首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N-glycan structures of recombinant human serum transferrin (hTf) expressed by Lymantria dispar (gypsy moth) 652Y cells were determined. The gene encoding hTf was incorporated into a Lymantria dispar nucleopolyhedrovirus (LdMNPV) under the control of the polyhedrin promoter. This virus was then used to infect Ld652Y cells, and the recombinant protein was harvested at 120 h postinfection. N-glycans were released from the purified recombinant human serum transferrin and derivatized with 2-aminopyridine; the glycan structures were analyzed by a two-dimensional HPLC and MALDI-TOF MS. Structures of 11 glycans (88.8% of total N-glycans) were elucidated. The glycan analysis revealed that the most abundant glycans were Man1-3(+/-Fucalpha6)GlcNAc2 (75.5%) and GlcNAcMan3(+/-Fucalpha6)GlcNAc2 (7.4%). There was only approximately 6% of high-mannose type glycans identified. Nearly half (49.8%) of the total N-glycans contained alpha(1,6)-fucosylation on the Asn-linked GlcNAc residue. However alpha(1,3)-fucosylation on the same GlcNAc, often found in N-glycans produced by other insects and insect cells, was not detected. Inclusion of fetal bovine serum in culture media had little effect on the N-glycan structures of the recombinant human serum transferrin obtained.  相似文献   

2.
The majority of synaptic plasma membrane components are glycosylated. It is now widely accepted that this post-translational modification is crucial during the establishment, maintenance and function of the nervous system. Despite its significance, structural information about the glycosylation of nervous system specific glycoproteins is very limited. In the present study the major glycan structures of the chicken synaptic plasma membrane (SPM) associated glycoprotein glycans were determined. N-glycans were released by hydrazinolysis, labelled with 2-aminobenzamide, treated with neuraminidase and subsequently fractionated by size exclusion chromatography. Individual fractions were characterized by the combination of high-pressure liquid chromatography, exoglycosidase treatment or reagent array analysis method (RAAM). In addition to oligomannose-type glycans, core-fucosylated complex glycans with biantennary bisecting glycans carrying the LewisX epitope were most abundant. The overall chicken glycan profile was strikingly similar to the rat brain glycan profile. The presence of the LewisX determinant in relatively large proportions suggests a tissue-specific function for these glycans.  相似文献   

3.

Background

Complex carbohydrate structures, glycans, are essential components of glycoproteins, glycolipids, and proteoglycans. While individual glycan structures including the SSEA and Tra antigens are already used to define undifferentiated human embryonic stem cells (hESC), the whole spectrum of stem cell glycans has remained unknown. We undertook a global study of the asparagine-linked glycoprotein glycans (N-glycans) of hESC and their differentiated progeny using MALDI-TOF mass spectrometric and NMR spectroscopic profiling. Structural analyses were performed by specific glycosidase enzymes and mass spectrometric fragmentation analyses.

Results

The data demonstrated that hESC have a characteristic N-glycome which consists of both a constant part and a variable part that changes during hESC differentiation. hESC-associated N-glycans were downregulated and new structures emerged in the differentiated cells. Previously mouse embryonic stem cells have been associated with complex fucosylation by use of SSEA-1 antibody. In the present study we found that complex fucosylation was the most characteristic glycosylation feature also in undifferentiated hESC. The most abundant complex fucosylated structures were Lex and H type 2 antennae in sialylated complex-type N-glycans.

Conclusion

The N-glycan phenotype of hESC was shown to reflect their differentiation stage. During differentiation, hESC-associated N-glycan features were replaced by differentiated cell-associated structures. The results indicated that hESC differentiation stage can be determined by direct analysis of the N-glycan profile. These results provide the first overview of the N-glycan profile of hESC and form the basis for future strategies to target stem cell glycans.  相似文献   

