首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nayar S  Brahma A  Barat B  Bhattacharyya D 《Biochemistry》2004,43(31):10212-10223
UDP-galactose 4-epimerase serves as a prototype model of class II oxidoreductases that use bound NAD as a cofactor. This enzyme from Kluyveromyces fragilis is a homodimer with a molecular mass of 75 kDa/subunit. Continuous monitoring of the conversion of UDP-galactose (UDP-gal) to UDP-glucose (UDP-glu) by the epimerase in the presence of the coupling enzyme UDP-glucose dehydrogenase and NAD shows a kinetic lag of up to 80 s before a steady state is reached. The disappearance of the lag follows first-order kinetics (k = 3.22 x 10(-2) s(-1)) at 25 degrees C at enzyme and substrate concentrations of 1.0 nM and 1 mM, respectively. The observed lag is not due to factors such as insufficient activity of the coupling enzyme, association or dissociation or incomplete recruitment of NAD by epimerase, product activation, etc., but was a true expression of the activity of the prepared enzyme. Dissociation of the bound ligand(s) by heat followed by analysis with reverse-phase HPLC, TLC, UV-absorption spectrometry, mass spectrometry, and NMR showed that in addition to 1.78 mol of NAD/dimer, the epimerase also contains 0.77 mol of 5'-UMP/dimer. The latter is a strong competitive inhibitor. Preincubation of the epimerase with the substrate UDP-gal or UDP-glu replaces the inhibitor and also abolishes the lag, which reappeared after the enzyme was treated with 5'-UMP. The lag was not observed as long as the cells were in the growing phase and galactose in the growth medium was limiting, suggesting that association with 5'-UMP is a late log-phase phenomenon. The stoichiometry and conserved amino acid sequence around the NAD binding site of multimeric class I (classical dehydrogenases) and class II oxidoreductases, as reported in the literature, have been compared. It shows that each subunit is independently capable of being associated with one molecule of NAD, suggestive of two NAD binding sites of epimerase per dimer.  相似文献   

2.
The phosphorus atoms of NAD+ bound within the active site of UDP-galactose 4-epimerase from Escherichia coli exhibit two NMR signals, one at delta = -9.60 +/- 0.05 ppm and one at delta = -12.15 +/- 0.01 ppm (mean +/- standard deviation of four experiments) relative to 85% H3PO4 as an external standard. Titration of epimerase.NAD+ with UMP causes a UMP-dependent alteration in the chemical shifts of the resulting exchange-averaged spectra, which extrapolate to delta = -10.51 ppm and delta = -11.06 ppm, respectively, for the fully liganded enzyme, with an interconversion rate between epimerase.NAD+ and epimerase.NAD+.UMP of at least 490 s-1. Conversely, the binding of 8-anilinonaphthalene-1-sulfonate, which is competitive with UMP, causes a significant sharpening of the epimerase.NAD+ resonances but very little alteration in their chemical shifts, to delta = -9.38 ppm and delta = -12.16 ppm, respectively. UMP-dependent reductive inactivation by glucose results in the convergence of the two resonances into a single signal of delta = -10.57 ppm, with an off-rate constant for UMP dissociation from the epimerase.NADH.UMP complex estimated at 8 s-1. Reductive inactivation by borohydride under anaerobic conditions yields a single, broad resonance centered at about delta = -10.2 ppm. The data are consistent with, and may reflect, the activation of NAD+ via a protein conformational change, which is known from chemical studies to be driven by uridine nucleotide binding. Incubation of epimerase.NAD+ with UMP in the absence of additional reducing agents causes a very slow reductive inactivation of the enzyme with an apparent pseudo-first-order rate constant of 0.013 +/- 0.001 h-1, which appears to be associated with liberation of inorganic phosphate from UMP.  相似文献   

