首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Prometaphase in two large species of diatoms is examined, using the following techniques: (a) time-lapse cinematography of chromosome movements in vivo; (b) electron microscopy of corresponding stages: (c) reconstruction of the microtubules (MTs) in the kinetochore fiber of chromosomes attached to the spindle. In vivo, the chromosomes independently commence oscillations back and forth to one pole. The kinetochore is usually at the leading edge of such chromosome movements; a variable time later both kinetochores undergo such oscillations but toward opposite poles and soon stretch poleward to establish stable bipolar attachment. Electron microscopy of early prometaphase shows that the kinetochores usually laterally associate with MTs that have one end attached to the spindle pole. At late prometaphase, most chromosomes are fully attached to the spindle, but the kinetochores on unattached chromosomes are bare of MTs. Reconstruction of the kinetochore fiber demonstrates that most of its MTs (96%) extend past the kinetochore and are thus apparently not nucleated there. At least one MT terminates at each kinetochore analyzed. Our interpretation is that the conventional view of kinetochore function cannot apply to diatoms. The kinetochore fiber in diatoms appears to be primarily composed of MTs from the poles, in contrast to the conventional view that many MTs of the kinetochore fiber are nucleated by the kinetochore. Similarly, chromosomes appear to initially orient their kinetochores to opposite poles by moving along MTs attached to the poles, instead of orientation effected by kinetochore MTs laterally associating with other MTs in the spindle. The function of the kinetochore in diatoms and other cell types is discussed.  相似文献   

2.
The polarity of kinetochore microtubules (MTs) has been studied in lysed PtK1 cells by polymerizing hook-shaped sheets of neurotubulin onto walls of preexisting cellular MTs in a fashion that reveals their structural polarity. Three different approaches are presented here: (a) we have screened the polarity of all MTs in a given spindle cross section taken from the region between the kinetochores and the poles, (b) we have determined the polarity of kinetochore MTs are more stable to cold-treated spindles; this approach takes advantage of the fact that kinetochore MTs are more stable to cold treatment than other spindle MTs; and (c) we have tracked bundles of kinetochore MTs from the vicinity of the pole to the outer layer of the kinetochore in cold- treated cells. In an anaphase cell, 90-95% of all MTs in an area between the kinetochores and the poles are of uniform polarity with their plus ends (i.e., fast growing ends) distal to the pole. In cold- treated cells, all bundles of kinetochore MTs show the same polarity; the plus ends of the MTs are located at the kinetochores. We therefore conclude that kinetochore MTs in both metaphase and anaphase cells have the same polarity as the aster MTs in each half-spindle. These results can be interpreted in two ways: (a) virtually all MTs are initiated at the spindle poles and some of the are "captured" by matured kinetochores using an as yet unknown mechanism to bind the plus ends of existing MTs; (b) the growth of kinetochore MTs is initiated at the kinetochore in such a way that the fast growing MT end is proximal to the kinetochore. Our data are inconsistent with previous kinetochore MT polarity determinations based on growth rate measurements in vitro. These studies used drug-treated cells from which chromosomes were isolated to serve as seeds for initiation of neurotubule polymerization. It is possible that under these conditions kinetochores will initiate MTs with a polarity opposite to the one described here.  相似文献   

3.
Summary We have found that a brief treatment of either PtK2 cells or stamen hair cells ofTradescantia virginiana during metaphase with okadaic acid, a potent protein phosphatase inhibitor, results in asynchronous entry into anaphase. After this treatment, the interval for the separation of sister chromatids can be expanded from a few seconds to approximately 5 min. We have performed a series of immunolocalizations of cells with anti-tubulin antibodies and CREST serum, asking whether okadaic acid induces asynchronous entry into anaphase through changes in the organization of the spindle microtubules or through a loss in the attachment of spindle microtubules to the kinetochores. Our experiments clearly indicate that asynchronous entry into anaphase after phosphatase inhibitor treatment is not the result of either altered spindle microtubule organization or the long-term loss of microtubule attachment to kinetochores. The kinetochore fiber bundles for all of the separating chromosomes are normally of uniform length throughout anaphase, but after asynchronous entry into anaphase, different groups of kinetochore fiber bundles have distinctly different lengths. The reason for this difference in length is that once split apart, the daughter chromosomes begin their movement toward the spindle poles, with normal shortening of the kinetochore fiber bundle microtubules. Thus, okadaic acid treatment during metaphase does not affect anaphase chromosome movement once it has begun. Our results suggest that one or more protein phosphatases appear to play an important role during metaphase in the regulatory cascade that culminates in synchronous sister chromatid separation.  相似文献   