4.
The new field of functional glycomics encompasses information about both glycan structure and recognition by carbohydrate-binding proteins (CBPs) and is now being explored through glycan array technology. Glycan array construction, however, is limited by the complexity of efficiently generating derivatives of free, reducing glycans with primary amines for conjugation. Here we describe a straightforward method to derivatize glycans with 2,6-diaminopyridine (DAP) to generate fluorescently labeled glycans (glycan-DAP conjugates or GDAPs) that contain a primary amine for further conjugation. We converted a wide variety of glycans, including milk sugars, N-glycans, glycosaminoglycans and chitin-derived glycans, to GDAPs, as verified by HPLC and mass spectrometry. We covalently conjugated GDAPs to N-hydroxysuccinimide (NHS)-activated glass slides, maleimide-activated protein, carboxylated microspheres and NHS-biotin to provide quantifiable fluorescent derivatives. All types of conjugated glycans were well-recognized by appropriate CBPs. Thus, GDAP derivatives provide versatile new tools for biologists to quantify and covalently capture minute quantities of glycans for exploring their structures and functions and generating new glycan arrays from naturally occurring glycans.  相似文献   

5.
Ovomucin is a bioactive egg white glycoprotein responsible for the gel properties of fresh egg white and is believed to be involved in egg white thinning, a natural process that occurs during storage. Ovomucin is composed of two subunits: a carbohydrate-rich β-ovomucin with molecular weight of 400-610?KDa and a carbohydrate-poor α-ovomucin with molecular mass of 254?KDa. In addition to limited information on O-linked glycans of ovomucin, there is no study on either the N-glycan structures or the N-glycosylation sites. The purpose of the present study was to characterize the N-glycosylation of ovomucin from fresh eggs using nano LC ESI-MS, MS/MS and MALDI MS. Our results showed the presence of N-linked glycans on both glycoproteins. We found 18 potential N-glycosylation sites in α-ovomucin. 15 sites were glycosylated, one site was found in both glycosylated and non-glycosylated forms and two potential glycosylation sites were found unoccupied. The N-glycans of α-ovomucin found on the glycosylation sites are complex-type structures with bisecting N-acetylglucosamine. MALDI MS of the N-glycans released from α-ovomucin by PNGase F revealed that the most abundant glycan structure is a bisected type of composition GlcNAc(6)Man(3). Two N-glycosylated sites were found in β-ovomucin.  相似文献   

6.
Some mutants of Caenorhabditis elegans show altered patterns of ectopic binding with wheat germ agglutinin (WGA). Some of these mutants also have defects of morphogenesis and movement during development. To clarify the structures of WGA-ligands in C. elegans that may be involved in developmental events, we have analyzed glycan structures capable of binding WGA. We isolated glycoproteins from wild-type C. elegans by WGA-affinity chromatography, and analyzed their glycan structures by a combination of hydrazine degradation and fluorescent labeling. The glycoproteins had oligomannose-type and complex-type N-glycans that included agalacto-biantenna and agalacto-tetraantenna glycans. Although the complex-type glycans carried beta-GlcNAc residues at their non-reducing ends, they did not bind to the WGA-agarose-resin. Thus, it was suggested that these N-glycans were not responsible for WGA-binding of the isolated glycoproteins. Hydrazinolysis of the glycoproteins also released a considerable amount of GalNAc monosaccharide. It was surmised that N-acetylgalactosamine was derived from mucin-type O-glycans with the Tn-antigen structure (GalNAcalpha1-O-Ser/Thr). WGA-blotting assay of neoglycoproteins revealed that a cluster of Tn-antigens was a good ligand for WGA. These results suggested that the WGA-ligand in C. elegans is a cluster of alpha-GalNAc monosaccharides linked to mucin-like glycoprotein(s). The observations reported in this paper emphasize the possible significance of mucin-type O-glycans in the development of a multicellular organism.  相似文献   

