首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of temperature on post-tetanic potentiation (PTP) has been examined in the muscles of small mammals but not in human skeletal muscle. We examined PTP in the ankle dorsiflexor muscles of 10 young men by evoking twitches before and after a 7-second tetanus at 100 Hz in a control (room air approximately 21 degrees C) condition and after immersion of the lower leg in warm (45 degrees C) and cold (10 degrees C) water baths for 30 min. Exposure to cold decreased tetanus and pre-tetanus twitch peak torque, but increased rise time, half-relaxation time, and muscle action potential (M-wave) amplitude; exposure to warm water had little effect. PTP was smallest in cold exposure 5 s post-tetanus, but persisted throughout the 12 min test period, whereas PTP had subsided by 6 min post-tetanus in control and warm exposures. M-wave amplitude initially decreased after exposure to warm water, recovered, then decreased again by 11 min post-tetanus. In contrast, exposure to cold had no initial effect but did increase the M-wave amplitude during the last half of the 12 min test period, similar to that seen in the control. The greatest immediate decrease in rise time and half-relaxation time was observed in the control; however, by 12 min post-tetanus warm exposure showed the greatest increase in rise time and half-relaxation time above pre-tetanus values. The decrease in the unpotentiated twitch torque with cooling in human dorsiflexors is typical for muscles with a predominance of type I (slow) fibres. The effect of cold on PTP is similar to that seen previously in mammalian muscles with a predominance of type II (fast) fibres, although the underlying mechanism of the cooling effect appears to differ.  相似文献   

2.
1. Changes in miniature end-plate potential (m.e.p.p.) frequency by repetitive nerve stimulation were examined in the rat soleus muscle. 2. The increase of m.e.p.p. frequency was induced by repetitive stimulation and persisted for several minutes after the tetanus. That is, post-tetanic potentiation (PTP) of neuromuscular transmission was first demonstrated here in the rat soleus muscle. 3. The time course of the decay of m.e.p.p. frequency after the tetanus showed a double exponential curve which consisted of a fast decaying component (augmentation) and a slow decaying component (potentiation). 4. The magnitude of PTP depended on the stimulation frequency and its duration. It increased with the increase of duration and was at its maximum at a frequency of 100 Hz. 5. No PTP was elicited by repetitive stimulation under conditions in which end-plate potential (e.p.p.) was completely suppressed, and, moreover, m.e.p.p. frequency tended to decrease after the tetanus.  相似文献   

3.
Post-tetanic potentiation of muscle contraction strength (PTP) occurs in cat soleus and gastrocnemius muscles. However, the mechanisms of potentiation are different in these two muscles. Soleus PTP is predominantly a neural event. The application of a high frequency stimulus to the soleus nerve regularly causes each subsequent response to a single stimulus to become repetitive. This post-tetanic repetitive activity (PTR) originates in the motor nerve terminal and is transmitted to the muscle. Consequently each potentiated soleus contraction is a brief tetanus. In gastrocnemius PTR occurs too infrequently to account for PTP. Furthermore, PTP occurs in curarized directly stimulated gastrocnemius muscles to the same extent as in the indirectly stimulated muscle. In this instance PTP is a muscle phenomenon.  相似文献   

4.
The effect of changes in muscle length on post-tetanic isometric twitch tension potentiation and myosin P-light chain phosphorylation-was studied at 23°C in the mouse extensor digitorum longus muscle. The length-tension relationship was determined for the same muscles after a 30 min period of quiescence and between 30 s and 3 min after a 1.5 s tetanus at L0. Isometric twitch tension is increased at all muscle lengths after the tetanus; however, the fractional increase in twitch tension rises from 0.2 at L0 to a maximum of 0.3 at 1.2 L0. The fractional increase in twitch tension measured at any fixed muscle length is constant between 30 s and 3 min post-tetanus. P-light chain phosphorylation remains constant between 30 s and 3 min post-tetanus followed by a slow decline to basal values. Under fixed length conditions, there is linear relationship between the relative magnitude of the twitch tension and the extent of P-light chain phosphor-ylation. Net myosin phosphorylalion measured after a 1.5 s tetanus at 1.23 L0 is 35% less than that obtained under the same conditions at L0. Thus, contraction-induced phosphorylation of P-light chain decreases with increased muscle length and post-tetanic potentiation at a constant level of P-light chain phosphorylation increases with increasing muscle length. These observations may be consistent with alterations in the sarcoplasmic Ca2+ ion transient as the muscle is lengthened.  相似文献   