4.
Summary InSaprolegnia, kinetochore microtubules persist throughout the mitotic nuclear cycle but, whilst present at leptotene, they disappear coincidently with the formation of synaptonemal complexes at pachytene and reform at metaphase I. In some other fungi chromosomal segregation is random in meiosis and non-random in mitosis. The attachment of chromosomes to persistent kinetochore microtubules in mitosis, but not meiosis, inSaprolegnia provides a plausible explanation for such behaviour. At metaphase I each bivalent is connected to the spindle by 2 laterally paired kinetochore microtubules whereas at metaphase II (as in mitosis) each univalent bears only one kinetochore microtubule, thus showing that all kinetochores are fully active at all stages of meiosis.  相似文献   

5.
T. M. Butt  R. A. Humber 《Protoplasma》1989,151(2-3):115-123
Summary Mitosis in a mite-pathogenic species ofNeozygites (Zygomycetes: Entomophthorales) was investigated by indirect immunofluorescence microscopy using an antibody against -tubulin for visualization of microtubules (MTs). DAPI and rhodamine-conjugated phalloidin were used to stain chromatin and actin, respectively. Salient features of mitosis inNeozygites sp. are (1) a strong tendency for mitotic synchrony in any given cell, (2) conical protrusions at the poles of metaphase and anaphase nuclei revealed by actin staining, (3) absence of astral and other cytoplasmic MTs, (4) a spindle that occupies most of the nuclear volume at metaphase, (5) a spindle that remains symmetrical throughout most of mitosis, (6) kinetochore MTs that shorten during anaphase A, (7) a central spindle that elongates during anaphase B, pushing the daughter nuclei into the cell apices, and (8) interpolar MTs that continue to elongate even after separation of the daughter nuclei. Cortical cytoplasmic MTs are present in a few interphasic and post-cytokinetic cells. The data presented show thatNeozygites possesses features unique to this genus and support the erection of theNeozygitaceae as a separate family in theEntomophthorales.Abbreviations DAPI 4,6-diamidino-2-phenylindole - MT microtubule - SPB spindle pole body  相似文献   

6.
Summary Immunofluorescence studies on microtubule arrangement during the transition from prophase to metaphase in onion root cells are presented. The prophase spindle observed at late preprophase and prophase is composed of microtubules converged at two poles near the nuclear envelope; thin bundles of microtubules are tracable along the nuclear envelope. Prior to nuclear envelope breakdown diffuse tubulin staining occurs within the prophase nuclei. During nuclear envelope breakdown the prophase spindle is no longer identifiable and prominent tubulin staining occurs among the prometaphase chromosomes. Patches of condensed tubulin staining are observed in the vicinity of kinetochores. At advanced prometaphase kinetochore bundles of microtubules are present in some kinetochore regions. At metaphase the mitotic spindle is mainly composed of kinetochore bundles of microtubules; pole-to-pole bundles are scarce. Our observations suggest that the prophase spindle is decomposed at the time of nuclear envelope breakdown and that the metaphase spindle is assembled at prometaphase, with the help of kinetochore nucleating action.  相似文献   

7.
Kinetochores are large macromolecular assemblies that link chromosomes to spindle microtubules (MTs) during mitosis. Here we review recent advances in the study of core MT-binding kinetochore complexes using electron microcopy methods in vitro and nanometer-accuracy fluorescence microscopy in vivo. We synthesize these findings in novel three-dimensional models of both the budding yeast and vertebrate kinetochore in different stages of mitosis. There is a growing consensus that kinetochores are highly dynamic, supra-molecular machines that undergo dramatic structural rearrangements in response to MT capture and spindle forces during mitosis.  相似文献   

