首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Lepesheva GI  Virus C  Waterman MR 《Biochemistry》2003,42(30):9091-9101
CYP51 (sterol 14 alpha-demethylase) is an essential enzyme in sterol biosynthetic pathways and the only P450 gene family having catalytically identical orthologues in different biological kingdoms. The proteins have low sequence similarity across phyla, and the whole family contains about 40 completely conserved amino acid residues. Fifteen of these residues lie in the secondary structural elements predicted to form potential substrate recognition sites within the P450 structural fold. The role of 10 of these residues, in the B' helix/BC loop, helices F and G, has been studied by site-directed mutagenesis using as a template the soluble sterol 14 alpha-demethylase of known structure, CYP51 from Mycobacterium tuberculosis (MT) and the human orthologue. Single amino acid substitutions of seven residues (Y76, F83, G84, D90, L172, G175, and R194) result in loss of the ability of the mutant MTCYP51 to metabolize lanosterol. Residual activity of D195A is very low, V87A is not expressed as a P450, and A197G has almost 1 order of magnitude increased activity. After purification, all of the mutants show normal spectral properties, heme incorporation, and the ability to be reduced enzymatically and to interact with azole inhibitors. Profound influence on the catalytic activity correlates well with the spectral response to substrate binding, effect of substrate stabilization on the reduced state of the P450, and substrate-enhanced efficiency of enzymatic reduction. Mutagenesis of corresponding residues in human CYP51 implies that the conserved amino acids might be essential for the evolutionary conservation of sterol 14 alpha-demethylation from bacteria to mammals.  相似文献   

2.
We provide here a list of 154 P450 genes and seven putative pseudogenes that have been characterized as of October 20, 1990. These genes have been described in a total of 23 eukaryotes (including nine mammalian and one plant species) and six prokaryotes. Of 27 gene families so far described, 10 exist in all mammals. These 10 families comprise 18 subfamilies, of which 16 and 14 have been mapped in the human and mouse genomes, respectively; to date, each subfamily appears to represent a cluster of tightly linked genes. We propose here a modest revision of the initially proposed (Nebert et al., DNA 6, 1-11, 1987) and updated (Nebert et al., DNA 8, 1-13, 1989) nomenclature system based on evolution of the superfamily. For the gene we recommend that the italicized root symbol CYP for human (Cyp for mouse), representing cytochrome P450, be followed by an Arabic number denoting the family, a letter designating the subfamily (when two or more exist), and an Arabic numeral representing the individual gene within the subfamily. A hyphen should precede the final number in mouse genes. We suggest that the human nomenclature system be used for other species. This system is consistent with our earlier proposed nomenclature for P450 of all eukaryotes and prokaryotes, except that we are discouraging the future use of cumbersome Roman numerals.  相似文献   

3.
4.
5.
6.
The obligatory step in sterol biosynthesis in eukaryotes is demethylation of sterol precursors at the C14-position, which is catalyzed by CYP51 (sterol 14-alpha demethylase) in three sequential reactions. In mammals, the final product of the pathway is cholesterol, while important intermediates, meiosis-activating sterols, are produced by CYP51. Three crystal structures of human CYP51, ligand-free and complexed with antifungal drugs ketoconazole and econazole, were determined, allowing analysis of the molecular basis for functional conservation within the CYP51 family. Azole binding occurs mostly through hydrophobic interactions with conservative residues of the active site. The substantial conformational changes in the B′ helix and F-G loop regions are induced upon ligand binding, consistent with the membrane nature of the protein and its substrate. The access channel is typical for mammalian sterol-metabolizing P450 enzymes, but is different from that observed in Mycobacterium tuberculosis CYP51. Comparison of the azole-bound structures provides insight into the relative binding affinities of human and bacterial P450 enzymes to ketoconazole and fluconazole, which can be useful for the rational design of antifungal compounds and specific modulators of human CYP51.  相似文献   

7.
The rat ribosomal protein L35a gene comprises a multigene family which contains 15-20 members as shown by the Southern blot analysis using L35a cDNA as a probe. We isolated 15 independent clones which contained distinct genes from a rat genomic library. Analysis of the restriction sites showed that all of them lacked the intervening sequences. Thermal stability of the hybrid molecules between these genes and the cDNA indicated that the similarity of the genes to the cDNA sequence varied. The nucleotide sequences of three genes gRL35a-A, gRL35a-B and gRL35a-G were determined. They shared some characteristics; namely: they lacked the intervening sequences, they contained (A)-rich tracts, and they were flanked by direct repeats. Two genes, gRL35a-A and gRL35a-B, contained a sequence completely identical to that of the cDNA. The nucleotide sequence of the 5' flanking region of gRL35a-B showed a significant homology with that of the same region of mouse ribosomal protein L32-related unmutated processed genes. Although this region of gRL35a-B contained the sequences homologous to the TATA box and the CCAAT box, gRL35a-B was not transcribed in an in vitro assay system. Thus, the L35a gene family comprises mostly processed pseudogenes. Further, Southern blot analysis in various animals indicated that the multigene construction of this ribosomal protein gene was a feature of mammalian genes. The origin and the evolutionary aspect of processed pseudogenes are discussed.  相似文献   