3.
UDP-galactose 4-epimerase catalyzes the conversion of UDP-galactose to UDP-glucose during normal galactose metabolism. The molecular structure of UDP-galactose 4-epimerase from Escherichia coli has now been solved to a nominal resolution of 2.5 A. As isolated from E. coli, the molecule is a dimer of chemically identical subunits with a total molecular weight of 79,000. Crystals of the enzyme used for this investigation were grown as a complex with the substrate analogue, UDP-benzene, and belonged to the space group P2(1)2(1)2(1) with unit cell dimensions of a = 76.3 A, b = 83.1 A, c = 132.1 A, and one dimer per asymmetric unit. An interpretable electron density map calculated to 2.5 A resolution was obtained by a combination of multiple isomorphous replacement with six heavy atom derivatives, molecular averaging, and solvent flattening. Each subunit of epimerase is divided into two domains. The larger N-terminal domain, composed of amino acid residues 1-180, shows a classic NAD+ binding motif with seven strands of parallel beta-pleated sheet flanked on either side of alpha-helices. The seventh strand of the beta-pleated sheet is contributed by amino acid residues from the smaller domain. In addition, this smaller C-terminal domain, consisting of amino acid residues 181-338, contains three strands of beta-pleated sheet, two major alpha-helices and one helical turn. The substrate analogue, UDP-benzene, binds in the cleft located between the two domains with its phenyl ring in close proximity to the nicotinamide ring of NAD+. Contrary to the extensive biochemical literature suggesting that epimerase binds only one NAD+ per functional dimer, the map clearly shows electron density for two nicotinamide cofactors binding in symmetry-related positions in the dimer. Likewise, each subunit in the dimer also binds one substrate analogue.  相似文献   

4.
UDP-galactose 4-epimerase from Kluyveromyces fragilis is a stable homodimer of 75 kDa/subunit with non-covalently bound NAD acting as cofactor. Partial proteolysis with trypsin in the presence of 5'-UMP, a strong competitive inhibitor, led to a degraded product which was purified. Results from SDS-PAGE, size-exclusion (SE)-HPLC and ultracentrifugation indicated its monomeric status and size between 43 and 45 kDa. 'Two-step assay' with UDP-glucose dehydrogenase as coupling enzyme in the presence of NAD ensured epimerase activity of the monomer. The possibility of transient dimerization of monomeric epimerase during catalysis was excluded by SE-HPLC in the presence of excess substrate and NAD. This truncated enzyme retained catalytic site related properties like Km for UDP-galactose, 'NADH-like coenzyme fluorescence' and 'reductive inhibition' similar to its dimeric counterpart. Reversible reactivation of the monomer was achieved up to 95% within 3 min from 8 M urea induced unfolded state, indicating that the catalytic site could form independent of its quaternary structure. Equilibrium unfolding between 0 and 8 M urea indicated that the monomer was less stable compared to the dimer. Chemical modification of amino acids and reconstitution with etheno-NAD suggested that the architecture around the catalytic site of the monomer was conserved. Specific modification reagents further confirmed that the cysteine residues required for catalysis and coenzyme fluorophore reside exclusively on a single subunit negating a 'subunit sharing model' of its catalytic site.  相似文献   

5.
VNG0128C, a hypothetical protein from Halobacterium NRC-1, was chosen for detailed insilico and experimental investigations. Computational exercises revealed that VNG0128C functions as NAD+ binding protein. The phylogenetic analysis with the homolog sequences of VNG0128C suggested that it could act as UDP-galactose 4-epimerase. Hence, the VNG0128C sequence was modeled using a suitable template and docking studies were performed with NAD and UDP-galactose as ligands. The binding interactions strongly indicate that VNG0128C could plausibly act as UDP-galactose 4-epimerase. In order to validate these insilico results, VNG0128C was cloned in pUC57, subcloned in pET22b+, expressed in BL21 cells and purified using nickel affinity chromatography. An assay using blue dextran was performed to confirm the presence of NAD binding domain. To corroborate the epimerase like enzymatic role of the hypothetical protein, i.e. the ability of the enzyme to convert UDP-galactose to UDP-glucose, the conversion of NAD to NADH was measured. The experimental assay significantly correlated with the insilico predictions, indicating that VNG0128C has a NAD+ binding domain with epimerase activity. Consequently, its key role in nucleotide-sugar metabolism was thus established. Additionally, the work highlights the need for a methodical characterization of hypothetical proteins (less studied class of biopolymers) to exploit them for relevant applications in the field of biology.  相似文献   