5.
The action of vincamine on the physiology of the CAl region of the in vitro hippocampal slice preparation was investigated. At concentrations of 1, 10 and 100 μM, a five-minute perfusion with vincamine did not affect the synaptically-mediated activation of pyramidal neurons evoked by stimulation of the Schaffer-commissural fiber system. The effect of vincamine on the excitability of the pyramidal neurons was investigated by studying its effect on the antidromically-elicited field potential and the input-output relation of Schaffer-commissural fiber input. No effect on either of the two parameters was seen at a concentration of 100 μM of vincamine.Vincamine did, however, attenuate both the post-tetanic (PTP) and long-term potentiation (LTP) evoked by repetitive stimulation of the Schaffer-commissural fiber system. At a concentration of 100 μM of vincamine, PTP was significantly reduced and LTP was almost completely suppressed.  相似文献   

6.
Effects of External Calcium Deprivation on Single Muscle Fibers   总被引:6,自引:2,他引:4  
Deprivation of external calcium causes sudden potentiation of the twitch response of single muscle fibers. The potentiation was 64 ± 8%. Potentiation is simultaneous with membrane depolarization occurring after Ca++ removal. This depolarization amounted to 9 ± 2 mv. Ca++ removal also alters the action potential. 3 min after calcium withdrawal, action potential amplitude fell by 36 ± 3 mv; maximum rates of rise and fall of the spike decreased by 55 ± 5 and 63 ± 5% respectively. Changes in shape of the A. P. differ from those seen with other potentiators of the twitch response, such as Zn++. After short exposure to calcium-free media, potassium-induced contractures show potentiation of peak tension. The S-shaped curve relating potassium contracture tension to log [K]o shifts to the left after such treatment. Calcium deprivation also increased the rate of relaxation of the contractures. This effect depends on the duration of calcium deprivation, and is probably related to the effect of calcium lack on the membrane. The change in relaxation occurred immediately after calcium deprivation, and was reversed by sudden readmission of calcium. Relaxation of twitch and tetanus responses also were affected by Ca lack, but not as rapidly as potassium contractures. The results suggest that external calcium is not directly involved in the process responsible for tension development, supporting the view that this process is mediated by translocation of intracellular calcium. The relaxation process, however, appears to be rapidly affected by deprivation of external calcium.  相似文献   

7.
The effects of liquid fluorocarbons as bathing media were determined by use of in vitro neuromuscular preparations. Rat hemidiaphragms were bathed in either oxygenated fluorocarbon (FC) emulsion or standard oxygenated Krebs solution. Contractile force in response to simple supramaximal nerve stimuli as well as to high frequency stimulation was greater, while twitch:tetanus ratio was smaller in FC emulsion. With such medium, post-tetanic potentiation of contraction was also more consistently observed. Indirectly stimulated diaphragms survived longer in FC emulsion. After cessation of oxygenation, oxygen tension (ρO(2)) of the medium declined more rapidly with Krebs than with FC emulsion; ρO(2) directly correlated with force of contraction. Similarly, in the chick biventer cervicis preparation, FC emulsion enhanced nerve-stimulated force of contraction; returning the preparation to standard Krebs solution reversed this phenomenon. Dose-resonse curves of muscle contraction in response to acetycholine and KCl administration were shifted upward during FC emulsion superfusion. Frequency of miniature endplate potentials was lower in FC emulsion than that observed in Krebs solution, measured from the same cell of the rat diaphragm. Resting membrane potentials were also greater in muscle cells sampled from FC emulsion-bathed preparations. These data suggest that FC emulsion is superior to standard Krebs solution as a bathing medium for in vitro neuromuscular preparations by virtue of the high solubility of oxygen in it.  相似文献   

