首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Birds often engage in nest defence against predators to improve breeding success, but defence efficiency requires the capability to assess the threat level posed by potential predators. For species with low breeding-site tenacity, which may encounter varying occurrence and density of predators in different areas, threat recognition could be compromised due to naivety, and so predator recognition may focus on broad key features to diminish the risk of misidentification. We experimentally tested this hypothesis by recording behavioural reactions of the nomadic wood warbler Phylloscopus sibilatrix to objects reflecting various levels of threat: least weasel and Eurasian jay taxidermy mounts, an inanimate object and an empty display mount. To assess actual nest predators, we used remote cameras to record predation events at wood warbler nests. As in other studies in Western Europe, Eurasian jay was found to be the main nest predator, with occasional predation by least weasel. The reaction of adult warblers to the models was generally to remain silent and on nests during the incubation stage presumably due to the need to maintain efficient nest camouflage and concealment. During the nestling stage, behavioural responses of adult warblers, calling and suspended feeding of young, showed the strongest effects from the jay taxidermy mount, moderate to the weasel and weakest to the inanimate object and empty mount. As the reaction of wood warblers reflected the degree of genuine threat posed by the predators depicted by the models, we conclude that predator recognition may be present in this species.  相似文献   

2.
Predation can be an important agent of natural selection shaping parental care behaviours, and can also favour behavioural plasticity. Parent birds often decrease the rate that they visit the nest to provision offspring when perceived risk is high. Yet, the plasticity of such responses may differ among species as a function of either their relative risk of predation, or the mean rate of provisioning. Here, we report parental provisioning responses to experimental increases in the perceived risk of predation. We tested responses of 10 species of bird in north temperate Arizona and subtropical Argentina that differed in their ambient risk of predation. All species decreased provisioning rates in response to the nest predator but not to a control. However, provisioning rates decreased more in species that had greater ambient risk of predation on natural nests. These results support theoretical predictions that the extent of plasticity of a trait that is sensitive to nest predation risk should vary among species in accordance with predation risk.  相似文献   

3.
Seasonal declines in avian clutch size are well documented, but seasonal variation in other reproductive parameters has received less attention. For example, the probability of complete brood mortality typically explains much of the variation in reproductive success and often varies seasonally, but we know little about the underlying cause of that variation. This oversight is surprising given that nest predation influences many other life-history traits and varies throughout the breeding season in many songbirds. To determine the underlying causes of observed seasonal decreases in risk of nest predation, we modeled nest predation of Dusky Flycatchers (Empidonax oberholseri) in northern California as a function of foliage phenology, energetic demand, developmental stage, conspecific nest density, food availability for nest predators, and nest predator abundance. Seasonal variation in the risk of nest predation was not associated with seasonal changes in energetic demand, conspecific nest density, or predator abundance. Instead, seasonal variation in the risk of nest predation was associated with foliage density (early, but not late, in the breeding season) and seasonal changes in food available to nest predators. Supplemental food provided to nest predators resulted in a numerical response by nest predators, increasing the risk of nest predation at nests that were near supplemental feeders. Our results suggest that seasonal changes in foliage density and factors associated with changes in food availability for nest predators are important drivers of temporal patterns in risk of avian nest predation.  相似文献   

4.
5.
In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius collurio) that recently expanded its breeding habitat into open areas in plantation forests. This passerine bird shows a strong preference for forest habitat, but it has a higher nest success in farmland. We tested whether higher abundance of nest predators in the preferred habitat or, alternatively, a decoupling of nest predator abundance and nest predation explained this observed pattern of maladaptive habitat selection. More than 90% of brood failures were attributed to nest predation. Nest predator abundance was more than 50% higher in farmland, but nest predation was 17% higher in forest. Differences between nest predation on actual shrike nests and on artificial nests suggested that parent shrikes may facilitate nest disclosure for predators in forest more than they do in farmland. The level of caution by parent shrikes when visiting their nest during a simulated nest predator intrusion was the same in the two habitats, but nest concealment was considerably lower in forest, which contributes to explaining the higher nest predation in this habitat. We conclude that a decoupling of nest predator abundance and nest predation may create ecological traps in human-modified environments.  相似文献   