8.
A substantial proportion of human genes contain tissue-specifically DNA-methylated regions (TDMRs). However, little is known about the evolutionary conservation of differentially methylated loci, how they evolve, and the signals that regulate them. We have studied TDMR conservation in the PLG and TBX gene families and in 32 pseudogene–parental gene pairs. Among the members of the recently evolved PLG gene family, 5′-UTR methylation is conserved and inversely correlated with the cognate gene expression, indicating as well a conserved regulatory role of DNA methylation. Conversely, many genes of the much older TBX family display complementary tissue-specific methylation, suggesting an epigenetic complementation in the evolution of this gene family. Similar to gene families, unprocessed pseudogenes arose from gene duplications and we found TDMR conservation in some pseudogene–parental gene pairs displaying short evolutionary distances. However, for the majority of unprocessed pseudogenes and for all processed pseudogenes examined, we found that tissue-specific methylation arose de novo after gene duplication.  相似文献   

9.
De Grassi A  Lanave C  Saccone C 《Gene》2006,371(2):224-233
To investigate the integrated evolution of mitochondrial and nuclear genomes in the eukaryotic cell, we have focused our attention on OXPHOS (oxidative phosphorylation) gene families which encode proteins involved in the main mitochondrial function. The present study reports the phylogenetic analysis of two OXPHOS gene families: ATP synthase subunit c (or lipid binding protein, LBP) and Cytochrome c (Cytc). Both gene families possess a higher expansion trend than the typically low duplication rate of OXPHOS genes in Metazoa, but follow a completely different evolutionary history, especially in mammals. LBP is represented by three well conserved isoforms in all mammals (P1, P2, P3): only P3 possesses a clearly conserved isoform in all Vertebrates, P1 and P2 were already present before the bird-mammal divergence and there are preliminary evidence from the in silico analysis that P1, the most evolutionary divergent isoform, is poorly expressed and not regulated by NRF1. In contrast, Cytc family presents at least two duplicated genes in all the analysed Vertebrates, is subject to a high expansion trend, especially of processed pseudogenes in mammals, and some events of gain and loss of function can be supposed.  相似文献   

10.
It is shown that the process of mutation in the CYP2 family of the superfamily of P450 cytochromes is species-specific (man, rat, and mouse). It is also shown that, within one species (rat), different families (CYP2 and CYP11) have different mutation spectra, indicating a high specificity of the mutation process for the families of cytochrome genes. A similar specificity was demonstrated for five families (CYP1, CYP2, CYP6, CYP7, CYP11) as compared with globins and prions. The analysis of the evolutionary mutation pattern, and the pattern of pseudogenes and damaged alleles of the CYP21 family (found in patients with congenital adrenal hyperplasia) does not confirm the widely accepted hypothesis that mutations arising in pseudogenes are transduced to normal alleles of the CYP21 gene through gene conversion.  相似文献   

11.
Ai J  Zhu Y  Duan J  Yu Q  Zhang G  Wan F  Xiang ZH 《Gene》2011,480(1-2):42-50
Based on the advances in the silkworm genome project, a new genome-wide analysis of cytochrome P450 genes was performed. A total of 84 CYP-related sequences were identified and could be classified into 26 families and 47 subfamilies according to standard nomenclature. Seventy eight of the eighty four genes appear to be functional and six are probable pseudogenes. The distribution of Bombyx mori P450s in the genome shows that most of them are tandem arranged on chromosomes, only 34 genes are present as singletons, with 8 clusters including 3 or more than 3 genes. Sequence alignments were used to reconstruct phylogenetic trees and to analyze the intron-exon organizations of the functional genes. The conserved intron positioning agrees perfectly with their common grouping on the tree. The presence of three extremely ancient introns which are conserved across different clans indicates that a few introns are still highly conserved after they have undergone extensive evolutionary changes of B. mori P450 duplication and divergence. Comparison of the P450s from B. mori to the P450s from Drosophila melanogaster shows that the expansion is not uniform across the gene families. Remarkably, two mitochondrial families, the B. mori CYP333 and D. melanogaster Cyp12, formed two orthologous groups in the phylogenetic tree. All CYP333s can be proposed to be related to xenobiotic metabolism in accordance with the D. melanogaster Cyp12s. The characterization and evolutionary analysis of P450s from B. mori in the current study provide useful information for understanding the characteristics and diversity of P450s from B. mori and the baseline for functional analyses of individual P450s in this model Lepidopteran insect.  相似文献   