8.
In the sea slug Aplysia, buccal synapses of cerebral-buccal interneurons (CBIs) CBI-2 and CBI-12 exhibit short-term synaptic enhancement (STE), including frequency-dependant facilitation and augmentation/post-tetanic potentiation (AUG/PTP). The STE that results from driving CBI-2 or CBI-12 is associated with significantly decreased latency to burst onset in buccal premotor neurons and motor neurons, increased cycle frequency of ingestion buccal motor programs (iBMPs) and increased intraburst firing frequency of buccal neurons during iBMPs. Tests of paired-pulse facilitation during AUG/PTP suggest that the locus for this plasticity is presynaptic. The AUG/PTP is not elicited by heterosynaptic pathways, indicating that its origin is homosynaptic. At low CBI-2 and CBI-12 firing frequencies, STE is likely to contribute to iBMP initiation, while at higher firing frequencies, STE is correlated with increased cycle frequency of iBMPs. Thus, STE is an important component of the mechanisms whereby cerebral neurons regulate cyclic feeding programs and likely contributes to observed variations in behavioral responses, including feeding arousal. Electronic Publication  相似文献   

9.
Rat soleus muscles were denervated and stimulated in vivo for periods of up to 104 days. Stimuli used were trains of 1 ms pulses at 100 Hz delivered for periods of 1 s; trains were repeated every 10-100 s. In a majority of animals the tension of the muscles was maintained at about 10% of normal, equivalent to muscles denervated but unstimulated for 20 days. At the longest periods the stimulated muscles developed ten times more tension than ones that were denervated but not stimulated. In denervated and denervated-stimulated muscles twitch contraction and relaxation times were prolonged, compared with controls, for up to 3 weeks. Thereafter both sets showed a speeding of the isometric twitch that was greater in the stimulated muscles. At the longest periods the twitch was as short as that of a denervated fast muscle. Stimulation did not affect contralateral denervated muscles. Twitch: tetanus ratios remained high despite stimulation, and muscles showed little post-tetanic potentiation. Tension developed more rapidly in the tetani of the stimulated muscles, even allowing for larger final values. Maximum velocity of shortening was increased in many of the stimulated muscles, and there was a proportional flattening of the force-velocity curve, i.e. a/P0 increased. Maximum velocity and a/P0 increased reciprocally with twitch time to peak, so that those muscles that had twitches most changed by stimulation also had their isotonic properties modified to the greatest extent. Even at the longest period of stimulation, twitch time course and tetanic tension were not converted to those of normal fast muscle.  相似文献   

10.
Phosphorylation of the 18,500 dalton light chain of myosin and conversion of phosphorylase b to a were examined in relation to isometric tension development. Following a l sec tetanic contraction, light chain phosphate content increased from a pre-tetanic value of 0.10 to 0.75 mol phosphate/mol at 7 sec; phosphorylase a activity (ratio of activity ?5′AMP+5′AMP) increased from 0.03 to 0.42 at 4 sec and decreased to control values within 20 sec. Light chain phosphate content, however, declined much more slowly and correlated to post-tetanic potentiation of peak twitch tension. Our results suggest light chain phosphorylation is not obligatory for contraction but may play a role in post-tetanic potentiation.  相似文献   

11.
The P light chain of myosin is partially phosphorylated in resting slow and fast twitch skeletal muscles of the rabbit in vivo. The extent of P light-chain phosphorylation increases in both muscles on stimulation. Rabbit slow-twitch muscles contain two forms of the P light chain that migrate with the same electrophoretic mobilities as the two forms of P light chain in rabbit ventricular muscle. The rate of phosphorylation of the P light chain in slow-twitch muscle is slower than its rate of phosphorylation in fast-twitch muscles during tetanus. The rate of P light-chain dephosphorylation is slow after tetanic contraction of fast-twitch muscles in vivo. The time course of dephosphorylation does not correlate with the decline of post-tetanic potentiation of peak twitch tension in rabbit fast-twitch muscles. The frequency of stimulation is an important factor in determining the extent of P light-chain phosphorylation in fast- and slow-twitch muscles.  相似文献   