6.
Testing ecological and behavioral correlates of nest predation   总被引:1,自引:0,他引:1  
Variation in nest predation rates among bird species are assumed to reflect differences in risk that are specific to particular nest sites. Theoretical and empirical studies suggest that parental care behaviors can evolve in response to nest predation risk and thereby differ among ecological conditions that vary in inherent risk. However, parental care also can influence predation risk. Separating the effects of nest predation risk inherent to a nest site from the risk imposed by parental strategies is needed to understand the evolution of parental care. Here we identify correlations between risks inherent to nest sites, and risk associated with parental care behaviors, and use an artificial nest experiment to assess site-specific differences in nest predation risk across nesting guilds and between habitats that differed in nest predator abundance. We found a strong correlation between parental care behaviors and inherent differences in nest predation risk, but despite the absence of parental care at artificial nests, patterns of nest predation risk were similar for real and artificial nests both across nesting guilds and between predator treatments. Thus, we show for the first time that inherent risk of nest predation varies with nesting guild and predator abundance independent of parental care.  相似文献   

7.
Parent birds should take greater risks defending nests that have a higher probability of success. Given high rates of mammalian nest predation, therefore, parents should risk more for nests in areas with a lower risk of mammalian predation. We tested this hypothesis using nest defence data from over 1300 nests of six species of dabbling ducks studied in an area where predation risk had been reduced through removal of mammalian predators. When predator removal reduced nest predation, the ducks increased risk taking as predicted. Also as predicted, risk taking varied inversely with body size, an index of annual survival, among species. For ducks to vary nest defence in response to variation in predation risk they must be able to assess the risk of nest predation. Because ducks modified nest defence in the breeding season immediately following predator removal, ducks may be able to assess predator abundance indirectly (e.g. by UV reflection from urine) rather than by seeing or interacting directly with the predators.  相似文献   

8.
Jean-Louis  Martin  Mathieu  Joron 《Oikos》2003,102(3):641-653
We used the introduction of a generalist nest predator, the red squirrel Tamiasciurus hudsonicus, and of a large herbivore, the Sitka black-tailed deer Odocoileus hemionus sitkensis, to the islands of Haida Gwaii (Queen Charlotte Islands, British Columbia, Canada) to study how predator assemblage and habitat quality and structure influenced nest predation in forest birds. We compared losses of natural nests to predators on islands with and without squirrels. We selected nine islands with or without squirrel or deer and used 506 artificial nests put on the ground or in shrubs to further analyse variation of nest predation with predator assemblage and habitat quality for the predators. For both natural and artificial nests predation risk was higher in presence of squirrels. But predation risk varied within island categories. In presence of squirrels it was highest in stands with mature conifers where it fluctuated from year to year, in response to fluctuations in squirrel abundance. Vegetation cover around the nest had little effect on nest predation by squirrels. Where squirrels were absent, nest predation concentrated near predictable food sources for corvids, the main native predators, and increased with decreasing vegetation cover, suggesting that removal of the vegetation by deer increased the risk of predation by native avian nest predators that use visual cues. Predation risk in these forests therefore varies in space and time with predator composition and with quality of the habitat from the predators' perspective. This temporal and spatial variation in predation risk should promote trade-offs in the response of birds to nest predation, rather than fine-tuned adaptations to a given predation pattern.  相似文献   

9.
1.?Information benefits organisms living in a heterogeneous world by reducing uncertainty associated with decision making. For breeding passerines, information reliably associated with nest failure, such as predator activity, can be used to adjust breeding decisions leading to higher reproductive success. 2.?Predator vocalizations may provide a source of current information for songbirds to assess spatial heterogeneity in risk that enables them to make appropriate nest-site and territory placement decisions. 3.?To determine whether ground-nesting passerines eavesdrop on a common nest predator, the eastern chipmunk (Tamias striatus), we conducted a playback experiment to create spatial heterogeneity in perceived predation risk. We established three types of playback plots broadcasting: (i) chipmunk vocalizations (increased risk), (ii) frog calls (procedural control) and (iii) no playback (silent control). We conducted point counts from plot centres to compare bird activity among treatments and measured the distance of two ground-nesting species' nests, ovenbird (Seiurus aurocapilla) and veery (Catharus fuscescens), from playback stations. 4.?Ground-nesting birds significantly reduced their activities up to 30 m from plot centres in response to playbacks of chipmunk calls suggesting an adjustment of territory placement or a reduction of overt behaviours (e.g. singing frequency). In contrast, less vulnerable canopy-nesting species showed no effect across experimental plots. Correspondingly, veeries and ovenbirds nested significantly further from chipmunk playback stations relative to control stations. Interestingly, the magnitude of this response was more than twice as high in ovenbirds than in veeries. 5.?Our findings indicate that some breeding passerines may eavesdrop on predator communication, providing an explanation for how some birds assess spatial heterogeneity in predation risk to make breeding site decisions. Thus, heterospecific eavesdropping may be a common feature of predator-prey interactions that allows birds to avoid nest predators in space and provide greater stability to predator-prey dynamics.  相似文献   

