首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the alkaline phosphatase inhibitors levamisole and R 8231 on p-nitro-phenylphosphatase, inorganic pyrophosphatase and adenosine triphosphatase (ATPase) activities in dentingenically active odontoblasts were studied. The p-nitrophenylphosphatase and inorganic pyrophosphatase activities were inhibited, while 40% of the ATP-splitting enzyme activity remained under the assay condition used. This finding, togeather with earlier studies, indicates that at least two different phosphatase are active at alkaline pH in hard tissue-forming cells; on nonspecific alkaline phosphatase and one specific ATPase. The ATPase activity is uninfluenced by ouabain and ruthenium red and is activated by Ca-2+ ions.  相似文献   

2.
1. Dialysed extracts of rat costal cartilage were shown to possess an enzyme that hydrolyses inorganic pyrophosphate. 2. Inorganic pyrophosphatase activity assayed in the presence of 2mm substrate was maximal at pH6.8. 3. Mg(2+) was essential for activity, which was greatest with 10mm or higher concentrations of Mg(2+). 4. Extracts prepared from cartilage taken from suckling rats (<20g.) showed little or no hydrolytic activity, but as rat weight increased inorganic pyrophosphatase activity was detected, increased to a maximum in tissue from animals weighing about 40g., and then rapidly declined. 5. The increase in inorganic pyrophosphatase activity was associated with an increase in the uptake of (45)Ca by the cartilage in vivo. 6. Accumulation of calcium, inorganic phosphate and magnesium occurred when inorganic pyrophosphatase activity was at its maximum. 7. Alkaline phosphatase activity, measured in the same extracts used to determine pyrophosphatase activity, was highest in the tissues of the animals weighing <20g., and decreased as inorganic pyrophosphatase activity increased to its maximum. 8. There was no direct relationship between alkaline phosphatase activity and the onset of calcification.  相似文献   

3.
Acid inorganic pyrophosphatase on the one hand, and Mg2+-dependent alkaline inorganic pyrophosphatase and Zn2+-dependent acid inorganic pyrophosphatase on the other hand showed opposite trends in their activities in rice (Oryza sativa L. cv. Ratna) seedlings grown in dark and sun. The opposite trends in their activities were also noted in rice seedlings grown from gamma-irradiated seeds and in detached rice leaves floated on water in dark. The ratios of Mg2+ dependent alkaline inorganic pyrophosphatase/acid inorganic pyrophosphatase and Zn2+-dependent acid inorganic pyrophosphatase/acid inorganic pyrophosphatase changed significantly in response to the above physical treatments, but the ratio of Mg2+ dependent alkaline inorganic pyrophosphatase/Zn2+ dependent acid inorganic pyrophosphatase remained relatively stable. The conclusion is that Zn2+-dependent acid inorganic pyrophosphatase activity is the same as that of Mg2+-dependent alkaline inorganic pyrophosphatase and is different from that of acid inorganic pyrophosphatase, which requires no metal ion for activity. The acid and alkaline inorganic pyrophosphatase activities are due to separate enzyme proteins.  相似文献   

4.
1. Purified human liver and small-intestinal alkaline orthophosphatases release inorganic phosphate at appreciable rates from a variety of organic pyrophosphate substrates. 2. The pyrophosphatase action is inhibited by Mg2+ ions at concentrations that activate the hydrolysis of orthophosphate substrates by these enzymes. 3. The results of mixed-substrate experiments, denaturation studies with heat or urea and starch-gel electrophoresis suggest that both orthophosphatase and pyrophosphatase activities are, in each preparation, properties of a single enzyme. 4. Intestinal phosphatase shows greater pyrophosphatase activity relative to orthophosphatase than the liver enzyme.  相似文献   

5.
1. Purified human liver and small-intestinal alkaline orthophosphatases release inorganic phosphate at appreciable rates from a variety of organic pyrophosphate substrates. 2. The pyrophosphatase action is inhibited by Mg2+ ions at concentrations that activate the hydrolysis of orthophosphate substrates by these enzymes. 3. The results of mixed-substrate experiments, denaturation studies with heat or urea and starch-gel electrophoresis suggest that both orthophosphatase and pyrophosphatase activities are, in each preparation, properties of a single enzyme. 4. Intestinal phosphatase shows greater pyrophosphatase activity relative to orthophosphatase than the liver enzyme.  相似文献   