12.
In 40 rats immobilized with gallamine evoked field potentials were elicited in the dorsal hippocampus by stimulation of the septal nuclei. Latency of the septohippocampal evoked potential (SHEP) elicited by stimulation of the medial septal nuclei, the variations of latencies and amplitudes with increasing stimulus intensities as well as the occurrence of frequency potentiation and post-tetanic potentiation allow the conclusion that the SHEP registered in the stratum granulare of dentate gyrus is mainly monosynaptically elicited. Nevertheless some data discussed in the paper point to the existence of a more complicated and not exclusively monosynaptic activation of granular cells caused by septal stimulation.  相似文献   

13.
Post-tetanic potentiation was measured in motor units, isolated functionally by ventral root splitting, of soleus and extensor digitorum longus muscles of mouse. All motor units from the extensor digitorum longus had times to peak twitch tension less than 13 ms; there was a linear relationship between time to peak tension and post-tetanic potentiation, with the faster units exhibiting greater potentiation. When soleus motor units were similarly analyzed, it appeared that there may be two distinct populations of units. Those units with times to peak tension less than 13 ms were virtually indistinguishable from those of extensor digitorum longus. On the other hand, the slope of the relationship between post-tetanic potentiation and time to peak tension was significantly lower for soleus units with times to peak tension of 13 ms or more. Approximately three-quarters of the soleus units were of the latter slow type, whereas only one-half of the muscle fibres could be classified as type I by means of immunohistochemistry, suggesting that the myosin heavy chain may not be the major determinant of post-tetanic potentiation. Single, chemically skinned fibres of soleus were analyzed for myosin heavy and light chain components by polyacrylamide gel electrophoresis. All fibres with type I heavy chain contained only the two slow light chains. On the other hand, almost all of the fibres with type IIA myosin heavy chain contained both fast and slow light chains. It is suggested that the discrepancy between the proportions of physiologically "fast" motor units and histochemical type IIA fibres may be the consequence of variable amounts of slow light chain associated with the fast IIA myosin heavy chain.  相似文献   

14.
T Hattori  H Maehashi 《Life sciences》1988,42(25):2639-2644
For the purpose of elucidating the mechanism of action of stannous ion (Sn2+), we investigated effects of stannous chloride (SnCl2) on the twitch and on the electrical phenomena in the muscle fiber. Sciatic nerve-sartorius muscle preparations from the bullfrog were used as the material. Effect of SnCl2 was examined on the twitch partially inhibited by pretreatment with d-tubocurarine. SnCl2 (1-100 microM) antagonized d-tubocurarine and enhanced the twitch dose-dependently. Tartaric acid, which is the solvent used for SnCl2 solution, had no augmentative effect on the twitch, even at a concentration as high as 250 microM. SnCl2 (1-50 microM) increased the amplitude of the endplate potential; that is, it exerted an anti-curare action. The resting potential and the membrane resistance of the muscle fiber were not altered by 30 microM SnCl2. These findings lead to the conclusion that Sn2+ enhances the twitch by increasing the endplate potential of the muscle fibers.  相似文献   

15.
The objective of this study was to determine whether an increased duration of the action potential contributes to the K+-induced twitch potentiation at 37 degrees C. Twitch contractions were elicited by field stimulation, and action potentials were measured with conventional microelectrodes. For mouse extensor digitorum longus (EDL) muscle, twitch force was greater at 7-13 mM K+ than at 4.7 mM (control). For soleus muscle, twitch force potentiation was observed between 7 and 11 mM K+. Time to peak and half-relaxation time were not affected by the increase in extracellular K+ concentration in EDL muscle, whereas both parameters became significantly longer in soleus muscle. Decrease in overshoot and prolongation of the action potential duration observed at 9 and 11 mM K+ were mimicked when muscles were respectively exposed to 25 and 50 nM tetrodotoxin (TTX; used to partially block Na+ channels). Despite similar action potentials, twitch force was not potentiated by TTX. It is therefore suggested that the K+-induced potentiation of the twitch in EDL muscle is not due to a prolongation of the action potential and contraction time, whereas a longer contraction, especially the relaxation phase, may contribute to the potentiation in soleus muscle.  相似文献   