10.
Anti-predatory strategies of birds are diverse and may include predator-specific alarm calls. For example, oriental tit (Parus minor) parents can distinguish snakes from other predators and produce snake-specific referential vocalizations ("jar" call) when a snake poses a threat to their nest. The “jar” call has a very specific function to induce fledging of nestlings close to fledging age. This reaction ensures nestlings' survival in natural encounters with snakes that are capable of entering nest cavities and kill entire broods. Sciurid rodents, like chipmunks, may pose a similar threat to cavity-nesting birds. We explored the hypothesis that parents use the fledging-inducing alarm vocalizations in this situation, because chipmunks, like snakes, can kill the brood upon entering the nest cavity. We compared alarm calls of parents toward two predators (chipmunk and snake) who pose a similar threat to the nestlings in a nest cavity, and toward an avian predator (Eurasian jay) who cannot enter nest cavities and poses no threat to the nestlings in a nest. Our results show that the vocal responses of oriental tits were different among the three predators. This suggests that the acoustic properties of vocal responses to predators are different between predators of a similar hunting strategy (nest-cavity entering). The playback of recorded vocal responses of parents to chipmunks did not trigger the fledging of old nestlings, whereas the vocalizations toward a snake did, as shown by earlier studies. Our study suggests that the vocal response of parents does not carry information about the ability of predators to enter the nest cavity and confirms the special status of alarm calls triggered by snakes.  相似文献   

11.
Parent birds make efforts to prevent the immediate costs of predation through plastic behavioural responses to the actual predation risk, but this may incur future costs for offspring due to reduced parental care. However, the temporary nature of predator encounters suggests that nestling feeding reduced during the risky periods may be later compensated for by an increased feeding effort (the predation risk allocation hypothesis). We tested this prediction in the Great Spotted Woodpecker (Dendrocopos major) confronted with its major nest predator/competitor, the European Starling (Sturnus vulgaris). A brief encounter with a live starling was followed by a reduction in the nestling feeding rate, but the lost feedings were subsequently compensated for by an increased feeding rate. This compensatory effect was higher in older nestlings that are highly demanding in terms of energy requirements and fitness value from the parents’ perspective. Thus, birds are potentially able to respond not only to the immediate risk of nest predation by nest defence but also to compensate for the potential costs of nest defence in terms of unfulfilled nestling demands. However, data on the amount of delivered food are necessary to distinguish whether parents truly compensate for lost feeding or whether the increased feeding frequency represents a nest guarding strategy.  相似文献   

12.
There is growing evidence that birds are able to discriminate different types of nest intruders and adjust their nest defence behaviour according to intruder dangerousness and distance from the nest (the dynamic risk assessment hypothesis). Here, we tested whether birds’ decisions about nest defence may additionally be affected by an increasing familiarity with a particular nest predator. We tested nest defence responses of great reed warblers Acrocephalus arundinaceus to a nest predator, the little bittern Ixobrychus minutus. Great reed warbler nests located close (≤7 m) to synchronously breeding little bitterns were “neighbour”, other nests were “solitary”. Great reed warbler specific aggression towards a little bittern dummy was much lower (~5-times) at neighbour than solitary nests. In contrast, generalised responses to a control innocuous intruder (the turtle dove, Streptopelia turtur) were statistically identical at neighbour and solitary nests. These patterns are in line with dynamic risk assessment hypothesis. We hypothesise that decreased great reed warbler aggression at neighbour nests also represents a specific behavioural adaptation to nesting in association with the little bittern. Little bitterns breeding closer to great reed warblers showed decreased risks of failure due to predation. However, further research is needed to experimentally test the causal links behind these patterns.  相似文献   