7.
N-acetylglucosaminyltransferase V (GnT-V) catalyzes the addition of a beta1,6-linked GlcNAc to the alpha1,6 mannose of the trimannosyl core to form tri- and tetraantennary N-glycans and contains six putative N-linked sites. We used mass spectrometry techniques combined with exoglycosidase digestions of recombinant human GnT-V expressed in CHO cells, to identify its N-glycan structures and their sites of expression. Release of N-glycans by PNGase F treatment, followed by analysis of the permethylated glycans using MALDI-TOF MS, indicated a range of complex glycans from bi- to tetraantennary species. Mapping of the glycosylation sites was performed by enriching for trypsin-digested glycopeptides, followed by analysis of each fraction with Q-TOF MS. Predicted tryptic glycopeptides were identified by comparisons of theoretical masses of peptides with various glycan masses to the masses of the glycopeptides determined experimentally. Of the three putative glycosylation sites in the catalytic region, peptides containing sites Asn 334, 433, and 447 were identified as being N-glycosylated. Asn 334 is glycosylated with only a biantennary structure with one or two terminating sialic acids. Sites Asn 433 and 447 both contain structures that range from biantennary with two sialic acids to tetraantennary terminating with four sialic acids. The predominant glycan species found on both of these sites is a triantennary with three sialic acids. The appearance of only biantennary glycans at site Asn 433, coupled with the appearance of more highly branched structures at Asn 334 and 447, demonstrates that biantennary acceptors present at different sites on the same protein during biosynthesis can differ in their accessibility for branching by GnT-V.  相似文献   

8.
During the N-glycosylation reaction, it has been shown that 'free' N-glycans are generated either from lipid-linked oligosaccharides or from misfolded glycoproteins. In both cases, occurrence of high mannose-type free glycans is well-documented, and the molecular mechanism for their catabolism in the cytosol has been studied. On the other hand, little, if anything, is known with regard to the accumulation of more processed, complex-type free oligosaccharides in the cytosol of mammalian cells. During the course of comprehensive analysis of N-glycans in cancer cell membrane fractions [Naka et al. (2006) J. Proteome Res. 5, 88-97], we found that a significant amount of unusual, complex-type free N-glycans were accumulated in the stomach cancer-derived cell lines, MKN7 and MKN45. The most abundant and characteristic glycan found in these cells was determined to be NeuAcalpha2-6Galbeta1-4GlcNAcbeta1-2Manalpha1-3Manbeta1-4GlcNAc. Biochemical analyses indicated that those glycans found were cytosolic glycans derived from lysosomes due to low integrity of the lysosomal membrane. Since the accumulation of these free N-glycans was specific to only two cell lines among the various cancer cell lines examined, these cytosolic N-glycans may serve as a specific biomarker for diagnosis of specific tumours. A cytosolic sialidase, Neu2, was shown to be involved in the degradation of these sialoglycans, indicating that the cytosol of mammalian cells might be equipped for metabolism of complex-type glycans.  相似文献   

9.
Protein–glycan recognition regulates a wide range of biological and pathogenic processes. Conformational diversity of glycans in solution is apparently incompatible with specific binding to their receptor proteins. One possibility is that among the different conformational states of a glycan, only one conformer is utilized for specific binding to a protein. However, the labile nature of glycans makes characterizing their conformational states a challenging issue. All-atom molecular dynamics (MD) simulations provide the atomic details of glycan structures in solution, but fairly extensive sampling is required for simulating the transitions between rotameric states. This difficulty limits application of conventional MD simulations to small fragments like di- and tri-saccharides. Replica-exchange molecular dynamics (REMD) simulation, with extensive sampling of structures in solution, provides a valuable way to identify a family of glycan conformers. This article reviews recent REMD simulations of glycans carried out by us or other research groups and provides new insights into the conformational equilibria of N-glycans and their alteration by chemical modification. We also emphasize the importance of statistical averaging over the multiple conformers of glycans for comparing simulation results with experimental observables. The results support the concept of “conformer selection” in protein–glycan recognition.  相似文献   

10.
Neutrophil gelatinase-associated lipocalin (NGAL) is a promising new renal biomarker that can reduce the time to diagnose acute kidney injury (AKI). There is little information available about complex glycans on NGAL. Detailed structural characterization of NGAL is necessary to understand the structural variability of NGAL used as a standard in the NGAL immunoassay. This study demonstrated that 7-9% of mutant (C87S) recombinant NGAL was N-glycosylated and no O-glycosylation was detected. The NGAL sequence was confirmed by nanoLC/MS/MS following in gel and in solution trypsin digestion, and the N-glycosylation site was localized by MS/MS. Six different mutant recombinant NGAL samples (samples A-F) were analyzed in this study; however, these samples demonstrated two different glycan patterns. Forty-one N-glycans were detected in sample A and the more abundant N-glycans were unsialylated. Forty-three N-glycans were detected in sample F and the more abundant N-glycans were sialylated. Each of the other four samples (B-E) had a similar N-glycan pattern as sample F.  相似文献   