16.
The slow-twitch soleus muscle (SOL) exhibits decreased twitch tension (cold depression) in response to a decreased temperature, whereas the fast-twitch extensor digitorum longus (EDL) muscle shows enhanced twitch tension (cold potentiation). On the other hand, the slow-twitch SOL muscle is more sensitive to twitch potentiation and contractures evoked by caffeine than the fast-twitch EDL muscle. In order to reveal the effects of these counteracting conditions (temperature and caffeine), we have studied the combined effects of temperature changes on the potentiation effects of caffeine in modulating muscle contractions and contractures in both muscles. Isolated muscles, bathed in a Tyrode solution containing 0.1-60 mM caffeine, were stimulated directly and isometric single twitches, fused tetanic contractions and contractures were recorded at 35 degrees C and 20 degrees C. Our results showed that twitches and tetani of both SOL and EDL were potentiated and prolonged in the presence of 0.3-10 mM caffeine. Despite the cold depression, the extent of potentiation of the twitch tension by caffeine in the SOL muscle at 20 degrees C was by 10-15 % higher than that at 35 degrees C, while no significant difference was noted in the EDL muscle between both temperatures. Since the increase of twitch tension was significantly higher than potentiation of tetani in both muscles, the twitch-tetanus ratio was enhanced. Higher concentrations of caffeine induced contractures in both muscles; the contracture threshold was, however, lower in the SOL than in the EDL muscle at both temperatures. Furthermore, the maximal tension was achieved at lower caffeine concentrations in the SOL muscle at both 35 degrees C and 20 degrees C compared to the EDL muscle. These effects of caffeine were rapidly and completely reversed in both muscles when the test solution was replaced by the Tyrode solution. The results have indicated that the potentiation effect of caffeine is both time- and temperature-dependent process that is more pronounced in the slow-twitch SOL than in the fast-twitch EDL muscles.  相似文献   

17.
The purpose of this study was to determine the interaction of three factors that modify twitch contraction amplitude in the rat gastrocnemius muscle in situ: posttetanic potentiation, fatigue, and caffeine. Posttetanic (200 Hz for 1 s) twitch responses were observed before and after 15 Hz stimulation for 6 min (group FS), injection of caffeine (75 mg/kg dissolved in saline, group NC), a combination of both repetitive stimulation and caffeine injection (group FC), or no treatment (group NS). Developed tension increased significantly with posttetanic potentiation and caffeine injection and these potentiating factors were additive (group NC). Repetitive stimulation attenuated the twitch response and the fatigued muscle was still responsive to the potentiating factors. Posttetanic potentiation was accomplished primarily by a significant increase in the peak rate of force development whereas caffeine potentiation and fatigue were effected with a proportional change in contraction time. It seems likely that the mechanism of posttetanic potentiation is not the same as the mechanism of caffeine-induced potentiation. Caffeine-induced potentiation is known to be related to increased release of calcium. Because changes in contraction time with fatigue were opposite to those associated with caffeine potentiation, it is proposed that the attenuated twitch response in fatigue results from reduced release of calcium.  相似文献   