6.
S S Wong  P A Frey 《Biochemistry》1978,17(17):3551-3556
Escherichia coli UDP-galactose 4-epimerase in its native form (epimerase.NAD) binds 8-anilino-1-naphthalenesulfonate (ANS) at one tight binding site per dimer with a dissociation constant of 25.9 +/- 2.1 micrometer at pH 8.5 and 27 degrees C. This appears to be the substrate binding site, as indicated by the fact that ANS is a kinetically competitive reversible inhibitor with a Ki of 27.5 micrometer and by the fact that ANS competes with UMP for binding to the enzyme. Upon binding at this site the fluorescence quantum yield of ANS is enhanced 185-fold, and its emission spectrum is blue shifted from a lambdamax of 515 to 470.nm, which suggests that the binding site is shielded from water and probably hydrophobic. Competitive binding experiments with nucleosides and nucleotides indicate that nucleotide binding at this site involves coupled hydrophobic and electrostatic interactions. The reduced form of the enzyme (epimerase.NADH) has no detectable binding affinity for ANS. The marked difference in the affinities of the native and reduced enzymes for ANS is interpreted to be a manifestation of a conformational difference between these enzyme forms.  相似文献   

7.
Wei Y  Lin J  Frey PA 《Biochemistry》2001,40(37):11279-11287
UDP-galactose 4-epimerase contains the coenzyme NAD+ bound tightly at the active site. NAD+ functions as the coenzyme for the interconversion of UDP-galactose and UDP-glucose by reversibly mediating their dehydrogenation to the common intermediate UDP-4-ketohexopyranoside. The epimerase structure and spectrophotometric data indicate that NAD+ may engage in electrostatic interactions with amino acid side chains that may regulate the reactivity of NAD+. In this work, we carried out NMR studies of [nicotinamide-4-13C]NAD+ bound to wild-type epimerase and epimerases mutated at amino acid residues in contact with NAD+. The 4-13C NMR chemical shifts revealed the following: The 4-13C chemical shift in wild-type epimerase is 149.9 ppm; mutation of Ser 124 to Ala changes it slightly by 0.2 ppm to 150.1 ppm; mutation of Tyr 149 to Phe results in a downfield perturbation of 2.7 ppm to 152.6 ppm; and the simultaneous mutation of Ser 124 to Ala and Tyr 149 to Phe also causes a downfield perturbation of 2.8 ppm to 152.7 ppm. Mutation of Lys 153 to Met results in a 13C chemical shift of 150.8 ppm, which is 0.9 ppm downfield from that of wild type and 1.8 ppm upfield from that of Y149F-epimerase. The 13C chemical shifts of nicotinamide C4 of NAD+ in these epimerases are correlated with their respective reactivities with NaBH3CN. In addition, reactivity of NAD+ in wild-type and S124A-epimerases displays pH dependence, with higher rates at lower pH where Tyr 149 in these two enzymes is protonated. The results support an electrostatic model in which repulsion between positively charged Lys 153 and N1 of the nicotinamide ring increases the reactivity of NAD+, while the phenolate of Tyr 149 opposes the positive electrostatic field and attenuates the reactivity of NAD+. Ser 124 has very little effect on the electron distribution within the nicotinamide ring or the reactivity of NAD+. The effects of binding the substrate analogue P1-uridyl-P2-methyl diphosphate (Me-UDP) on the 4-13C chemical shifts are opposite to those induced by the mutations. MeUDP perturbs the 4-13C chemical shift 2.9 ppm downfield in the wild-type and S124A-epimerases but has little or no effect in the cases of Y149F- or K153M-epimerases. The results support the postulate that NAD+ activation induced by uridine nucleotides is brought about by a conformational change of epimerase that repositions Tyr 149 at an increased distance from nicotinamide N1 of NAD+ while maintaining the electrostatic repulsion between Lys 153 and nicotinamide N1 of NAD+.  相似文献   

