and bacillosamine biosynthetic pathways, we have undertaken functional characterization of UDP-alpha-D-GlcNAc modifying dehydratase/aminotransferase pairs, in particular the H. pylori and C. jejuni flagellar pairs HP0840/HP0366 and Cj1293/Cj1294, as well as the C. jejuni Pgl pair Cj1120c/Cj1121c using His(6)-tagged purified derivatives. The metabolites produced by these enzymes were identified using NMR spectroscopy at 500 and/or 600 MHz with a cryogenically cooled probe for optimal sensitivity. The metabolites of Cj1293 (PseB) and HP0840 (FlaA1) were found to be labile and could only be characterized by NMR analysis directly in aqueous reaction buffer. The Cj1293 and HP0840 enzymes exhibited C6 dehydratase as well as a newly identified C5 epimerase activity that resulted in the production of both UDP-2-acetamido-2,6-dideoxy-beta-L-arabino-4-hexulose and UDP-2-acetamido-2,6-dideoxy-alpha-D-xylo-4-hexulose. In contrast, the Pgl dehydratase Cj1120c (PglF) was found to possess only C6 dehydratase activity generating UDP-2-acetamido-2,6-dideoxy-alpha-D-xylo-4-hexulose. Substrate-specificity studies demonstrated that the flagellar aminotransferases HP0366 and Cj1294 utilize only UDP-2-acetamido-2,6-dideoxy-beta-L-arabino-4-hexulose as substrate producing UDP-4-amino-4,6-dideoxy-beta-L-AltNAc, a precursor in the Pse biosynthetic pathway. In contrast, the Pgl aminotransferase Cj1121c (PglE) utilizes only UDP-2-acetamido-2,6-dideoxy-alpha-D-xylo-4-hexulose producing UDP-4-amino-4,6-dideoxy-alpha-D-GlcNAc (UDP-2-acetamido-4-amino-2,4,6-trideoxy-alpha-D-glucopyranose), a precursor used in the production of the Pgl glycan component 2,4-diacetamido-2,4,6-trideoxy-alpha-D-glucopyranose.  相似文献   

14.
We report the results of cloning genes for two key biosynthetic enzymes of different 5-aminolevulinic acid (ALA) biosynthetic routes from Streptomyces. The genes encode the glutamyl-tRNAGlu reductase (GluTR) of the C5 pathway and the ALA synthase (ALAS) of the Shemin pathway. While Streptomyces coelicolor A3(2) synthesizes ALA via the C5 route, both pathways are operational in Streptomyces nodosus subsp. asukaensis, a producer of asukamycin. In this strain, the C5 route produces ALA for tetrapyrrole biosynthesis; the ALA formed by the Shemin pathway serves as a precursor of the 2-amino-3-hydroxycyclopent-2-enone moiety (C5N unit), an antibiotic component. The growth of S. nodosus and S. coelicolor strains deficient in the GluTR genes (gtr) is strictly dependent on ALA or heme supplementation, whereas the defect in the ALAS-encoding gene (hemA-asuA) abolishes the asukamycin production in S. nodosus. The recombinant hemA-asuA gene was expressed in Escherichia coli and in Streptomyces, and the encoded enzyme activity was demonstrated both in vivo and in vitro. The hemA-asuA gene is situated within a putative cluster of asukamycin biosynthetic genes. This is the first report about the cloning of genes for two different ALA biosynthetic routes from a single bacterium.  相似文献   

15.
Singh D  Seo MJ  Kwon HJ  Rajkarnikar A  Kim KR  Kim SO  Suh JW 《Gene》2006,376(1):13-23
The validamycin biosynthetic gene cluster was isolated from Streptomyces hygroscopicus var. limoneus KTCC 1715 (IFO 12704) using a pair of degenerated PCR primers designed from the sequence of AcbC, 2-epi-5-epi-valiolone synthase in the acarbose biosynthesis. The nucleotide sequence analysis of the 37-kb DNA region revealed 22 complete ORFs including vldA, the acbC ortholog. Located around vldA, vldB to K were predicted to encode adenyltransferase, kinase, ketoreductase (or epimerase/dehydratase), glycosyltransferase, aminotransferase, dehydrogenase, phosphatase/phosphomutase, glycosyl hydrolase, transport protein, and glycosyltransferase, respectively. Apparently absent were any regulatory components within the sequenced region. The disruption of vldA abolished the validamycin biosynthesis and the plasmid-based complementation with vldABC restored production to the vldA-mutant; this substantiated that vldABC are essential to validamycin biosynthesis. This finding enabled us to discover the complete validamycin biosynthetic cluster. The cosmid clone of pJWS3001 harboring the 37-kb DNA region conferred validamycin-accumulation to Streptomyces lividans, indicating that the entire gene cluster of validamycin biosynthesis had been isolated. Additionally, Streptomyces albus, transformed with pJWS3001, produced a high level of alpha-glucosidase inhibitory activity in a R2YE liquid culture, which highlights the portability of the cluster within Streptomyces. The product of vldI was characterized as a glucoamylase (kcat, 32 s(-1); K(m), 5 mg/ml of starch) that does not play any apparent role in the validamycin biosynthesis. In order to characterize the upstream region, a vldW knockout was achieved via gene-replacement. A phenotypic study of the resulting mutant revealed that vldW is not essential for the host's ability to control Pellicularia filamentosa growth. The current information suggests that vldA to vldH is the genetic region essential to validamycin biosynthesis. This promises excellent opportunities to elucidate biosynthetic route(s) to the validamycin complex and to engineer the pathway for industrial application.  相似文献   