13.
Climate‐driven increases in spring temperatures are expected to result in higher prey availability earlier in the breeding season for insectivorous birds breeding in wetland habitats. Predation during the incubation phase is a major cause of nesting failure in open‐nesting altricial birds such as the Eurasian reed warbler. The nest predation rate in this species has recently been shown to be substantially reduced under conditions of experimentally elevated invertebrate prey availability. Food availability near the nest may be an important determinant of adult incubation and nest defence behaviours during the incubation period. We used two experimental studies to compare incubation behaviour and nest defence in food‐supplemented and unsupplemented adult Eurasian reed warblers during the incubation phase. In the first study we measured nest defence behavioural responses to a taxidermic mount of a native predator (stoat Mustela erminea). In the second study we used temperature loggers installed in nests to measure breaks in incubation as a measure of nest vulnerability. Food‐supplemented birds responded aggressively to the presence of a predator more quickly than those in the unsupplemented group, suggesting they are closer to their nest and can more quickly detect a predator in the vicinity. Food‐supplemented birds also had shorter breaks in incubation (both in terms of maximum and mean off‐bout durations), presumably because they were foraging for shorter periods or over shorter distances from the nest. This study therefore identifies the behavioural mechanisms by which changes in food availability may lead to changes in nest survival and thus breeding productivity, in open‐nesting insectivorous birds.  相似文献   

14.
The behavioural response of juvenile bluegill sunfish (Lepomis macrochirus) to predation risk when selecting between patches of artificial vegetation differing in food and stem density was investigated. Bluegill foraging activity was significantly affected by all three factors. Regardless of patch stem density or risk of predation bluegills preferred patches with the highest prey number. During each trial bluegill foraging activity was clearly divided into a between- and within-patch component. In the presence of a predator bluegills reduced their between-patch foraging activity by an equivalent amount regardless of patch stem density or food level, apparently showing a risk-adjusting behavioural response to predation risk. Within patches, however, foraging activity was affected by both food level and patch stem density. When foraging in a patch offering a refuge from predation, the presence of a predator had no effect on bluegill foraging activity within this patch. However, if foraging in a patch with only limited refuge potential, bluegill foraging activity was reduced significantly in the presence of a predator. Further, this reduction was significantly greater if the patch contained a low versus a high food level, indicating a risk-balancing response to predation with respect to within-patch foraging activity. Both these responses differ from the risk-avoidance response to predation demonstrated by juvenile bluegills when selecting among habitats. Therefore, our results demonstrate the flexibility of juvenile bluegill foraging behaviour.  相似文献   

15.
Habitat fragmentation alters many ecological processes, including trophic cascades. For example, increased predation pressure along habitat edges has often been observed in fragmented landscapes. Here, we studied how nest predation risk varies along the transition zone between grassland and mixed forest in Central Europe. Using artificial nests, we tested the two mechanisms that are expected to underlie higher predation rates along edges: (1) the matrix effect model that supposes predator penetration from a habitat type with higher predator density to one with lower predator density and (2) the ecotonal effect model that assumes specific predator preferences for habitat edges. Although our results do not fully support either of these scenarios, our data show high temporal instability in nest predation along forest–grassland edges. Predation was higher in habitat interiors compared to edges during the first year, whereas the opposite pattern was observed during the subsequent year. In addition, dramatic between-year differences in the species composition of nest predators were observed. Therefore, we hypothesise that the effect of edges on nest predation is difficult to predict in landscapes with high predator diversity. In addition, our data indicate that a high abundance of wild boar considerably increases the risk of predation for ground-nesting birds.  相似文献   

16.
I combined a comparative study of begging in ground- and tree-nesting wood warblers (Parulidae) with experimental measures of the predation costs of warbler begging calls. Throughout their development, ground-nesting warbler nestlings had significantly higher-frequency begging calls than did tree-nesting warblers. There was also a trend for ground-nesting birds to have less rapidly modulated calls. There were no consistent associations between nesting site and the amplitude of the calls. Using miniature walkie-talkies hidden inside artificial nests, I reciprocally transplanted the begging calls of 5- and 8-day-old black-throated blue warblers, Dendroica caerulescens (tree-nesting) and ovenbirds, Seiurus aurocapillus (ground-nesting) and measured the corresponding changes in rates of nest predation. For the begging calls of 8-day-old nestlings, but not those of 5-day-olds, the calls of the tree-nesting species coming from ground nests incurred greater costs than did the calls of ground nesters. The reciprocal transplant had little effect on the rate of predation. Tooth imprints on clay eggs placed in artificial nests indicated that eastern chipmunks, Tamias striatus, were responsible for the increased cost of begging for black-throated blue calls coming from the ground. These data suggest that nest predation may be responsible for maintaining some of the interspecific differences in the acoustic structure of begging calls. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