8.
Rieder CL 《Chromosoma》2005,114(5):310-318
The attachment to and movement of a chromosome on the mitotic spindle are mediated by the formation of a bundle of microtubules (MTs) that tethers the kinetochore on the chromosome to a spindle pole. The origin of these “kinetochore fibers” (K fibers) has been investigated for over 125 years. As noted in 1944 by Schrader [Mitosis, Columbia University Press, New York, 110 pp.], there are three possible ways to form a K fiber: (a) it grows from the pole until it contacts the kinetochore, (b) it grows directly from the kinetochore, or (c) it forms as a result of an interaction between the pole and the chromosome. Since Schrader's time, it has been firmly established that K fibers in centrosome-containing animal somatic cells form as kinetochores capture MTs growing from the spindle pole (route a). It is now similarly clear that in cells lacking centrosomes, including higher plants and many animal oocytes, K fibers “self-assemble” from MTs generated by the chromosomes (route b). Can animal somatic cells form K fibers in the absence of centrosomes by the “self-assembly” pathway? In 2000, the answer to this question was shown to be a resounding “yes.” With this result, the next question became whether the presence of a centrosome normally suppresses K fiber self-assembly or if this route works concurrently with centrosome-mediated K-fiber formation. This question, too, has recently been answered: observations on untreated live animal cells expressing green fluorescent protein-tagged tubulin clearly show that kinetochores can nucleate the formation of their associated MTs in a unique manner in the presence of functional centrosomes. The concurrent operation of these two “dueling” routes for forming K fibers in animal cells helps explain why the attachment of kinetochores and the maturation of K fibers occur as quickly as they do on all chromosomes within a cell.  相似文献   

9.
Localization of actin filaments on mitotic apparatus in tobacco BY-2 cells   总被引:2,自引:0,他引:2  
Yasuda H  Kanda K  Koiwa H  Suenaga K  Kidou S  Ejiri S 《Planta》2005,222(1):118-129
Actin filaments are among the major components of the cytoskeleton, and participate in various cellular dynamic processes. However, conflicting results had been obtained on the localization of actin filaments on the mitotic apparatus and their participation in the process of chromosome segregation. We demonstrated by using rhodamine-phalloidin staining, the localization of actin filaments on the mitotic spindles of tobacco BY-2 cells when the cells were treated with cytochalasin D. At prophase, several clear spots were observed at or near the kinetochores of the chromosomes. At anaphase, the actin filaments that appeared to be pulling chromosomes toward the division poles were demonstrated. However, as there was a slight possibility that these results might have been the artifacts of cytochalasin D treatment or the phalloidin staining, we analyzed the localization of actin filaments at the mitotic apparatus immunologically. We cloned a novel BY-2 -type actin cDNA and prepared a BY-2 actin antibody. The fluorescence of the anti-BY-2 actin antibody was clearly observed at the mitotic apparatus in both non-treated and cytochalasin D-treated BY-2 cells during mitosis. The facts that similar results were obtained in both actin staining with rhodamine-phalloidin and immunostaining with actin antibody strongly indicate the participation of actin in the organization of the spindle body or in the process of chromosome segregation. Furthermore, both filamentous actin and spindle bodies disappeared in the cells treated with propyzamide, which depolymerizes microtubules, supporting the notion that actin filaments are associated with microtubules organizing the spindle body.Hiroshi Yasuda and Katsuhiro Kanda contributed equally.  相似文献   

10.
The length of the mitotic spindle varies among different cell types. A simple model for spindle length regulation requires balancing two forces: pulling, due to micro­tubules that attach to the chromosomes at their kinetochores, and pushing, due to interactions between microtubules that emanate from opposite spindle poles. In the budding yeast Saccharomyces cerevisiae, we show that spindle length scales with kinetochore number, increasing when kinetochores are inactivated and shortening on addition of synthetic or natural kinetochores, showing that kinetochore–microtubule interactions generate an inward force to balance forces that elongate the spindle. Electron microscopy shows that manipulating kinetochore number alters the number of spindle microtubules: adding extra kinetochores increases the number of spindle microtubules, suggesting kinetochore-based regulation of microtubule number.  相似文献   

