首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Controlled depolymerization of cellulose is essential for the production of valuable cellooligosaccharides and cellobiose from lignocellulosic biomass. However, enzymatic cellulose hydrolysis involves multiple synergistically acting enzymes, making difficult to control the depolymerization process and generate desired product. This work exploits the varying adsorption properties of the cellulase components to the cellulosic substrate and aims to control the enzyme activity. Cellulase adsorption was favored on pretreated cellulosic biomass as compared to synthetic cellulose. Preferential adsorption of exocellulases was observed over endocellulase, while β-glucosidases remained unadsorbed. Adsorbed enzyme fraction with bound exocellulases when used for hydrolysis generated cellobiose predominantly, while the unadsorbed enzymes in the liquid fraction produced cellooligosaccharides majorly, owing to its high endocellulases activity. Thus, the differential adsorption phenomenon of the cellulase components can be used for the controlling cellulose hydrolysis for the production of an array of sugars.  相似文献   

2.
Lignocellulose is widely recognized as a sustainable substrate for biofuels production, and the enzymatic hydrolysis is regarded as a critical step for the development of an effective process for the conversion of cellulose into ethanol. One key factor affecting the overall conversion rate is the adsorption capacity of the cellulase enzymes to the surface of the insoluble substrate. Pretreatment has a strong impact on hydrolysis, which could be related to both chemical changes and morphological changes of the material. In the current work, the accessibility of four differently pretreated wheat straw substrates, two differently pretreated spruce materials, and Avicel cellulose was investigated. Adsorption isotherms (at 4 °C and 30 °C) for a cellulase preparation were obtained, and the rates of hydrolysis were determined for the different materials. Furthermore, the surface area and pore size distribution of the various materials were measured and compared to adsorption and hydrolysis properties, and the structures of the pretreated materials were examined using scanning electron microscopy (SEM).The results demonstrated a positive correlation between enzyme adsorption and the substrate specific surface area within each feedstock. Overall, the amount of enzyme adsorbed was higher for pretreated spruce than for the pretreated wheat straw, but this was not accompanied by a higher initial rate of hydrolysis for spruce. Also, the difference in the measured endoglucanase adsorption and overall FPU adsorption suggests that a larger fraction of the enzyme adsorbed on spruce was unproductive binding. The SEM analysis of the material illustrated the structural effects of pretreatment harshness on the materials, and suggested that increased porosity explains the higher rate of hydrolysis of more severely pretreated biomass.  相似文献   

3.
Although essential to enzymatic hydrolysis of cellulosic biomass to sugars for fermentation to ethanol or other products, enzyme adsorption and its relationship to substrate features has received limited attention, and little data and insight have been developed on cellulase adsorption for promising pretreatment options, with almost no data available to facilitate comparisons. Therefore, adsorption of cellulase on Avicel, and of cellulase and xylanase on corn stover solids resulting from ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid, lime, and sulfur dioxide (SO2) pretreatments were measured at 4°C. Langmuir adsorption parameters were then estimated by non‐linear regression using Polymath software, and cellulase accessibility to cellulose was estimated based on adsorption data for pretreated solids and lignin left after carbohydrate digestion. To determine the impact of delignification and deacetylation on cellulose accessibility, purified CBHI (Cel7A) adsorption at 4°C and hydrolysis with whole cellulase were followed for untreated (UT) corn stover. In all cases, cellulase attained equilibrium in less than 2 h, and upon dilution, solids pretreated by controlled pH technology showed the greatest desorption followed by solids from dilute acid and SO2 pretreatments. Surprisingly, the lowest desorption was measured for Avicel glucan followed by solids from AFEX pretreatment. The higher cellulose accessibility for AFEX and lime pretreated solids could account for the good digestion reported in the literature for these approaches. Lime pretreated solids had the greatest xylanase capacity and AFEX solids the least, showing pretreatment pH did not seem to be controlling. The 24 h glucan hydrolysis rate data had a strong relationship to cellulase adsorption capacities, while 24 h xylan hydrolysis rate data showed no relationship to xylanase adsorption capacities. Furthermore, delignification greatly enhanced enzyme effectiveness but had a limited effect on cellulose accessibility. And because delignification enhanced release of xylose more than glucose, it appears that lignin did not directly control cellulose accessibility but restricted xylan accessibility which in turn controlled access to cellulose. Reducing the acetyl content in corn stover solids significantly improved both cellulose accessibility and enzyme effectiveness. Biotechnol. Bioeng. 2009;103: 252–267. © 2009 Wiley Periodicals, Inc.  相似文献   