6.
1. The differential effects of adding Zn(2+) and Mg(2+) on the orthophosphatase and inorganic pyrophosphatase activities of human intestinal alkaline phosphatase were studied. 2. In the presence of excess of Zn(2+), inorganic pyrophosphatase activity is inhibited. At higher concentrations of pyrophosphate, hydrolysis of this substrate takes place, but is inhibited competitively by the Zn(2+)-pyrophosphate complex. This complex also acts as a competitive inhibitor of orthophosphate hydrolysis. 3. Excess of Mg(2+) also inhibits pyrophosphatase action by removal of substrate; at low concentrations, this ion activates pyrophosphatase, as is the case with orthophosphatase. 4. It is concluded that, when interactions between metal ions and pyrophosphate are taken into account, the effects of these ions are consistent with the view that alkaline phosphatases possess both orthophosphatase and inorganic pyrophosphatase activities.  相似文献   

7.
The interaction of senescence and phosphorus deficiency in determining phosphatase activities ofLemna minor has been examined in axenic cultures. Acid phosphatase activity increased in phosphorus deficiency, alkaline pyrophosphatase activity decreased during senescence and this decrease was exaggerated by phosphorus deficiency. The results are discussed in relation to possible functional significance of the enzyme activities.  相似文献   

8.
Changes in the activities of sucrose synthase (SuSy), ADP-glucose pyrophosphorylase (AGPase), UDP-glucose pyrophosphorylase (UGPase), alkaline inorganic pyrophosphatase, 3-phosphoglycerate (3-PGA) phosphatase and amylases were monitored in relation to accumulation of starch in developing pods of mung bean (Vigna radiata L.). With the advancement in the seed development, the contents of starch rose with a concomitant fall in the branch of inflorescence and podwall after 10 d after flowering. The activity of UDPase in all the three pod tissues remained higher than the activity of AGPase showing it to be an important enzyme controlling carbon flux. The activity of alkaline inorganic pyrophosphatase in developing seed in contrast to 3-PGA phosphatase correlated with starch accumulation rate. Activity of β-amylase increased in all the pod tissues till maturity. It appears that the cooperative action of SuSy, UGPase and AGPase controls the efficient partitioning of sucrose into ADP glucose and thereby regulate the seed sink strength of the mung bean.  相似文献   

9.
Cotyledons of gourd (Cucurbita maxima Duchesne) and bean (Phaseolus vulgaris L.) were used to study the changes in the activities of catalase, peroxidase, acid inorganic pyrophosphatase and alkaline inorganic pyrophosphatase during ageing and the diversion in such changes that occur when cotyledon senescence was retarded by detopping the seedlings above the cotyledons. Catalase, acid inorganic pyrophosphatase and alkaline inorganic pyrophosphatase activities declined during the senescence of the cotyledons. When cotyledon senescence was retarded by detopping as marked by the increase in the levels of chlorophyll and protein, there was also an increase in the activities of these enzymes. Peroxidase activity, on the other hand, increased during the senescence of the cotyledons and detopping the seedlings resulted in a further increase in the peroxidase activity. It can be suggested that some root factor(s) probably cytokinin(s) is (are) mobilised into the cotyledons of the detopped seedlings which otherwise would have been mobilised into the shoot apices, and help retard or even reverse the senescence of the cotyledons.  相似文献   

10.
The covalent derivative of the tryptophanyl-tRNA synthetase obtained under the action of32PPi contains one mole of the covalently bound pyrophosphate (or 2 moles of orthophosphate) per mole of dimeric enzyme. Dephosphorylation with alkaline phosphatase causes practically no changes of enzymatic activity although the enzyme looses its ability to bind PPi.Enzymes tryptophanyl-tRNA synthetase (EC 6.1.1.2), alkaline phosphatase (EC 3.1.3.1), inorganic pyrophosphatase (EC 3.6.1.1)  相似文献   