8.
G R Flentke  P A Frey 《Biochemistry》1990,29(9):2430-2436
UDPgalactose 4-epimerase from Escherichia coli is rapidly inactivated by the compounds uridine 5'-diphosphate chloroacetol (UDC) and uridine 5'-diphosphate bromoacetol (UDB). Both UDC and UDB inactivate the enzyme in neutral solution concomitant with the appearance of chromophores absorbing maximally at 325 and 328 nm, respectively. The reaction of UDC with the enzyme follows saturation kinetics characterized by a KD of 0.110 mM and kinact of 0.84 min-1 at pH 8.5 and ionic strength 0.2 M. The inactivation by UDC is competitively inhibited by competitive inhibitors of UDPgalactose 4-epimerase, and it is accompanied by the tight but noncovalent binding of UDC to the enzyme in a stoichiometry of 1 mol of UDC/mol of enzyme dimer, corresponding to 1 mol of UDC/mol of enzyme-bound NAD+. The inactivation of epimerase by uridine 5'-diphosphate [2H2]chloroacetol proceeds with a primary kinetic isotope effect (kH/kD) of 1.4. The inactivation mechanism is proposed to involve a minimum of three steps: (a) reversible binding of UDC to the active site of UDPgalactose 4-epimerase; (b) enolization of the chloroacetol moiety of enzyme-bound UDC, catalyzed by an enzymic general base at the active site; (c) alkylation of the nicotinamide ring of NAD+ at the active site by the chloroacetol enolate. The resulting adduct between UDC and NAD+ is proposed to be the chromophore with lambda max at 325 nm. The enzymic general base required to facilitate proton transfer in redox catalysis by this enzyme may be the general base that facilitates enolization of the chloroacetol moiety of UDC in the inactivation reaction.  相似文献   

9.
UDP-galactose 4-epimerase catalyzes the interconversion of UDP-galactose and UDP-glucose during normal galactose metabolism. One of the key structural features in the proposed reaction mechanism for the enzyme is the rotation of a 4'-ketopyranose intermediate within the active site pocket. Recently, the three-dimensional structure of the human enzyme with bound NADH and UDP-glucose was determined. Unlike that observed for the protein isolated from Escherichia coli, the human enzyme can also turn over UDP-GlcNAc to UDP-GalNAc and vice versa. Here we describe the three-dimensional structure of human epimerase complexed with NADH and UDP-GlcNAc. To accommodate the additional N-acetyl group at the C2 position of the sugar, the side chain of Asn-207 rotates toward the interior of the protein and interacts with Glu-199. Strikingly, in the human enzyme, the structural equivalent of Tyr-299 in the E. coli protein is replaced with a cysteine residue (Cys-307) and the active site volume for the human protein is calculated to be approximately 15% larger than that observed for the bacterial epimerase. This combination of a larger active site cavity and amino acid residue replacement most likely accounts for the inability of the E. coli enzyme to interconvert UDP-GlcNAc and UDP-GalNAc.  相似文献   

10.
UDP-glucose-4-epimerase of Poterioochromonas malhamensis, Peterfi has been purified to apparent electrophoretic homogeneity. The enzyme has an apparent MW of 120 000 as determined by gel filtration of the active enzyme. Sodium dodecylsulfate polyacrylamide gel electrophoresis gave a MW of 59 000, thus indicating a dimeric structure. The epimerase does not require external NAD for activity. The apparent Km values for UDP-glucose and UDP-galactose were calculated to be 1.67 mM and 0.26 mM, respectively. The pH optimum is at pH 8.7 and the isoelectric point is at pH 5.1 ± 0.15.  相似文献   

11.
UDP-galactose 4-epimerase catalyzes the interconversion of UDP-Gal and UDP-Glc during normal galactose metabolism. The mammalian form of the enzyme, unlike its Escherichia coli counterpart, can also interconvert UDP-GalNAc and UDP-GlcNAc. One key feature of the epimerase reaction mechanism is the rotation of a 4-ketopyranose intermediate in the active site. By comparing the high resolution x-ray structures of both the bacterial and human forms of the enzyme, it was previously postulated that the additional activity in the human epimerase was due to replacement of the structural equivalent of Tyr-299 in the E. coli enzyme with a cysteine residue, thereby leading to a larger active site volume. To test this hypothesis, the Y299C mutant form of the E. coli enzyme was prepared and its three-dimensional structure solved as described here. Additionally, the Y299C mutant protein was assayed for activity against both UDP-Gal and UDP-GalNAc. These studies have revealed that, indeed, this simple mutation did confer UDP-GalNAc/UDP-GlcNAc converting activity to the bacterial enzyme with minimal changes in its three-dimensional structure. Specifically, although the Y299C mutation in the bacterial enzyme resulted in a loss of epimerase activity with regard to UDP-Gal by almost 5-fold, it resulted in a gain of activity against UDP-GalNAc by more than 230-fold.  相似文献   