11.
Planarian flatworms are known as the masters of regeneration, re-growing an entire organism from as little as 1/279th part of their body. While the proteomics of these processes has been studied extensively, the planarian lipodome remains relatively unknown. In this study we investigate the lipid profile of planarian tissue sections with imaging Time-of-Flight – Secondary-Ion-Mass-Spectrometry (ToF-SIMS). ToF-SIMS is a label-free technique capable of gathering intact, location specific lipid information on a cellular scale. Lipid identities are confirmed using LC-MS/MS. Our data shows that different organ structures within planarians have unique lipid profiles. The 22-carbon atom poly unsaturated fatty acids (PUFAs) which occur in unusually high amounts in planarians are found to be mainly located in the testes. Additionally, we observe that planarians contain various odd numbered fatty acid species, that are usually found in bacteria, localized in the reproductive and ectodermal structures of the planarian. An abundance of poorly understood ether fatty acids and ether lipids were found in unique areas in planarians as well as a new, yet unidentified class of potential lipids in planarian intestines. Identifying the location of these lipids in the planarian body provides insights into their bodily functions and, in combination with knowledge about their diet and their genome, enables drawing conclusions about planarian fatty acid processing.  相似文献   

12.
Ecto-nucleotide phosphodiesterase/pyrophosphatase 6 (eNPP6) is a glycosylphosphatidylinositol (GPI)-anchored alkaline lysophospholipase C which is predominantly expressed in brain myelin and kidney. Due to shedding of the GPI-anchor eNPP6 occurs also as a soluble isoform (s-eNPP6). eNPP 6 consists of two identical monomers of 55 kDa joined by a disulfide bridge, and possesses four N-glycans in each monomer. In brain s-eNPP6 the N-glycans are mainly hybrid and high mannose type structures, reminiscent of processed mannose-6-phosphorylated glycans. Here we completed characterization of the site-specific glycan structures of bovine brain s-eNPP6, and determined the endo H-sensitivity glycan profiles of s-eNPP6 from bovine liver and kidney. Whereas in brain s-eNPP6 all of the N-glycans were endo H-sensitive, in liver and kidney only one of the glycosylation sites was occupied by an endo H-sensitive glycan, likely N406, which is located within the cleft formed by the dimer interface. Thus, the non-classical glycan processing pathway of brain eNPP 6 is not due to mannose-6-phosphorylation, suggesting that there is an alternative Golgi glycan-processing pathway of eNPP6 in brain. The resulting brain-specific expression of accessible hybrid and oligomannosidic glycans may be physiologically important within the cell–cell communication system of the brain.  相似文献   

13.
14.
The folate binding protein (FBP), also known as the folate receptor (FR), is a glycoprotein which binds the vitamin folic acid and its analogues. FBP contains multiple N-glycosilation sites, is selectively expressed in tissues and body fluids, and mediates targeted therapies in cancer and inflammatory diseases. Much remains to be understood about the structure, composition, and the tissue specificities of N-glycans bound to FBP. Here, we performed structural characterization of N-linked glycans originating from bovine and human milk FBPs. The N-linked glycans were enzymatically released from FBPs, purified, and permethylated. Native and permethylated glycans were further analyzed by matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) mass spectrometry (MS), while tandem MS (MS/MS) was used for their structural characterization. The assignment of putative glycan structures from MS and MS/MS data was achieved using Functional Glycomics glycan database and SimGlycan software, respectively. It was found that FBP from human milk contains putative structures that have composition consistent with high-mannose (Hex(5-6)HexNAc(2)) as well as hybrid and complex N-linked glycans (NeuAc(0-1)Fuc(0-3)Hex(3-6)HexNAc(3-5)). The FBP from bovine milk contains putative structures corresponding to high-mannose (Hex(4-9)HexNAc(2)) as well as hybrid and complex N-linked glycans (Hex(3-6)HexNAc(3-6)), but these glycans mostly do not contain fucose and sialic acid. Glycomic characterization of FBP provides valuable insight into the structure of this pharmacologically important glycoprotein and may have utility in tissue-selective drug targeting and as a biomarker.  相似文献   