11.
P. Gross  T. ap Rees 《Planta》1986,167(1):140-145
The aim of this work was to see if amyloplasts contained inorganic pyrophosphatase. Alkaline pyrophosphatase activity, largely dependant upon MgCl2 but not affected by 100 M ammonium molybdate or 60–100 mM KCl, was demonstrated in exracts of developing and mature clubs of the spadix of Arum maculatum L. and of suspension cultures of Glycine max L., but not in extracts of the developing bulb of Allium cepa L. The maximum catalytic activity of alkaline pyrophosphatase in the above tissues showed a positive correlation with starch synthesis, and in the first two tissues was shown to exceed the activity of ADPglucose pyrophosphorylase. Of the alkaline pyrophosphatase activity in lysates of protoplasts of suspension cultures of Glycine max, 57% was latent. Density-gradient centrifugation of these lysates showed a close correlation between the distribution of alkaline pyrophosphatase and the plastid marker, nitrite reductase. It is suggested that much, if not all, of the alkaline pyrophosphatase in suspension cultures of Glycine max is located in the plastids.Abbreviations PPase inorganic pyrophosphatase - PPi inorganic pyrophosphate  相似文献   

12.
Fractions composed primarily of cells (Fraction I), membrane fragments (Fraction II) and matrix vesicles (Fraction III) were isolated from chick epiphyseal cartilage. The characteristics of the alkaline phosphatase (EC 3.1.3.1), pyrophosphatase (EC 3.6.1.1) and ATPase (EC 3.6.1.3) activities in the matrix vesicle fraction were studied in detail. Mg-2-+ was not absolutely essential to any of the activities, but at low levels was stimulatory in all cases. Higher concentrations inhibited both pyrophosphatase and ATPase activities. Both the stimulatory and inhibitory effects were pH-dependent. Ca-2-+ stimulated all activities weakly in the absence of Mg-2-+. However, when Mg-2-+ was present, Ca-2-+ was slightly inhibitory. Thus, none of the activities appear to have a requirement for Ca-2-+, and hence would not seem to be involved with active Ca-2-+ transport in the typical manner. The distribution of alkaline phosphatase, pyrophosphatase, and Mg-2-+ ATPase activities among the various cartilage fractions was identical, and concentrated primarily in the matrix vesicles. Conversely, the highest level of (Na-+ + K-+)-ATPase activity was found in the cell fraction. All activites showed nearly identical sensitivities to levamisole (4 - 10-3 M) which caused nearly complete inhibition of alkaline phosphatase and pyrophosphatase. About 10-15% of the ATPase activity was levamisole-insensitive. The data are consistent with the concept that the Mg-2-+-ATPase and pyrophosphatase activities of matrix vesicles stem from one enzyme, namely, alkaline phosphatase.  相似文献   

13.
An enzyme with FAD pyrophosphatase activity was extracted from human placental syncytiotrophoblast microvilli and purified to near-homogeneity. The enzyme has been identified as 5'-nucleotidase by several criteria. Throughout purification, parallel increases in the specific activities of FAD pyrophosphatase and AMP phosphatase were observed. The enzyme was a glycoprotein with a subunit molecular weight of 74,000. EDTA treatment resulted in a marked decline in both activities, and restoration of FAD pyrophosphatase activity but not 5'-nucleotidase activity was accomplished by the addition of Co2+ or, to a lesser extent, Mn2+. The substrate specificity of the 5'-nucleotidase activity that we observed agreed closely with the results of others. The pyrophosphatase activity was relatively specific for FAD. ADP, ATP, NAD(H), and FMN were not hydrolyzed, and ADP strongly inhibited both activities. For FAD pyrophosphatase activity, a Km of 1.2 x 10(-5) M and a Vmax of 1.1 mumol/min/mg protein were determined in assays performed in the presence of Co2+. In the absence of added Co2+, the Vmax declined but the Km was unchanged. For 5'-nucleotidase (AMP as substrate) the Km was 4.1 x 10(-5) M and the Vmax 109 mumol/min/mg protein. Hydrolysis of FMN to riboflavin was observed in partially purified detergent extracts of microvilli that contained alkaline phosphatase activity and lacked FAD pyrophosphatase and 5'-nucleotidase activity. The presence of both FAD pyrophosphatase and FMN phosphatase activities in syncytiotrophoblast microvilli supports the view that the placental uptake of vitamin B2 involves the hydrolysis of FAD and FMN to riboflavin which is then absorbed, a sequence postulated for intestinal absorption and liver uptake.  相似文献   

14.
Three proteins possessing alkaline phosphatase activity were detected in a fraction of periplasmic material ofEscherichia coli K-10 and its mutants with constitutive synthesis of alkaline phosphatase. They also showed acid phosphatase, pyrophosphatase and ATPase activities. Through the use of phosphatase-negative mutants it was shown that these proteins were the products of a single structural gene and therefore represented alkaline phosphatase isozymes. The numbers of enzyme isoforms and possibly the spectrum of their phosphohydrolase activities were controlled by exogenous orthophosphate and depended on the integrity of regulator genes for alkaline phosphatase.  相似文献   