12.
Neutron activation analysis of UDP-galactose 4-epimerase from Escherichia coli for 53 metals shows that the enzyme does not contain any of these metals at significant levels. The substrate analog P1-5'-uridine-P2-glucose-6-yl pyrophosphate (UGP), a structural isomer of UDP-glucose with the sugar linked to UDP through the C-6 hydroxyl group, is an inactivator that irreversibly reduces epimerase.NAD+ to epimerase.NADH. The pH dependence of kobs reveals the essential involvement of an acidic group, kinetically measured pKa = 5.48 +/- 0.08, in unprotonated form and two weakly acidic or basic groups, apparent pKa values of 10.03 +/- 0.43, in protonated forms. Measurements of kobs as a function of [UGP] show that it is given by kobs = k[UGP]/(K + [UGP]) at a given pH, where K = 0.19 +/- 0.04 mM throughout the pH range 4.8-10.4. The pH-dependent first order rate constants range from 0.28 to 1.94 s-1, with the maximum value at pH 7.6 and decreasing at acidic and basic pH values. Reaction of [glucose-1-2H]UGP proceeds with kinetic isotope effects of 5.0, 2.1, 2.0, 1.9, and 3.5 at pH values 5.0, 6.2, 7.6, 9.0, and 10.0, respectively. Therefore, hydride transfer becomes rate-limiting at pH extremes but is not limiting at neutral pH, although deuteride transfer is significantly limiting at all pH values. The isotope effects facilitated correction of the kinetic pK values to the thermodynamic values 6.1-6.2 on the acid side and 9.0-9.6 on the alkaline side. We postulate that the group with pK1 = 5.5 (6.1-6.2 corrected) functions as an enzymic general base that abstracts the glucosyl C-1 hydroxyl proton in concert with transfer of the C-1 hydrogen and two electrons to NAD+. The pH dependence on the alkaline side may be related to the uridine nucleotide-dependent conformational transition that is an essential step in the reduction of epimerase.NAD+ to epimerase.NADH by sugars.  相似文献   

13.
Galactosemia is an inherited disorder characterized by an inability to metabolize galactose. Although classical galactosemia results from impairment of the second enzyme of the Leloir pathway, namely galactose-1-phosphate uridylyltransferase, alternate forms of the disorder can occur due to either galactokinase or UDP-galactose 4-epimerase deficiencies. One of the more severe cases of epimerase deficiency galactosemia arises from an amino acid substitution at position 94. It has been previously demonstrated that the V94M protein is impaired relative to the wild-type enzyme predominantly at the level of V(max) rather than K(m). To address the molecular consequences the mutation imparts on the three-dimensional architecture of the enzyme, we have solved the structures of the V94M-substituted human epimerase complexed with NADH and UDP-glucose, UDP-galactose, UDP-GlcNAc, or UDP-GalNAc. In the wild-type enzyme, the hydrophobic side chain of Val(94) packs near the aromatic group of the catalytic Tyr(157) and serves as a molecular "fence" to limit the rotation of the glycosyl portions of the UDP-sugar substrates within the active site. The net effect of the V94M substitution is an opening up of the Ala(93) to Glu(96) surface loop, which allows free rotation of the sugars into nonproductive binding modes.  相似文献   

14.
While attempting to purify UDP-galactose 4-epimerase from carp liver extract at pH 8.0, it was observed that the preparation even after dialysis could reduce NAD to NADH, interfering epimerase assay. The NAD reduction activity and the epimerase were co-eluted in a series of chromatographic steps. Mass spectrometric analysis of semi-purified fraction revealed that carp liver lactate dehydrogenase (LDH) contained bound lactate which was converted to pyruvate in the presence of NAD. The enzyme-bound lactate and the association with epimerase stabilized LDH from trypsin digestion and thermal inactivation at 45 degrees C by factors of 2.7 and 4.2 respectively, as compared to substrate-free LDH. LDH and epimerase do not belong to any one pathway, but are the rate-limiting enzymes of two different pathways of carbohydrate metabolism. Typically, strongly associated enzymes work in combination, such as two enzymes of the same metabolic pathway. In that background, co-purification of LDH and epimerase as reloaded in this study was an unusual phenomenon.  相似文献   