11.
Organization of kinetochore fiber microtubules (MTs) throughout mitosis in the endosperm of Haemanthus katherinae Bak. has been analysed using serial section reconstruction from electron micrographs. Accurate and complete studies have required careful analysis of individual MTs in precisely oriented serial sections through many (45) preselected cells. Kinetochore MTs (kMTs) and non-kinetochore MTs (nkMTs) intermingle within the fiber throughout division, undergoing characteristic, time- dependent, organizational changes. The number of kMTs increases progressively throughout the kinetochore during prometaphase-metaphase. Prometaphase chromosomes which were probably moving toward the pole at the time of fixation have unequally developed kinetochores associated with many nkMTs. The greatest numbers of kMTs (74-109/kinetochore), kinetochore cross-sectional area, and kMT central density all occur at metaphase. Throughout anaphase and telophase there is a decrease in the number of kMTs and, in the kinetochore cross-sectional area, an increased obliquity of kMTs and increased numbers of short MTs near the kinetochore. Delayed kinetochores possess more kMTs than do kinetochores near the poles, but fewer kMTs than chromosomes which have moved equivalent distances in other cells. The frequency of C-shaped proximal MT terminations within kinetochores is highest at early prometaphase and midtelophase, falling to zero at midanaphase. Therefore, in Haemanthus, MTs are probably lost from the periphery of the kinetochore during anaphase in a manner which is related to both time and position of the chromosome along the spindle axis. The complex, time-dependent organization of MTs in the kinetochore region strongly suggests that chromosome movement is accompanied by continual MT rearrangement and/or assembly/disassembly.  相似文献   

12.
Mitotic spindles of Schizosaccharomyces pombe have been studied by EM, using serial cross sections to reconstruct 12 spindles from cells that were ultrarapidly frozen and fixed by freeze substitution. The resulting distributions of microtubules (MTs) have been analyzed by computer. Short spindles contain two kinds of MTs: continuous ones that run from pole to pole and MTs that originate at one pole and end in the body of the spindle. Among the latter there are three pairs of MT bundles that end on fibrous, darkly staining structures that we interpret as kinetochores. The number of MTs ending at each putative kinetochore ranges from two to four; all kinetochore-associated MTs disappear as the spindle elongates from 3-6 microns. At this and greater spindle lengths, there are no continuous MTs, only polar MTs that interdigitate at the spindle midzone, but the spindle continues to elongate. An analysis of the density of neighboring MTs at the midzone of long spindles shows that their most common spacing is approximately 40 nm, center to center, and that there is a preferred angular separation of 90 degrees. Only hints of such square-packing are found at the midzone of short spindles, and near the poles there is no apparent order at any mitotic stage. Our data suggest that the kinetochore MTs (KMTs) do not interact directly with nonkinetochore MTs, but that interdigitating MTs from the two spindle poles do interact to form a mechanically stable bundle that connects the poles. As the spindle elongates, the number of MTs decreases while the mean length of the MTs that remain increases. We conclude that the chromosomes of S. pombe become attached to the spindle by kinetochore MTs, that these MTs disappear as the chromosomes segregate, that increased separation of daughter nuclei is accompanied by a sliding apart of anti-parallel MTs, and that the mitotic processes of S. pombe are much like those in other eukaryotic cells.  相似文献   

13.
Kinetochores in rat kangaroo (PtK2) cells in prophase of mitosis are finely fibrillar, globular bodies, 5000–8000 Å in diameter. Sister kinetochores are attached to opposite lateral faces in the primary constriction of chromosomes. No microtubules (MTs) occur in prophase nuclei. During prometaphase the ball-shaped kinetochores differentiate into trilaminar plaques. An outer kinetochore layer, less electron dense than chromatin, appears first in the fibrillar matrix. The inner layer, continuous with, but more electron dense than the chromosome, is formed later. Kinetochore-spindle MT interaction is evident at the very beginning of prometaphase. As a result, kinetochore shape is very variable, but three types of kinetochores can be distinguished by fine structure analysis. A comparison of kinetochore structure and chromosome position in the mitotic spindle yielded clues regarding initial orientation and congression. At the time the nuclear envelope (NE) breaks down chromosomes near asters orient first. Chromosomes approximately equidistant from the two spindle poles amphi-orient immediately. Chromosomes closer to one pole probably achieve mono-orientation first, then amphi-orient and congress. In normal metaphase all the chromosomes lie at or near the spindle equator and kinetochores are structurally uniform. Paraxial and para-equatorial sections revealed that they are trilaminar, roughly circular plaques of 4000–6000 Å diameter. Inner and outer layers are 400 Å, and the electron translucent middle layer which separates them is 270 Å thick. From 16 to 40 MTs are anchored in the outer layer. In cold-treated cells the kinetochores are trilaminar, but in colcemid-treated cells the inner layer is lacking. Both kinetochores and their MTs are disorganized beginning in late anaphase. In telophase the inner layer persists for some time as an electron dense patch apposed to the NE, while the outer layer disintegrates.  相似文献   