15.
Alkaline phosphatase serves both as a model enzyme for studies on the mechanism and kinetics of phosphomonoesterases and as a reporter in enzyme-linked immunosorbent assays (ELISAs) and other biochemical methods. The tight binding of the enzyme to its inorganic phosphate product leads to strong inhibition of catalysis and confounds measurements of alkaline phosphatase activity. We have developed an alkaline phosphatase substrate in which the fluorescence of rhodamine is triggered on P–O bond cleavage in a process mediated by a “trimethyl lock.” Although this substrate requires a nonenzymatic second step to manifest fluorescence, we demonstrated that the enzymatic first step limits the rate of fluorogenesis. The substrate enables the catalytic activity of alkaline phosphatase to be measured with high sensitivity and accuracy. Its attributes are ideal for enzymatic assays of alkaline phosphatase for both basic research and biotechnological applications.  相似文献   

16.
Ank is a multipass transmembrane protein that regulates the cellular transport of inorganic pyrophosphate. In the progressive ankylosis (ank) mouse, a premature termination mutation at glutamic acid 440 results in a phenotype characterized by inappropriate deposition of basic calcium phosphate crystals in skeletal tissues. Mutations in the amino terminus of ANKH, the human homolog of Ank, result in familial calcium pyrophosphate dihydrate deposition disease. It has been hypothesized that these mutations result in a gain-of-function with respect to the elaboration of extracellular inorganic pyrophosphate. To explore this issue in a mineralization-competent system, we stably transduced ATDC5 cells with wild-type Ank as well as with familial chondrocalcinosis-causing Ank mutations. We evaluated the elaboration of inorganic pyrophosphate, the activity of pyrophosphate-modulating enzymes, and the mineralization in the transduced cells. Expression of transduced protein was confirmed by quantitative real-time PCR and by ELISA. Levels of inorganic pyrophosphate were measured, as were the activities of nucleotide pyrophosphatase phosphodiesterase and alkaline phosphatase. We also evaluated the expression of markers of chondrocyte maturation and the nature of the mineralization phase elaborated by transduced cells. The cell line expressing the proline to leucine mutation at position 5 (P5L) consistently displayed higher levels of extracellular inorganic pyrophosphate and higher phosphodiesterase activity than the other transduced lines. During hypertrophy, however, extracellular inorganic pyrophosphate levels were modulated by alkaline phosphatase activity in this cell system, resulting in the deposition of basic calcium phosphate crystals only in all transduced cell lines. Cells overexpressing wild-type Ank displayed a higher level of expression of type X collagen than cells transduced with mutant Ank. Other markers of hypertrophy and terminal differentiation, such as alkaline phosphatase, osteopontin, and runx2, were not significantly different in cells expressing wild-type or mutant Ank in comparison with cells transduced with an empty vector or with untransduced cells. These results suggest that the P5L Ank mutant is capable of demonstrating a gain-of-function with respect to extracellular inorganic pyrophosphate elaboration, but this effect is modified by high levels of expression of alkaline phosphatase in ATDC5 cells during hypertrophy and terminal differentiation, resulting in the deposition of basic calcium phosphate crystals.  相似文献   

17.
Cytochemical investigations have associated acid inorganic trimetaphosphatase (TMPase) activity with the lysosomes of certain cell types. We have used the modified staining technique of Berg to show that this enzyme activity is present in normal mononuclear phagocytes and macrophage cell lines. We have found this enzyme activity to be present in murine RAW264 macrophages, in human U937 macrophages, in normal human blood monocytes, and in guinea pig peritoneal macrophages. All of the RAW264 and U937 macrophages showed intense TMPase activity. Many of the human monocytes and most of the guinea pig macrophages were labeled by this method. The reaction product was associated with the lysosomes of these cell types. The lysosomal staining-pattern was similar to that of acid phosphatase. Differences with regard to Golgi staining were noted. This indicates that TMPase is a lysosomal enzyme of mammalian macrophages. The distinction between TMPase and acid phosphatase activity has been demonstrated by measuring the pH optimum of each enzyme. Using substrates identical to those of the ultrastructural cytochemistry, we show that the pH optimum of TMPase is 4.0 and that of acid phosphatase is 5.0. The enzymatic activities are therefore ultrastructurally and biochemically distinct. Following phagocytosis of latex, yeast (Saccharomyces cerevisiae), or Corynebacterium parvum, TMPase has been found to be associated with phagosomes. This enzyme may take part in the degradation of phagocytosed materials, particularly microorganisms which contain inorganic polyphosphates and metaphosphates.  相似文献   