15.
Saccharomyces cerevisiae and some related yeasts are unusual in that two of the enzyme activities (galactose mutarotase and UDP-galactose 4-epimerase) required for the Leloir pathway of d-galactose catabolism are contained within a single protein-Gal10p. The recently solved structure of the protein shows that the two domains are separate and have similar folds to the separate enzymes from other species. The biochemical properties of Gal10p have been investigated using recombinant protein expressed in, and purified from, Escherichia coli. Protein-protein crosslinking confirmed that Gal10p is a dimer in solution and this state is unaffected by the presence of substrates. The steady-state kinetic parameters of the epimerase reaction are similar to those of the human enzyme, and are not affected by simultaneous activity at the mutarotase active site. The mutarotase active site has a strong preference for galactose over glucose, and is not affected by simultaneous epimerase activity. This absence of reciprocal kinetic effects between the active sites suggests that they act independently and do not influence or regulate each other.  相似文献   

16.
ADP-L-glycero-D-mannoheptose 6-epimerase is required for lipopolysaccharide inner core biosynthesis in several genera of Gram-negative bacteria. The enzyme contains both fingerprint sequences Gly-X-Gly-X-X-Gly and Gly-X-X-Gly-X-X-Gly near its N terminus, which is indicative of an ADP binding fold. Previous studies of this ADP-l-glycero-D-mannoheptose 6-epimerase (ADP-hep 6-epimerase) were consistent with an NAD(+) cofactor. However, the crystal structure of this ADP-hep 6-epimerase showed bound NADP (Deacon, A. M., Ni, Y. S., Coleman, W. G., Jr., and Ealick, S. E. (2000) Structure 5, 453-462). In present studies, apo-ADP-hep 6-epimerase was reconstituted with NAD(+), NADP(+), and FAD. In this report we provide data that shows NAD(+) and NADP(+) both restored enzymatic activity, but FAD could not. Furthermore, ADP-hep 6-epimerase exhibited a preference for binding of NADP(+) over NAD(+). The K(d) value for NADP(+) was 26 microm whereas that for NAD(+) was 45 microm. Ultraviolet circular dichroism spectra showed that apo-ADP-hep 6-epimerase reconstituted with NADP(+) had more secondary structure than apo-ADP-hep 6-epimerase reconstituted with NAD(+). Perchloric acid extracts of the purified enzyme were assayed with NAD(+)-specific alcohol dehydrogenase and NADP(+)-specific isocitric dehydrogenase. A sample of the same perchloric acid extract was analyzed in chromatographic studies, which demonstrated that ADP-hep 6-epimerase binds NADP(+) in vivo. A structural comparison of ADP-hep 6-epimerase with UDP-galactose 4-epimerase, which utilizes an NAD(+) cofactor, has identified the regions of ADP-hep 6-epimerase, which defines its specificity for NADP(+).  相似文献   

17.
The metabolic pathway by which beta-D-galactose is converted to glucose 1-phosphate is known as the Leloir pathway and consists of four enzymes. In most organisms, these enzymes appear to exist as soluble entities in the cytoplasm. In yeast such as Saccharomyces cerevisiae, however, the first and last enzymes of the pathway, galactose mutarotase and UDP-galactose 4-epimerase, are contained within a single polypeptide chain referred to as Gal10p. Here we report the three-dimensional structure of Gal10p in complex with NAD(+), UDP-glucose, and beta-D-galactose determined to 1.85-A resolution. The enzyme is dimeric with dimensions of approximately 91 A x 135 A x 108 A and assumes an almost V-shaped appearance. The overall architecture of the individual subunits can be described in terms of two separate N- and C-terminal domains connected by a Type II turn formed by Leu-357 to Val-360. The first 356 residues of Gal10p fold into the classical bilobal topology observed for all other UDP-galactose 4-epimerases studied thus far. This N-terminal domain contains the binding sites for NAD(+) and UDP-glucose. The polypeptide chain extending from Glu-361 to Ser-699 adopts a beta-sandwich motif and harbors the binding site for beta-D-galactose. The two active sites of Gal10p are separated by over 50 A. This investigation represents the first structural analysis of a dual function enzyme in the Leloir pathway.  相似文献   