14.
The interaction between centrosomes and kinetochores was studied in multinucleate cells induced by Colcemid treatment or by random cell fusion. Except for prematurely condensed chromosomes (PCC) of the G2-phase, PCCs do not develop their own spindle area. Perhaps the maturation promoting factor (MPF) fails to activate these centrosomes. In such PCCs, the kinetochore-centrosome interaction was found to be non-specific: sometimes only a few chromosomes of a group could establish connections with centrosomes, sometimes chromosomes from the same PCC group developed microtubule (MT) attachment with different centrosomes (not the pair), and sometimes kinetochores of PCC groups failed to interact with MTs. These findings explain the abnormal mitotic behaviour of PCCs as seen in the light microscope. These PCCs develop micronuclei or normal nuclei by nuclear re-formation in telophase. All the different PCC groups revealed kinetochores with kinetochore plates. It was shown that transformation of presumptive kinetochores to a trilaminar kinetochore does not depend on nuclear envelope breakdown or on the degree of chromosome condensation. This may be induced by the MPF which may initiate different events like chromosome condensation, nuclear envelope breakdown and kinetochore transformation by secondary factors. Other observations like establishment of connections by different chromosome groups to a common centrosome, kinetochore attachment of PCCs to different centrosomes, interaction of one kinetochore with two centrosomes, kinetochores being stretched and bent to receive microtubules and finally the failure of some kinetochores to develop MT attachment, all strongly suggest that the kinetochores serve as the point of termination rather than the nucleation sites of kinetochore MTs.  相似文献   

15.
Kinetochores can be thought of as having three major functions in chromosome segregation: (a) moving plateward at prometaphase; (b) participating in spindle checkpoint control; and (c) moving poleward at anaphase. Normally, kinetochores cooperate with opposed sister kinetochores (mitosis, meiosis II) or paired homologous kinetochores (meiosis I) to carry out these functions. Here we exploit three- and four-dimensional light microscopy and the maize meiotic mutant absence of first division 1 (afd1) to investigate the properties of single kinetochores. As an outcome of premature sister kinetochore separation in afd1 meiocytes, all of the chromosomes at meiosis II carry single kinetochores. Approximately 60% of the single kinetochore chromosomes align at the spindle equator during prometaphase/metaphase II, whereas acentric fragments, also generated by afd1, fail to align at the equator. Immunocytochemistry suggests that the plateward movement occurs in part because the single kinetochores separate into half kinetochore units. Single kinetochores stain positive for spindle checkpoint proteins during prometaphase, but lose their staining as tension is applied to the half kinetochores. At anaphase, approximately 6% of the kinetochores develop stable interactions with microtubules (kinetochore fibers) from both spindle poles. Our data indicate that maize meiotic kinetochores are plastic, redundant structures that can carry out each of their major functions in duplicate.  相似文献   

16.
Summary The three-dimensional ultrastructural organization of the mitotic apparatus ofDimastigella mimosa was studied by computer-aided, serial-section reconstruction. The nuclear envelope remains intact during nuclear division. During mitosis, chromosomes do not condense, whereas intranuclear microtubules are found in close association with six pairs of kinetochores. No discrete microtubule-organizing centers, except kinetochore pairs, could be found within the nucleus. The intranuclear microtubules form six separate bundles oriented at different angles to each other. Each bundle contains up to 8 tightly packed microtubules which push the daughter kinetochores apart. At late anaphase only, midzones of these bundles align along an extended interzonal spindle within the narrow isthmus between segregating progeny nuclei. The nuclear division inD. mimosa can be described as closed intranuclear mitosis with acentric and separate microtubular bundles and weakly condensed chromosomes.Abbreviation MTOC microtubule-organizing center  相似文献   