16.
《BBA》2020,1861(11):148259
Ubiquinone is an important component of the electron transfer chains in proteobacteria and eukaryotes. The biosynthesis of ubiquinone requires multiple steps, most of which are common to bacteria and eukaryotes. Whereas the enzymes of the mitochondrial pathway that produces ubiquinone are highly similar across eukaryotes, recent results point to a rather high diversity of pathways in bacteria. This review focuses on ubiquinone in bacteria, highlighting newly discovered functions and detailing the proteins that are known to participate to its biosynthetic pathways. Novel results showing that ubiquinone can be produced by a pathway independent of dioxygen suggest that ubiquinone may participate to anaerobiosis, in addition to its well-established role for aerobiosis. We also discuss the supramolecular organization of ubiquinone biosynthesis proteins and we summarize the current understanding of the evolution of the ubiquinone pathways relative to those of other isoprenoid quinones like menaquinone and plastoquinone.  相似文献   

17.
Deoxysugars are critical structural elements for the bioactivity of many natural products. Ongoing work on elucidating a variety of deoxysugar biosynthetic pathways has paved the way for manipulation of these pathways for the generation of structurally diverse glycosylated natural products. In the course of this work, the biosynthesis of d-mycaminose in the tylosin pathway of Streptomyces fradiae was investigated. Attempts to reconstitute the entire mycaminose biosynthetic machinery in a heterologous host led to the discovery of a previously overlooked gene, tyl1a, encoding an enzyme thought to convert TDP-4-keto-6-deoxy-d-glucose to TDP-3-keto-6-deoxy-d-glucose, a 3,4-ketoisomerization reaction in the pathway. Tyl1a has now been overexpressed, purified, and assayed, and its activity has been verified by product analysis. Incubation of Tyl1a and the C-3 aminotransferase TylB, the next enzyme in the pathway, produced TDP-3-amino-3,6-dideoxy-d-glucose, confirming that these two enzymes act sequentially. Steady state kinetic parameters of the Tyl1a-catalyzed reaction were determined, and the ability of Tyl1a and TylB to process a C-2 deoxygenated substrate and a CDP-linked substrate was also demonstrated. Enzymes catalyzing 3,4-ketoisomerization of hexoses represent a new class of enzymes involved in unusual sugar biosynthesis. The fact that Tyl1a exhibits a relaxed substrate specificity holds potential for future deoxysugar biosynthetic engineering endeavors.  相似文献   

18.
19.
Aims:  To obtain spectinomycin and spectinamine by heterologous expression into the biosynthetic deoxysugar (desosamine) gene-deleted host Streptomyces venezuelae YJ003.
Methods and Results:  The 17-kb spectinomycin biosynthetic gene cluster from Streptomyces spectabilis ATCC 27741 was heterologously expressed into Streptomyces venezuelae YJ003. Furthermore, the speA , speB and spcS2 encoded in the spectinomycin biosynthetic gene cluster of cosmid pSPC8 were also heterologously characterized to be responsible for the production of spectinamine.
Conclusions:  The results of this study indicated that pSPC8 contains all the genes necessary for the biosynthesis of spectinomycin. We also concluded that SpeA, SpeB and SpcS2 are sufficient for the biosynthesis of spectinamine. We also verified that SpeB and SpcS2 show dual character in the biosynthetic pathway of spectinomycin in Streptomyces spectabilis .
Significance and Impact of the Study:  This is the report regarding the expression of a biosynthetic gene cluster that gives rise to the production of aminoglycoside antibiotics in Streptomyces venezuelae YJ003. Therefore, this work may serve as a foundation for further research on spectinomycin biosynthesis and other aminoglycosides.  相似文献   

20.
The availability of fully sequenced bacterial genomes has revealed that many species known to synthesize the polyamine spermidine lack the spermidine biosynthetic enzymes S-adenosylmethionine decarboxylase and spermidine synthase. We found that such species possess orthologues of the sym-norspermidine biosynthetic enzymes carboxynorspermidine dehydrogenase and carboxynorspermidine decarboxylase. By deleting these genes in the food-borne pathogen Campylobacter jejuni, we found that the carboxynorspermidine decarboxylase orthologue is responsible for synthesizing spermidine and not sym-norspermidine in vivo. In polyamine auxotrophic gene deletion strains of C. jejuni, growth is highly compromised but can be restored by exogenous sym-homospermidine and to a lesser extent by sym-norspermidine. The alternative spermidine biosynthetic pathway is present in many bacterial phyla and is the dominant spermidine route in the human gut, stomach, and oral microbiomes, and it appears to have supplanted the S-adenosylmethionine decarboxylase/spermidine synthase pathway in the gut microbiota. Approximately half of the gut Firmicutes species appear to be polyamine auxotrophs, but all encode the potABCD spermidine/putrescine transporter. Orthologues encoding carboxyspermidine dehydrogenase and carboxyspermidine decarboxylase are found clustered with an array of diverse putrescine biosynthetic genes in different bacterial genomes, consistent with a role in spermidine, rather than sym-norspermidine biosynthesis. Due to the pervasiveness of ε-proteobacteria in deep sea hydrothermal vents and to the ubiquity of the alternative spermidine biosynthetic pathway in that phylum, the carboxyspermidine route is also dominant in deep sea hydrothermal vents. The carboxyspermidine pathway for polyamine biosynthesis is found in diverse human pathogens, and this alternative spermidine biosynthetic route presents an attractive target for developing novel antimicrobial compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号