12.
Extensive cDNA analysis demonstrated that all human and mouse protocadherin-beta genes are one-exon genes. The protein sequences of these genes are highly conserved, especially the three most membrane-proximal extracellular domains. Phylogenetic analysis suggested that this unique gene family evolved by duplication of one single protocadherin-beta gene to 15 copies. The final difference in the number of protocadherin-beta genes in man (#19) and mouse (#22) is probably caused by duplications later in evolution. The complex relationship between human and mouse genes and the lack of pseudogenes in the mouse protocadherin-beta gene cluster suggest a species-specific evolutionary pressure for maintenance of numerous protocadherin-beta genes.  相似文献   

13.
Sugino H 《FEBS letters》2007,581(3):355-360
The rat and mouse amylase gene families were characterized using sequence data from the UCSC genome assembly. We found that the rat genome contains one amylase-1 and two amylase-2 genes, lying close to one another on the same chromosome. Detailed analysis revealed at least six additional amylase pseudogenes in the rat genome in the region adjacent to the amylase-2 genes. In contrast, the mouse has one amylase-1 gene and five amylase-2 genes; the latter are tandemly and systematically arranged on the same chromosome and were generated by segmental duplication. Detailed analysis revealed that the mouse has two amylase pseudogenes, located 5' to the five amylase-2 segments. Thus, the amylase genes of mouse and rat tend to be amplified; the sequences of some of them are fixed while others have become pseudogenes during evolution. This is the second report of amylase genomic organization in mammals and the first in the rodents.  相似文献   

14.
Lepesheva GI  Nes WD  Zhou W  Hill GC  Waterman MR 《Biochemistry》2004,43(33):10789-10799
New isoforms of CYP51 (sterol 14alpha-demethylase), an essential enzyme in sterol biosynthesis and primary target of azole antimycotic drugs, are found in pathogenic protists, Trypanosoma brucei(TB), T. vivax, T. cruzi, and Leishmania major. The sequences share approximately 80% amino acid identity and are approximately 25% identical to sterol 14alpha-demethylases from other biological kingdoms. Differences of residues conserved throughout the rest of the CYP51 family that align with the BC-loop and helices F and G of CYP51 from Mycobacterium tuberculosis (MT)) imply possible alterations in the topology of the active site cavity of the protozoan enzymes. CYP51 and cytochrome P450 reductase (CPR) from TB were cloned, expressed in Escherichia coli, and purified. The P450 has normal spectral features (including absolute absorbance, carbon monoxide, and ligand binding spectra), is efficiently reduced by TB and rat CPR but demonstrates altered specificity in comparison with human CYP51 toward three tested azole inhibitors, and contrary to the human, Candida albicans, and MT isoforms, reveals profound substrate preference toward obtusifoliol (turnover 5.6 min(-1)). It weakly interacts with the other known CYP51 substrates; slow lanosterol conversion predominantly produces the 14alpha-carboxyaldehyde intermediate. Although obtusifoliol specificity is typical for plant isoforms of CYP51, the set of sterol biosynthetic enzymes in the protozoan genomes together with available information about sterol composition of kinetoplastid cells suggest that the substrate preference of TBCYP51 may reflect a novel sterol biosynthetic pathway in Trypanosomatidae.  相似文献   

15.
Sterol 14alpha-demethylase (CYP51) is the most widely distributed of all members of the cytochrome P450 gene superfamily and the only CYP family found in both prokaryotes and eukaryotes. It is well known as a drug target for microbial pathogenic infections. Studies of CYP51 gene regulation have been carried out primarily in animals because its regulation is similar to those of other genes involved in the cholesterol biosynthetic pathway. The function of CYP51 has been studied widely throughout biology including in animals, plants, yeast/fungi, protozoa, and bacteria. The structure has been determined by X-ray crystallography for the soluble prokaryotic form of CYP51 from Mycobacterium tuberculosis. Together these studies provide the most detailed understanding of any single cytochrome P450 and this minireview summarizes this information.  相似文献   