4.
Qi B  Chen X  Su Y  Wan Y 《Bioresource technology》2011,102(3):2881-2889
The objective of this research was to investigate cellulase adsorption and recycling during enzymatic hydrolysis of two differently pretreated wheat straws (WS). Dilute acid treated WS showed lower hydrolysis yield of polysaccharides fraction and adsorbed more cellulase with hydrolyzed residue than dilute alkali treated sample. Four methods capable of recovering and recycling the enzyme bound to the residual substrate and the enzyme free in solution were used for three consecutive rounds of hydrolysis to compare their recycling efficiencies. Compared to the absorption recycling method, ultrafiltration recycling method possessed the capacity to retain β-glucosidase, thereby avoiding the supplementation of fresh β-glucosidase in subsequent rounds of hydrolysis. It was found that whatever recycling method was used, better recycling results were obtained for dilute alkali treated substrate than for dilute acid treated substrate. These results suggested that the great difference in the lignin content between acid treated WS and alkali treated WS would significantly affect enzymatic hydrolysis, cellulase adsorption and cellulase recycling efficiencies.  相似文献   

5.
Cellulase and bovine serum albumin (BSA) were added to Avicel cellulose and solids containing 56% cellulose and 28% lignin from dilute sulfuric acid pretreatment of corn stover. Little BSA was adsorbed on Avicel cellulose, while pretreated corn stover solids adsorbed considerable amounts of this protein. On the other hand, cellulase was highly adsorbed on both substrates. Adding a 1% concentration of BSA to dilute acid pretreated corn stover prior to enzyme addition at 15 FPU/g cellulose enhanced filter paper activity in solution by about a factor of 2 and beta-glucosidase activity in solution by about a factor of 14. Overall, these results suggested that BSA treatment reduced adsorption of cellulase and particularly beta-glucosidase on lignin. Of particular note, BSA treatment of pretreated corn stover solids prior to enzymatic hydrolysis increased 72 h glucose yields from about 82% to about 92% at a cellulase loading of 15 FPU/g cellulose or achieved about the same yield at a loading of 7.5 FPU/g cellulose. Similar improvements were also observed for enzymatic hydrolysis of ammonia fiber explosion (AFEX) pretreated corn stover and Douglas fir treated by SO(2) steam explosion and for simultaneous saccharification and fermentation (SSF) of BSA pretreated corn stover. In addition, BSA treatment prior to hydrolysis reduced the need for beta-glucosidase supplementation of SSF. The results are consistent with non-specific competitive, irreversible adsorption of BSA on lignin and identify promising strategies to reduce enzyme requirements for cellulose hydrolysis.  相似文献   

6.
Lignocellulosic biomass is a ubiquitous and renewable feedstock for the production of platform chemicals and biofuels. Typically, this recalcitrant biomass is pretreated by physico-chemical techniques causing disintegration and delignification. An additional treatment with laccase-mediator-systems (LMS) has been found to further improve the subsequent enzymatic cellulose hydrolysis. The aim of this study was to investigate the impact of different LMS on the glucose yield of a subsequent hydrolysis of treated beech wood and to elucidate the underlying effect of LMS treatment. The mediators 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), 1-hydroxybenzotriazol (HBT) and syringaldehyde were evaluated, but an enhancing effect of LMS treatment on beech wood hydrolysis was only found for HBT. In mass spectrometry analysis of the acid hydrolysate of LMS-treated samples, the mediator HBT could be found in the lignin samples, suggesting a grafting reaction. The fluorescent protein mCherry was used as a reporter for unspecific protein adsorption to biomass samples. LMS treatment with HBT reduced the unspecific adsorption of mCherry to raw beech wood by about 50%, suggesting that the HBT grafting to beech wood lignin decreased the unproductive cellulase binding. In summary, the reduction of unspecific protein adsorption by biomass surface modification with laccase-HBT treatment is proposed to be the underlying mechanism for increased cellulose conversion.  相似文献   