18.
An electrophysiological and morphometric study of effects of cholinergic substances on orthodromic potential (OP), induction of long-term post-tetanic potentiation (PTP), and potentiated OP in olfactory bulb (OB) of intact pike was carried out. The final effect of endogenous ACh on relay neurons of the OB was found to be inhibitory. Activation of M1-like cholinoreceptors (ChR) was shown to play the key role in induction of long-term PTP. In response to tetanization of olfactory nerve (ON) after pirenzepine-induced inhibition of M1-like ChR, no potentiation appears and the length of cross-section of axo-dendritic synapse active zone (AZ) does not change in the OB glomerular neuropil. Tetanization of ON after inhibition of M2-like ChR by gallamine leads to the appearance of short-term PTP transformed later into long-term PTP accompanied by a significant decrease of length of cross-sections of axo-dendritic synapse AZ. Effects of both increase of endogenous ACh concentration by eserine (0.1 μM) and blockade of M2-like ChR by gallamine (10 μM) on potentiated OP were manifested as a decrease of its amplitude to control level. The obtained data allow considering that endogenous ACh in the pike OB has a pronounced effect on induction, development, and stabilization of the long-term PTP. This holds equally true to both functional and morphological manifestations of plasticity of axo-dendritic synapses of the glomerular neuropil.  相似文献   

19.
Lead is a common environmental toxin that affects neuromuscular junction and potentially might cause muscle weakness. Antioxidants like ascorbic acid may protect against lead induced myopathy. The present study measured isometric twitch tensions (evoked either directly by muscle stimulation or indirectly by nerve stimulation) to study effects of ascorbic acid on lead induced alterations at murine dorsiflexor skeletal muscle. Resting membrane potentials (RMPs), endplate potentials (EPPs) and miniature endplate potentials (MEPPs) were also recorded. Forty animals were divided into four groups of n = 10 each. (10 control, 10 lead alone, 10 ascorbic acid alone, 10 lead treated plus ascorbic acid). Lead (1 mg/kg) i.p, was administered daily for 2 weeks before the recording day and ascorbic acid (200 mg/kg, i.p) was given daily for 3 weeks prior to the experiment day. Lead treatment reduced twitch tension significantly (from 4.3 +/- 0.5 g to 2.7 +/- 0.2 g) and delayed half time of decay compared to the control. Similarly MEPPs frequencies were reduced following lead treatment. Application of ascorbic acid prevented twitch tension reduction in lead treated mice (3.3 +/- 0.3 g) and reversed lead induced delay in half time of decay. The negative actions of lead treatment on MEPPs frequencies were also modified with ascorbic acid. It appears that ascorbic acid exerts a protective role against lead induced peripheral nerve and muscle dysfunction. This effect of ascorbic acid on lead induced neuromyopathy is probably mediated via a free radical scavenging mechanism or modification of Ca(2+) homeostasis.  相似文献   

20.
The effects of various steroid hormones on the long-term potentiation (LTP) of the rat hippocampus were evaluated. LTP was elicited in the dentate gyrus of adrenalectomized animals with priming tetanic stimulation (200 Hz-0.03 cps) of its main afferent, the perforant pathway. Single pulse EPSP (excitatory post-synaptic potential) slope, and PS (population spike) amplitude values were compared before and after the i.v. injection of the hormones and subsequently after the priming stimulation every 15 min up to 1 h. 18-OH-deoxycorticosterone (18-OH-DOC) produced a significant decrease of the EPSP LTP and arrested the PS enhancement in comparison with vehicle at every time post-tetanic stimulation. Its 21-acetate derivative produced a moderate decrease of the EPSP and had no effect on the PS LTP in comparison with vehicle. Deoxycorticosterone (DOC) exhibited similar effects on the EPSP although less marked than with 18-OH-DOC while the PS only decreased in the first 30 min post-train. Corticosterone decreased both EPSP and PS for the first 15 and 30 min after priming stimulation, respectively, matching values with those of vehicle afterwards. Its 21-acetate produced an initial decrease of the EPSP and had no effect on the PS LTP. Allo-tetrahydro-DOC produced little, if any, initial enhancement of the PS LTP in comparison with vehicle. These results show that the adrenal steroids tested can modulate hippocampal LTP, a plastic phenomenon in the mammalian CNS which is known to be related to memory and learning processes. Moreover, adrenal steroids can independently modify the PS or EPSP components of the LTP, suggesting different loci of action at the neuronal level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号