15.
The N-glycans from 27 "plant" foodstuffs, including one from a gymnospermic plant and one from a fungus, were prepared by a new procedure and examined by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). For several samples, glycan structures were additionally investigated by size-fractionation and reverse-phase high-performance liquid chromatography in conjunction with exoglycosidase digests and finally also (1)H-nuclear magnetic resonance spectroscopy. The glycans found ranged from the typical vacuolar "horseradish peroxidase" type and oligomannose to complex Le(a)-carrying structures. Though the common mushroom exclusively contained N-glycans of the oligomannosidic type, all plant foods contained mixtures of the above-mentioned types. Apple, asparagus, avocado, banana, carrot, celery, hazelnut, kiwi, onion, orange, pear, pignoli, strawberry, and walnut were particularly rich in Le(a)-carrying N-glycans. Although traces of Le(a)-containing structures were also present in almond, pistachio, potato, and tomato, no such glycans could be found in cauliflower. Coconut exhibited almost exclusively N-glycans containing only xylose but no fucose. Oligomannosidic N-glycans dominated in buckwheat and especially in the legume seeds mung bean, pea, peanut, and soybean. Papaya presented a unique set of hybrid type structures partially containing the Le(a) determinant. These results are not only compatible with the hypothesis that the carbohydrate structures are another potential source of immunological cross-reaction between different plant allergens, but they also demonstrate that the Le(a)-type structure is very widespread among plants.  相似文献   

16.
Tobacco-based transient expression was employed to elucidate the impact of differential targeting to subcellular compartments on activity and quality of gastric lipase as a model for the production of recombinant glycoproteins in plants. Overall N-linked glycan structures of recombinant lipase were analyzed and for the first time sugar structures of its four individual N-glycosylation sites were determined in situ by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) on a trypsin digest without isolation or deglycosylation of the peptides. Three glycosylation sites contain both complex-type N-glycans and high-mannose-type structures, the fourth is exclusively linked to high-mannose glycans. Although the overall pattern of glycan structures is influenced by the targeting, our results show that the type of glycans found linked to a given Asn residue is largely influenced by the physico-chemical environment of the site. The transient tobacco system combined with MALDI-TOF-MS appears to be a useful tool for the evaluation of glycoprotein production in plants.  相似文献   

17.
Glycosylation has profound effects on the quality of recombinant proteins produced in mammalian cells. The biosynthetic pathways of N-linked glycans on glycoproteins involves a relatively small number of enzymes and nucleotide sugars. Many of these glycoconjugate enzymes can utilize multiple N-glycans as substrates, thus generating a large number of glycan intermediates, and making the biosynthetic pathway resemble a network with diverging and converging paths. The N-glycans on secreted glycoprotein molecules include not only terminal glycans, but also pathway intermediates. To better assess the glycan distribution and the potential route of their synthesis, we created GlycoVis, a visualization program that displays the distribution and the potential reaction paths leading to each N-glycan on the reaction network. The substrate specificities of the enzymes involved were organized into a relationship matrix. With the input of glycan distribution data, the program outputs a reaction pathway map which labels the relative abundance levels of different glycans with different colors. The program also traces all possible reaction paths leading to each glycan and identifies each pathway on the map. Glycoform distribution of Chinese Hamster Ovary cell-derived tissue plasminogen activator (TPA), and human and mouse IgG were used as illustrations for the application of GlycoVis. In addition, the intracellular and secreted IgG from an NS0 producer cell line were isolated, and their glycoform profiles were displayed using GlycoVis for comparison. This visualization tool facilitates the analysis of potential reaction paths utilized under different physiological or culture conditions, and may provide insight on the potential targets for metabolic engineering.  相似文献   