7.
Ethanol organosolv pretreatment was performed on Loblolly pine to enhance the efficiency of enzymatic hydrolysis of cellulose to glucose. Solid-state 13C NMR spectroscopy coupled with line shape analysis was used to determine the structure and crystallinity of cellulose isolated from pretreated and enzyme-hydrolyzed Loblolly pine. The results indicate reduced crystallinity of the cellulose following the organosolv pretreatment, which renders the substrate easily hydrolyzable by cellulase. The degree of crystallinity increases and the relative proportion of para-crystalline and amorphous cellulose decreases after enzymatic hydrolysis, indicating preferential hydrolysis of these regions by cellulase. The structural and compositional changes in this material resulting from the organosolv pretreatment and cellulase enzyme hydrolysis of the pretreated wood were studied with solid-state CP/MAS 13C NMR spectroscopy. NMR spectra of the solid material before and after the treatments show that hemicelluloses and lignin are degraded during the organosolv pretreatment.  相似文献   

8.
The cellulase activity in cell-free broths from the thermophilic, ethanol-producing anaerobic bacterium Clostridium thermocellum is examined on both dilute-acid-pretreated mixed hardwood (90% maple, 10% birch) and Avicel. Experiments were conducted in vitro in order to distinguish properties of the cellulase from properties of the organism and to evaluate the effectiveness of C. thermocellum cellulase in the hydrolysis of a naturally occurring, lignin-containing substrate. The results obtained establish that essentially quantitative hydrolysis of cellulose from pretreated mixed hardwood is possible using this enzyme system. Pretreatment with 1% H(2)SO(4) and a 9-s residence time at 220, 210, 200, and 180 degrees C allowed yields after enzymatic hydrolysis (percentage of glucan solubilized/ glucan potentially solubilized) of 97.8, 86.1, 82.0, and 34.6%, respectively. Enzymatic hydrolysis of mixed hardwood with no pretreatment resulted in a yield of 10.1%. Hydrolysis yields of >95% were obtained from approximately 0.6 g/L mixed hardwood pretreated at 220 degrees C in 7 h at broth strengths of 60 and 80% (v/v) and in approximately 48 h with 33% broth. Hydrolysis of pretreated mixed hardwood is compared to hydrolysis of Avicel, a pure microcrystalline cellulose studied previously. The initial rate of Avicel hydrolysis saturates with respect to enzyme, whereas the initial rate of hydrolysis of pretreated wood is proportional to the amount of enzyme present. Initial hydrolysis rates for pretreated wood and Avicel at 0.6 g/L are greater for wood at low broth dilutions (1.25: 1 to 5 :1) by up to 2.7-fold and greater for Avicel at high broth dilutions (5 : 1 to 50 : 1) by up to 4.3-fold. Maximum rates of hydrolysis are achieved at <2 g substrate/L for both pretreated wood and Avicel. The substrate concentration at one-half the maximum observed rate for C. thermocellum broths is smaller for pretreated mixed hardwood than for Avicel and decreases with increasing broth dilution for both substrates. An initial activity per volume broth of approximately 11 mumol soluble glucose equivalent produced/L broth/min is observed for mixed hardwood pretreated at 220 degrees C and for Avicel at high broth dilutions; the initial activity per volume broth for Avicel is lower at low broth dilutions. The results indicate that pretreated wood is hydrolyzed at rates comparable to Avicel under many conditions and at rates significantly faster than Avicel under several conditions.  相似文献   

9.
《Process Biochemistry》2007,42(6):1003-1009
Olive tree pruning biomass, pretreated by either liquid hot water or steam explosion under selected conditions, was used as a substrate for enzymatic hydrolysis. The pretreated material was further submitted to alkaline delignification, the objective being to improve hydrolysis yields as well as increasing cellulose content in the pretreated feedstock. The enzymatic hydrolysis of pretreated residues was performed using a commercial cellulase mixture supplemented with β-glucosidase, using a solid loading range from 2 to 30% (w/v). The influence of substrate concentration on the enzymatic hydrolysis yield and on glucose concentration was studied. Comparative results with and without a delignification step are presented. Enzymatic hydrolysis at high substrate concentration (≥20%) is possible, yielding a concentrated glucose solution (>50 g/L). Nevertheless, a cellulose fraction of the pretreated residue remains unaltered.  相似文献   