16.
Comparative analysis of processed pseudogenes in the mouse and human genomes   总被引:16,自引:0,他引:16  
Pseudogenes are important resources in evolutionary and comparative genomics because they provide molecular records of the ancient genes that existed in the genome millions of years ago. We have systematically identified approximately 5000 processed pseudogenes in the mouse genome, and estimated that approximately 60% are lineage specific, created after the mouse and human diverged. In both mouse and human genomes, similar types of genes give rise to many processed pseudogenes. These tend to be housekeeping genes, which are highly expressed in the germ line. Ribosomal-protein genes, in particular, form the largest sub-group. The processed pseudogenes in the mouse occur with a distinctly different chromosomal distribution than LINEs or SINEs - preferentially in GC-poor regions. Finally, the age distribution of mouse-processed pseudogenes closely resembles that of LINEs, in contrast to human, where the age distribution closely follows Alus (SINEs).  相似文献   

17.
A universal step in the biosynthesis of membrane sterols and steroid hormones is the oxidative removal of the 14alpha-methyl group from sterol precursors by sterol 14alpha-demethylase (CYP51). This enzyme is a primary target in treatment of fungal infections in organisms ranging from humans to plants, and development of more potent and selective CYP51 inhibitors is an important biological objective. Our continuing interest in structural aspects of substrate and inhibitor recognition in CYP51 led us to determine (to a resolution of 1.95A) the structure of CYP51 from Mycobacterium tuberculosis (CYP51(Mt)) co-crystallized with 4,4'-dihydroxybenzophenone (DHBP), a small organic molecule previously identified among top type I binding hits in a library screened against CYP51(Mt). The newly determined CYP51(Mt)-DHBP structure is the most complete to date and is an improved template for three-dimensional modeling of CYP51 enzymes from fungal and prokaryotic pathogens. The structure demonstrates the induction of conformational fit of the flexible protein regions and the interactions of conserved Phe-89 essential for both fungal drug resistance and catalytic function, which were obscure in the previously characterized CYP51(Mt)-estriol complex. DHBP represents a benzophenone scaffold binding in the CYP51 active site via a type I mechanism, suggesting (i) a possible new class of CYP51 inhibitors targeting flexible regions, (ii) an alternative catalytic function for bacterial CYP51 enzymes, and (iii) a potential for hydroxybenzophenones, widely distributed in the environment, to interfere with sterol biosynthesis. Finally, we show the inhibition of M. tuberculosis growth by DHBP in a mouse macrophage model.  相似文献   

18.
Antley-Bixler syndrome (ABS) represents a group of heterogeneous disorders characterized by skeletal, cardiac, and urogenital abnormalities that have frequently been associated with mutations in fibroblast growth factor receptor 2 or cytochrome P450 reductase genes. In some ABS patients, reduced activity of the cholesterogenic cytochrome P450 CYP51A1, an ortholog of the mouse CYP51, and accumulation of lanosterol and 24,25-dihydrolanosterol has been reported, but the role of CYP51A1 in the ABS etiology has remained obscure. To test whether Cyp51 could be involved in generating an ABS-like phenotype, a mouse knock-out model was developed that exhibited several prenatal ABS-like features leading to lethality at embryonic day 15. Cyp51(-/-) mice had no functional Cyp51 mRNA and no immunodetectable CYP51 protein. The two CYP51 enzyme substrates (lanosterol and 24,25-dihydrolanosterol) were markedly accumulated. Cholesterol precursors downstream of the CYP51 enzymatic step were not detected, indicating that the targeting in this study blocked de novo cholesterol synthesis. This was reflected in the up-regulation of 10 cholesterol synthesis genes, with the exception of 7-dehydrocholesterol reductase. Lethality was ascribed to heart failure due to hypoplasia, ventricle septum, and epicardial and vasculogenesis defects, suggesting that Cyp51 deficiency was involved in heart development and coronary vessel formation. As the most likely downstream molecular mechanisms, alterations were identified in the sonic hedgehog and retinoic acid signaling pathways. Cyp51 knock-out mice provide evidence that Cyp51 is essential for embryogenesis and present a potential animal model for studying ABS syndrome in humans.  相似文献   

19.
20.
The genes Phf5a and Phf5b-ps are the first two members of a novel murine multigene family that is highly conserved during evolution and belongs to the superfamily of PHD-finger genes. The Phf5 gene family contains an active locus on mouse chromosome 15, region E and several processed pseudogenes on different chromosomes. The active locus, Phf5a, is expressed ubiquitously in pre- and postnatal murine tissues and encodes a protein of 110 amino acids. The protein is localized in the nucleus in a non-homogenous pattern as the nucleolar subcompartment is almost free of Phf5a. The molecular and biological functions of Phf5a are unknown up-to-date, but the systematic deletion of its yeast homolog is lethal, pointing out that the protein is required for cell viability. Interpretation of our data and review of the literature suggest both basic and essential cellular functions of the Phf5a protein, possibly acting as a chromatin-associated protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号