18.
Lectins are carbohydrate binding proteins that are gaining attention as important tools for the identification of specific glycan markers expressed during different stages of the cancer. We earlier reported the purification of a mitogenic lectin from human pathogenic fungus Cephalosporium curvulum (CSL) that has complex sugar specificity when analysed by hapten inhibition assay. In the present study, we report the fine sugar specificity of CSL as determined by glycan array analysis. The results revealed that CSL has exquisite specificity towards core fucosylated N-glycans. Fucosylated trimannosyl core is the basic structure required for the binding of CSL. The presence of fucose in the side chain further enhances the avidity of CSL towards such glycans. The affinity of CSL is drastically reduced towards the non-core fucosylated glycans, in spite of their side chain fucosylation. CSL showed no binding to the tested O-glycans and monosaccharides. These observations suggest the unique specificity of CSL towards core fucosylated N-glycans, which was further validated by binding of CSL to human colon cancer epithelial and hepatocarcinoma cell lines namely HT29 and HepG2, respectively, that are known to express core fucosylated N-glycans, using AOL and LCA as positive controls. LCA and AOL are fucose specific lectins that are currently being used clinically for the diagnosis of hepatocellular carcinomas. Most of the gastrointestinal markers express core fucosylated N-glycans. The high affinity and exclusive specificity of CSL towards α1-6 linkage of core fucosylated glycans compared to other fucose specific lectins, makes it a promising molecule that needs to be further explored for its application in the diagnosis of gastrointestinal cancer.  相似文献   

19.
Glycomic profiles derived from human blood sera of 10 healthy males were compared to those from 24 prostate cancer patients. The profiles were acquired using MALDI-MS of permethylated N-glycans released from 10-microL sample aliquots. Quantitative permethylation was attained using solid-phase permethylation. Principal component analysis of the glycomic profiles revealed significant differences among the two sets, allowing their distinct clustering. The first principal component distinguished the 24 prostate cancer patients from the healthy individuals. It was determined that fucosylation of glycan structures is generally higher in cancer samples (ANOVA test p-value of 0.0006). Although more than 50 N-glycan structures were determined, 12 glycan structures, of which six were fucosylated, were significantly different between the two sample sets. Significant differences were confirmed through two independent statistical tests (ANOVA and ROC analyses). Ten of these structures had significantly higher relative intensities in the case of the cancer samples, while the other two were less abundant in the cancer samples. All 12 structures were statistically significant, as suggested by their very low ANOVA scores (<0.001) and ROC analysis, with area under the curve values close to 1 or 0. Accordingly, these structures can be considered as cancer-specific glycans and potential prostate cancer biomarkers. Therefore, serum glycomic profiling appears worthy of further investigation to define its role in cancer early detection and prognostication.  相似文献   

20.
We have shown that recombinant forms of VP8* domains of the human rotavirus outer capsid spike protein VP4 from human neonatal strains (N155(G10P[11]) and RV3(G3P[6]) and a bovine strain (B223) recognize unique glycans within the repertoire of human milk glycans. The accompanying study by Yu et al.2, describes a human milk glycan shotgun glycan microarray that led to the identification of 32 specific glycans in the human milk tagged glycan library that were recognized by these human rotaviruses. These microarray analyses also provided a variety of metadata about the recognized glycan structures compiled from anti-glycan antibody and lectin binding before and after specific glycosidase digestions, along with compositional information from mass analysis by matrix-assisted laser desorption ionization-mass spectrometry. To deduce glycan sequence and utilize information predicted by analyses of metadata from each glycan, 28 of the glycan targets were retrieved from the tagged glycan library for detailed sequencing using sequential disassembly of glycans by ion-trap mass spectrometry. Our aim is to obtain a deeper structural understanding of these key glycans using an orthogonal approach for structural confirmation in a single ion trap mass spectrometer. This sequential ion disassembly strategy details the complexities of linkage and branching in multiple compositions, several of which contained isomeric mixtures including several novel structures. The application of this approach exploits both library matching with standard materials and de novo approaches. This combination together with the metadata generated from lectin and antibody-binding data before and after glycosidase digestions provide a heretofore-unavailable level of analytical detail to glycan structure analysis. The results of these studies showed that, among the 28 glycan targets analyzed, 27 unique structures were identified, and 23 of the human milk glycans recognized by human rotaviruses represent novel structures not previously described as glycans in human milk. The functional glycomics analysis of human milk glycans provides significant insight into the repertoire of glycans comprising the human milk metaglycome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号