10.
超临界CO2流体对纤维素酶催化反应的影响   总被引:4,自引:0,他引:4  
超临界二氧化碳流体预处理对纤维素超分子结构及纤维素酶催化反应有重要影响。一定含水量的微晶纤维素用SC-CO2在10MPa,50℃处理30min,其结构发生了有利于进一步被酶解的变化。上述超临界条件单独作用于纤维素酶时,并未造成酶催化活力的降低;但与纤维素共同进行SC—CO2处理时,纤维素酶则失去催化活性,但这种处理却能提高纤维素进一步被酶解的效率。一定范围内处理时的酶用量与酶解效率的增加正相关。纤维素的含水量对SC-CO2处理后的酶解效率有显影响。  相似文献   

11.
Enzymatic hydrolysis of cellulose is potentially an attractive method for converting cellulose into glucose which can then be used as a chemical feed or as a growth substrate for a number of microorganisms to produce microbial products. An enzymatic hydrolysis of wheat straw with cellulase preparation “Trichocease” was made. The wheat straw used was pretreated mechanically and with NaOH. A procedure of pretreatment was investigated in 26 variants. The dynamics of enzymatic hydrolysis was studied. An assay of this dynamics based on the amount of reducing sugars formed during the cellulase reaction and depending upon enzyme and substrate concentration and time of action was carried out.  相似文献   

12.
Accellerase 1000 cellulase, Spezyme CP cellulase, β-glucosidase, Multifect xylanase, and beta-xylosidase were evaluated for hydrolysis of pure cellulose, pure xylan, and switchgrass solids from leading pretreatments of dilute sulfuric acid, sulfur dioxide, liquid hot water, lime, soaking in aqueous ammonia, and ammonia fiber expansion. Distinctive sugar release patterns were observed from Avicel, phosphoric acid swollen cellulose (PASC), xylan, and pretreated switchgrass solids, with accumulation of significant amounts of xylooligomers during xylan hydrolysis. The strong inhibition of cellulose hydrolysis by xylooligomers could be partially attributed to the negative impact of xylooligomers on cellulase adsorption. The digestibility of pretreated switchgrass varied with pretreatment but could not be consistently correlated to xylan, lignin, or acetyl removal. Initial hydrolysis rates did correlate well with cellulase adsorption capacities for all pretreatments except lime, but more investigation is needed to relate this behavior to physical and compositional properties of pretreated switchgrass.  相似文献   

13.
A semimechanistic multi‐reaction kinetic model was developed to describe the enzymatic hydrolysis of a lignocellulosic biomass, creeping wild ryegrass (CWR; Leymus triticoides). This model incorporated one homogeneous reaction of cellobiose‐to‐glucose and two heterogeneous reactions of cellulose‐to‐cellobiose and cellulose‐to‐glucose. Adsorption of cellulase onto pretreated CWR during enzymatic hydrolysis was modeled via a Langmuir adsorption isotherm. This is the first kinetic model which incorporated the negative role of lignin (nonproductive adsorption) using a Langmuir‐type isotherm adsorption of cellulase onto lignin. The model also reflected the competitive inhibitions of cellulase by glucose and cellobiose. The Matlab optimization function of “lsqnonlin” was used to fit the model and estimate kinetic parameters based on experimental data generated under typical conditions (8% solid loading and 15 FPU/g‐cellulose enzyme concentration without the addition of background sugars). The model showed high fidelity for predicting cellulose hydrolysis behavior over a broad range of solid loading (4–12%, w/w, dry basis), enzyme concentration (15–150 FPU/ g‐cellulose), sugar inhibition (glucose of 30 and 60 mg/mL and cellobiose of 10 mg/mL). In addition, sensitivity analysis showed that the incorporation of the nonproductive adsorption of cellulase onto lignin significantly improved the predictability of the kinetic model. Our model can serve as a robust tool for developing kinetic models for system optimization of enzymatic hydrolysis, hydrolysis reactor design, and/or other hydrolysis systems with different type of enzymes and substrates. Biotechnol. Bioeng. 2009;102: 1558–1569. © 2008 Wiley Periodicals, Inc.  相似文献   