18.
In Escherichia coli and Salmonella enterica, the core oligosaccharide backbone of the lipopolysaccharide is modified by phosphoryl groups. The negative charges provided by these residues are important in maintaining the barrier function of the outer membrane. In contrast, Klebsiella pneumoniae lacks phosphoryl groups in its core oligosaccharide but instead contains galacturonic acid residues that are proposed to serve a similar function in outer membrane stability. Gla(KP) is a UDP-galacturonic acid C4-epimerase that provides UDP-galacturonic acid for core synthesis, and the enzyme was biochemically characterized because of its potentially important role in outer membrane stability. High-performance anion-exchange chromatography was used to demonstrate the UDP-galacturonic acid C4-epimerase activity of Gla(KP), and capillary electrophoresis was used for activity assays. The reaction equilibrium favors UDP-galacturonic acid over UDP-glucuronic acid in a ratio of 1.4:1, with the K(m) for UDP-glucuronic acid of 13.0 microM. Gla(KP) exists as a dimer in its native form. NAD+/NADH is tightly bound by the enzyme and addition of supplementary NAD+ is not required for activity of the purified enzyme. Divalent cations have an unexpected inhibitory effect on enzyme activity. Gla(KP) was found to have a broad substrate specificity in vitro; it is capable of interconverting UDP-glucose/UDP-galactose and UDP-N-acetylglucosamine/UDP-N-acetylgalactosamine, albeit at much lower activity. The epimerase GalE interconverts UDP-glucose/UDP-galactose. Multicopy plasmid-encoded gla(KP) partially complemented a galE mutation in S. enterica and in K. pneumoniae; however, chromosomal gla(KP) could not substitute for galE in a K. pneumoniae galE mutant in vivo.  相似文献   

19.
UDPglucose 4-epimerase from Kluyveromyces fragilis was completely inactivated by diethylpyrocarbonate following pseudo-first order reaction kinetics. The pH profile of diethylpyrocarbonate inhibition and reversal of inhibition by hydroxylamine suggested specific modification of histidyl residues. Statistical analysis of the residual enzyme activity and the extent of modification indicated modification of 1 essential histidine residue to be responsible for loss in catalytic activity of yeast epimerase. No major structural change in the quarternary structure was observed in the modified enzyme as shown by the identical elution pattern on a calibrated Sephacryl 200 column and association of coenzyme NAD to the apoenzyme. Failure of the substrates to afford any protection against diethylpyrocarbonate inactivation indicated the absence of the essential histidyl residue at the substrate binding region of the active site. Unlike the case of native enzyme, sodium borohydride failed to reduce the pyridine moiety of the coenzyme in the diethylpyrocarbonate-modified enzyme. This indicated the presence of the essential histidyl residue in close proximity to the coenzyme binding region of the active site. The abolition of energy transfer phenomenon between the tryptophan and coenzyme fluorophore on complete inactivation by diethylpyrocarbonate without any loss of protein or coenzyme fluorescence are also added evidences in this direction.  相似文献   

20.
UDP-galactose 4-epimerase from Escherichia coli catalyzes the interconversion of UDP-glucose and UDP-galactose. In recent years, the enzyme has been the subject of intensive investigation due in part to its ability to facilitate nonstereospecific hydride transfer between beta-NADH and a 4-keto hexopyranose intermediate. The first molecular model of the epimerase from E. coli was solved to 2.5 A resolution with crystals grown in the presence of a substrate analogue, UDP-phenol (Bauer AJ, Rayment I, Frey PA, Holden HM, 1992, Proteins Struct Funct Genet 12:372-381). There were concerns at the time that the inhibitor did not adequately mimic the sugar moiety of a true substrate. Here we describe the high-resolution X-ray crystal structure of the ternary complex of UDP-galactose 4-epimerase with NADH and UDP-phenol. The model was refined to 1.8 A resolution with a final overall R-factor of 18.6%. This high-resolution structural analysis demonstrates that the original concerns were unfounded and that, in fact, UDP-phenol and UDP-glucose bind similarly. The carboxamide groups of the dinucleotides, in both subunits, are displaced significantly from the planes of the nicotinamide rings by hydrogen bonding interactions with Ser 124 and Tyr 149. UDP-galactose 4-epimerase belongs to a family of enzymes known as the short-chain dehydrogenases, which contain a characteristic Tyr-Lys couple thought to be important for catalysis. The epimerase/NADH/UDP-phenol model presented here represents a well-defined ternary complex for this family of proteins and, as such, provides important information regarding the possible role of the Tyr-Lys couple in the reaction mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号