17.
Sublethal effects of predation constitute an important part of predation effects, which may modulate prey population and community dynamics. In birds, the risk of nest predation may cause a reduction in parental activity in the care of offspring to reduce the chance of being detected by predators. In addition, parents may modify their parental food allocation preferences within the brood in response to predation risk. Our aim in this study was to evaluate the effects of risk of nest predation on parental care and within‐nest food allocation in the European Roller (Coracias garrulus), an asynchronously hatching bird. We manipulated brood predation risk by placing a snake model near the nests that simulates the most common nest predator in the Mediterranean region. Our results show that males but not females increased their provisioning rate when they were exposed to the model and that despite this, nestlings’ body mass decreased in response to this temporary increase in predation risk. We did not find evidence that parents changed their food allocation strategy towards senior or junior nestlings in their nests in response to predation risk. These results show that the European roller modifies parental care in response to their perception of predation risk in the nest and a sex‐specific sensitivity to the threat, which suggests a different perception of offspring reproductive value by parents. Finally, our results show that changes in parental behaviour in response to nest predation risk might have consequences for nestling fitness prospects.  相似文献   

18.
1.  Nest predation negatively affects most avian populations. Studies of nest predation usually group all nest failures when attempting to determine temporal and parental activities, habitat or landscape predictors of success. Often these studies find few significant predictors and interpret patterns as essentially random.
2.  Relatively little is known about the importance of individual predator species or groups on observed patterns of nest success, and how the ecology of these predators may influence patterns of success and failure.
3.  In 2006 and 2007, time-lapse, infrared video systems were deployed at nests of Swainson's warblers ( Limnothlypis swainsonii Audubon) in east-central Arkansas to identify dominant nest predators and determine whether factors predicting predation differed among these predators.
4.  Analysis of pooled data yielded few predictors of predation risk, whereas separate analyses for the three major predator groups revealed clear, but often conflicting, patterns.
5.  Predation by ratsnakes ( Elaphe obsoleta ) and raptors was more common during the nestling period, whereas predation by brown-headed cowbirds ( Molothrus ater ) occurred more during incubation. Additionally, the risk of predation by raptors and cowbirds decreased throughout the breeding season, whereas ratsnake predation risk increased.
6.  Contrary to expectations, predation by ratsnakes and cowbirds was more common far from edges, whereas raptor predation was more common close to agricultural edges.
7.  Collectively, our results suggest that associating specific predators with the nests they prey on is necessary to understand underlying mechanisms.  相似文献   

19.
Nest predation is one of the most important factors limiting reproductive success, and antipredator behaviour can significantly reduce the loss of avian broods. I carried out field experiments on two sympatric passerines: the barred warbler and the red-backed shrike. Many authors have described the protective nature of nesting association between these species. However, we have little knowledge about the true nature of the relationships between associates. I examined (1) whether barred warblers and red-backed shrikes respond differently to an avian predator, and (2) whether males and females differ in the intensity of nest defence. Decoys of a known nest predator and a non-predatory control species were used to examine the types and relative intensity of parental response. I measured behavioural responsiveness by recording aggressive behaviour toward each model during the nestling period. Barred warblers and red-backed shrikes showed considerable variation in their response. Warblers more vigorously defended their own territories than shrikes. No differences between the sexes in antipredator behaviour in red-backed shrike were found. By contrast, in barred warbler, male was more involved in nest defence. The experimental tests provide evidence that these two species are able to differentiate between a predator and non-predator species.  相似文献   

20.
Fragmentation of forest landscapes can raise the intensity of nest predation by increasing the abundance and richness of generalist or introduced predators. Understory foraging birds, such as rhinocryptids, can be highly vulnerable to nest predation in fragmented landscapes because they often place their nests on the ground. Temperate deciduous forests in Chile have been intensively fragmented in the last centuries, causing changes in nest predator densities. We tested if predation of artificial nests, mimicking those of rhinocryptids, placed on and above ground was higher in the remnant fragments of central Chile due to an increase in predator abundance. The rate of nest predation in forest remnants was larger than in native continuous forest. Small mammals were the main nest predators. Despite high predation rates, the abundance of rhinocryptids is higher in forest remnants, suggesting that fragments might constitute ecological traps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号