14.
In the cellulase-cellulose reaction system, the adsorption of cellulase on the solid cellulose substrate was found to be one of the important parameters that govern the enzymatic hydrolysis rate of cellulose. The adsorption of cellulase usually parallels the rate of hydrolysis of cellulose. The affinity for cellulase varies depending on the structural properties of cellulose. Adsorption parameters such as the half-saturation constant, the maximum adsorption constant, and the distribution coefficient for both the cellulase and cellulsoe have been experimentally determined for several substrates. These adsorption parameters vary with the source of cellulose and the pretreatment methods and are correlated with the crystallinity and the specific surface area of cellulose substrates. The changing pattern of adsorption profile of cellulase during the hydrolysis reaction has also been elucidated. For practical utilization of cellulosic materials, the cellulose structural properties and their effects on cellulase adsorption, and the rate of hydrolysis must be taken into consideration.  相似文献   

15.
An experimental study of cellobiose inhibition in cellulose hydrolysis by synergism of cellobiohydrolyse I and endoglucanase I is presented. Cellobiose is the structural unit of cellulose molecules and also the main product in enzymatic hydrolysis of cellulose. It has been identified that cellobiose can strongly inhibit hydrolysis reaction of cellulase, whereas it has no effect on the adsorption of cellulase on cellulose surface. The experimental data of FT-IR spectra, fluorescence spectrum and circular dichroism suggested that cellobiose can be combined with trypto-phan residue located near the active site of cellobiohydrolase and then form steric hindrance, which prevents cellulose molecule chains from diffusing into active site of cellulase. In addition, the molecular conformation of cellobiohydrolase changes after cellobiose binding, which also causes most of the non-productive adsorption. Under these conditions, microfibrils cannot be separated from cellulose chains, thus further hydrolysis of cell  相似文献   

16.
An experimental study of cellobiose inhibition in cellulose hydrolysis by synergism of cellobiohydrolyse I and endoglucanase I is presented. Cellobiose is the structural unit of cellulose molecules and also the main product in enzymatic hydrolysis of cellulose. It has been identified that cellobiose can strongly inhibit hydrolysis reaction of cellulase, whereas it has no effect on the adsorption of cellulase on cellulose surface. The experimental data of FT-IR spectra, fluorescence spectrum and circular dichroism suggested that cellobiose can be combined with tryptophan residue located near the active site of cellobiohydrolase and then form steric hindrance, which prevents cellulose molecule chains from diffusing into active site of cellulase. In addition, the molecular conformation of cellobiohydrolase changes after cellobiose binding, which also causes most of the non-productive adsorption. Under these conditions, microfibrils cannot be separated from cellulose chains, thus further hydrolysis of cellulose can hardly proceed.  相似文献   

17.
Adsorption of cellulase on solids resulting from pretreatment of poplar wood by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid (DA), flowthrough (FT), lime, and sulfur dioxide (SO2) and pure Avicel glucan was measured at 4°C, as were adsorption and desorption of cellulase and adsorption of β‐glucosidase for lignin left after enzymatic digestion of the solids from these pretreatments. From this, Langmuir adsorption parameters, cellulose accessibility to cellulase, and the effectiveness of cellulase adsorbed on poplar solids were estimated, and the effect of delignification on cellulase effectiveness was determined. Furthermore, Avicel hydrolysis inhibition by enzymatic and acid lignin of poplar solids was studied. Flowthrough pretreated solids showed the highest maximum cellulase adsorption capacity (σsolids = 195 mg/g solid) followed by dilute acid (σsolids = 170.0 mg/g solid) and lime pretreated solids (σsolids = 150.8 mg/g solid), whereas controlled pH pretreated solids had the lowest (σsolids = 56 mg/g solid). Lime pretreated solids also had the highest cellulose accessibility (σcellulose = 241 mg/g cellulose) followed by FT and DA. AFEX lignin had the lowest cellulase adsorption capacity (σlignin = 57 mg/g lignin) followed by dilute acid lignin (σlignin = 74 mg/g lignin). AFEX lignin also had the lowest β‐glucosidase capacity (σlignin = 66.6 mg/g lignin), while lignin from SO2lignin = 320 mg/g lignin) followed by dilute acid had the highest (301 mg/g lignin). Furthermore, SO2 followed by dilute acid pretreated solids gave the highest cellulase effectiveness, but delignification enhanced cellulase effectiveness more for high pH than low pH pretreatments, suggesting that lignin impedes access of enzymes to xylan more than to glucan, which in turn affects glucan accessibility. In addition, lignin from enzymatic digestion of AFEX and dilute acid pretreated solids inhibited Avicel hydrolysis less than ARP and flowthrough lignin, whereas acid lignin from unpretreated poplar inhibited enzymes the most. Irreversible binding of cellulase to lignin varied with pretreatment type and desorption method. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