18.
1. The kinetics of inhibition of calf-intestinal alkaline phosphatase by inorganic phosphate, fluorophosphate, inorganic pyrophosphate, beta-glycerophosphate and adenosine 5'-triphosphate in the range pH8-10 were investigated. The reference substrate was 4-methylumbelliferyl phosphate. 2. The inhibitions were ;mixed' in that both K(m) and V were affected, but the competitive element was by far the stronger. 3. In each case the pH profile for the competitive K(i) was similar to the pH profile for K(m). Since the K(m) and K(i) values both change 100-fold over the pH range 8-10, it is concluded that the inhibitors compete with the substrate for the same active site. 4. It was also found that the enzyme preparation hydrolysed fluorophosphate, pyrophosphate and adenosine 5'-triphosphate as readily as it hydrolysed 4-methylumbelliferyl phosphate and beta-glycerophosphate. Each pH-activity curve, however, had a different shape, but with the exception of pyrophosphate the activity approached the same maximum value at high pH. 5. Attempts to separate the phosphomonoesterase and pyrophosphatase activities by column chromatography were not successful, and the results of other experiments listed suggest that the two activities are a property of the same enzyme. 6. The effect of Mg(2+) ions is briefly mentioned: the phosphomonoesterase activity is enhanced whereas the pyrophosphatase and adenosine triphosphatase activities are strongly inhibited in the presence of excess of Mg(2+) ions.  相似文献   

19.
Ank is a multipass transmembrane protein that regulates the cellular transport of inorganic pyrophosphate. In the progressive ankylosis (ank) mouse, a premature termination mutation at glutamic acid 440 results in a phenotype characterized by inappropriate deposition of basic calcium phosphate crystals in skeletal tissues. Mutations in the amino terminus of ANKH, the human homolog of Ank, result in familial calcium pyrophosphate dihydrate deposition disease. It has been hypothesized that these mutations result in a gain-of-function with respect to the elaboration of extracellular inorganic pyrophosphate. To explore this issue in a mineralization-competent system, we stably transduced ATDC5 cells with wild-type Ank as well as with familial chondrocalcinosis-causing Ank mutations. We evaluated the elaboration of inorganic pyrophosphate, the activity of pyrophosphate-modulating enzymes, and the mineralization in the transduced cells. Expression of transduced protein was confirmed by quantitative real-time PCR and by ELISA. Levels of inorganic pyrophosphate were measured, as were the activities of nucleotide pyrophosphatase phosphodiesterase and alkaline phosphatase. We also evaluated the expression of markers of chondrocyte maturation and the nature of the mineralization phase elaborated by transduced cells. The cell line expressing the proline to leucine mutation at position 5 (P5L) consistently displayed higher levels of extracellular inorganic pyrophosphate and higher phosphodiesterase activity than the other transduced lines. During hypertrophy, however, extracellular inorganic pyrophosphate levels were modulated by alkaline phosphatase activity in this cell system, resulting in the deposition of basic calcium phosphate crystals only in all transduced cell lines. Cells overexpressing wild-type Ank displayed a higher level of expression of type X collagen than cells transduced with mutant Ank. Other markers of hypertrophy and terminal differentiation, such as alkaline phosphatase, osteopontin, and runx2, were not significantly different in cells expressing wild-type or mutant Ank in comparison with cells transduced with an empty vector or with untransduced cells. These results suggest that the P5L Ank mutant is capable of demonstrating a gain-of-function with respect to extracellular inorganic pyrophosphate elaboration, but this effect is modified by high levels of expression of alkaline phosphatase in ATDC5 cells during hypertrophy and terminal differentiation, resulting in the deposition of basic calcium phosphate crystals.  相似文献   

20.
Problems encountered in the histochemical localization of alkaline phosphatase activity are discussed and solutions presented. The purpose is to achieve a reaction that can be studied by light and electron microscopy and to distinguish alkaline glycerophosphatase from inorganic pyrophosphatase activity. Details are presented concerning fixatives, fixation times, incubation media, enzyme inhibitors, activators, and associated techniques that can be used to obtain optimal histochemical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号