18.
Liquid hot (LHW) water pretreatment (LHW) of lignocellulosic material enhances enzymatic conversion of cellulose to glucose by solubilizing hemicellulose fraction of the biomass, while leaving the cellulose more reactive and accessible to cellulase enzymes. Within the range of pretreatment conditions tested in this study, the optimized LHW pretreatment conditions for a 15% (wt/vol) slurry of hybrid poplar were found to be 200oC, 10 min, which resulted in the highest fermentable sugar yield with minimal formation of sugar decomposition products during the pretreatment. The LHW pretreatment solubilized 62% of hemicellulose as soluble oligomers. Hot‐washing of the pretreated poplar slurry increased the efficiency of hydrolysis by doubling the yield of glucose for a given enzyme dose. The 15% (wt/vol) slurry of hybrid poplar, pretreated at the optimal conditions and hot‐washed, resulted in 54% glucose yield by 15 FPU cellulase per gram glucan after 120 h. The hydrolysate contained 56 g/L glucose and 12 g/L xylose. The effect of cellulase loading on the enzymatic digestibility of the pretreated poplar is also reported. Total monomeric sugar yield (glucose and xylose) reached 67% after 72 h of hydrolysis when 40 FPU cellulase per gram glucan were used. An overall mass balance of the poplar‐to‐ethanol process was established based on the experimentally determined composition and hydrolysis efficiencies of the liquid hot water pretreated poplar. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

19.
A kinetic model is devised, from the reaction mechanism steps, to predict the rate of reducing sugar production by hydrolysis of two types of cellulose, namely, amorphous carboxymethylcellulose (CMC) and highly crystalline wood shavings, using Aspergillus niger cellulase. Experimental results in a stirred batch reactor at 40 degrees C show that the production of reducing sugar reduced at much shorter times for wood shavings in comparison to CMC at the same initial substrate concentration. The experimental results are used to determine the kinetic parameters of the model equations. The significance of crystallinity was determined using inert fraction coefficient, which is assumed to be constant and equals 0.05 and 0.98 for CMC and wood shavings, respectively. It is shown there is a good agreement between the experimental results and proposed kinetic model predictions. The effect of the inert fraction coefficient on the production of reducing sugar by the enzymatic hydrolysis of cellulose is also determined. It is found that the cellulase used extracted from A. niger is much more sensitive towards the substrate structure in comparison to that extracted from Trichoderma reesei.  相似文献   

20.
In order to reduce the total enzyme consumption in high-solids static hydrolysis of nonwashed steam-exploded willow Salix caprea by mixed cellulase of Trichoderma reesei + Aspergillus foetidus, two different approaches were proposed. In the first case, the enzyme activity adsorbed on residual solids after extended hydrolysis was used for hydrolysis of the newly added substrate. The initial mixing of fresh and hydrolyzed substrates was sufficient for the adsorbed enzyme redistribution and conversion of the new substrate portion, and permanent mechanical stirring was not required. Feeding of two additional portions of the exploded hardwood adjusted to pH 4 with dry caustic into the reactor with simultaneous replacement of accumulated sugars with fresh buffer (pH 4.5) resulted, on average, in a 90% conversion of cellulose at the final enzyme loading 8 IFPU per g ODM substrate, an average sugar concentration of 12%, and a glucose/xylose ratio of 5:1. In the second approach, weakly adsorbed cellulase fractions were used for static high-solids hydrolysis followed by their ultrafiltration recovery from the resultant sugar syrup. In contrast to the initial cellulase mixture whose residual activity in a syrup did not exceed 5-10% at the end of hydrolysis (48 h), up to 60% of weakly adsorbed enzyme fraction could be separated from sugar syrups by ultrafiltration and then reused. Weakly adsorbed enzymes displayed a hydrolysis efficiency of not less than 80% per IFPU enzyme consumed in extended hydrolysis of pretreated willow as compared to the original enzyme mixture. An electrophoretic study of the weakly adsorbed enzyme fraction identified T. reesei cellobiohydrolase II as the predominant component, whereas clear domination of T. reesei cellobiohydrolase I was found by electrophoresis of proteins tightly bound to hydrolysis residual solids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号