17.
The relationship between chromosome movement and mirotubules was explored by combining micromanipulation of living grasshopper spermatocytes with electron microscopy. We detached chromosomes from the spindle and placed them far out in the cytoplasm. Soon, the chromosomes began to move back toward the spindle and the cells were fixed at a chosen moment. The microtubules seen in three-dimensional reconstructions were correlated with the chromosome movement just prior to fixation. Before movement began, detached chromosomes had no kinetochore microtubules or a single one at most. Renewed movement was always accompanied by the reappearance of kinetochore microtubules; a single kinetochore microtubule appeared to suffice. Chromosome movements and kinetochore microtubule arrangements were unusual after reattachment, but their relationship was not: poleward forces, parallel to the kinetochore microtubule axis (as in normal anaphase), would explain the movement, however odd. The initial arrangement of kinetochore microtubules would have led to aberrant chromosome distribution if it persisted, but instead, reorientation to the appropriate arrangement always followed. Observations on living cells permitted us to place in sequence the kinetochore microtubule arrangements seen in fixed cells, revealing the microtubule transformations during reorientation. From the sequence of events we conclude that chromosome movement can cause reorientation to begin and that in the changes which follow, an unstable attachment of kinetochore microtubules to the spindle plays a major role.  相似文献   

18.
We studied chromosome movement after kinetochore microtubules were severed. Severing a kinetochore fibre in living crane-fly spermatocytes with an ultraviolet microbeam creates a kinetochore stub, a birefringent remnant of the spindle fibre connected to the kinetochore and extending only to the edge of the irradiated region. After the irradiation, anaphase chromosomes either move poleward led by their stubs or temporarily stop moving. We examined actin and/or microtubules in irradiated cells by means of confocal fluorescence microscopy or serial-section reconstructions from electron microscopy. For each cell thus examined, chromosome movement had been recorded continuously until the moment of fixation. Kinetochore microtubules were completely severed by the ultraviolet microbeam in cells in which chromosomes continued to move poleward after the irradiation: none were seen in the irradiated regions. Similarly, actin filaments normally present in kinetochore fibres were severed by the ultraviolet microbeam irradiations: the irradiated regions contained no actin filaments and only local spots of non-filamentous actin. There was no difference in irradiated regions when the associated chromosomes continued to move versus when they stopped moving. Thus, one cannot explain motion with severed kinetochore microtubules in terms of either microtubules or actin-filaments bridging the irradiated region. The data seem to negate current models for anaphase chromosome movement and support a model in which poleward chromosome movement results from forces generated within the spindle matrix that propel kinetochore fibres or kinetochore stubs poleward.  相似文献   

19.
GJ Kops  JV Shah 《Chromosoma》2012,121(5):509-525
With the goal of creating two genetically identical daughter cells, cell division culminates in the equal segregation of sister chromatids. This phase of cell division is monitored by a cell cycle checkpoint known as the spindle assembly checkpoint (SAC). The SAC actively prevents chromosome segregation while one or more chromosomes, or more accurately kinetochores, remain unattached to the mitotic spindle. Such unattached kinetochores recruit SAC proteins to assemble a diffusible anaphase inhibitor. Kinetochores stop production of this inhibitor once microtubules (MTs) of the mitotic spindle are bound, but productive attachment of all kinetochores is required to satisfy the SAC, initiate anaphase, and exit from mitosis. Although mechanisms of kinetochore signaling and SAC inhibitor assembly and function have received the bulk of attention in the past two decades, recent work has focused on the principles of SAC silencing. Here, we review the mechanisms that silence SAC signaling at the kinetochore, and in particular, how attachment to spindle MTs and biorientation on the mitotic spindle may turn off inhibitor generation. Future challenges in this area are highlighted towards the goal of building a comprehensive molecular model of this process.  相似文献   

20.
Kinetochore microtubule numbers of different sized chromosomes   总被引:5,自引:4,他引:1       下载免费PDF全文
For three species of grasshoppers the volumes of the largest and the smallest metaphase chromosome differ by a factor of 10, but the microtubules (MTs) attached to the individual kinetochores show no corresponding range in numbers. Locusta mitotic metaphase chromosomes range from 2 to 21 μm, and the average number of MTs per kinetochore is 21 with an SD of 4.6. Locusta meiotic bivalents at late metaphase I range from 4 to 40 μm(3), and the kinetochore regions (= two sister kinetochores facing the same spindle pole) have an average of 25 kinetochore microtubules (kMTs) with an SD of 4.9. Anaphase velocities are the same at mitosis and meiosis I. The smaller mitotic metaphase chromosomes of neopodismopsis are similar in size, 6 to 45 μm(3), to Locusta, but they have an average more kMTs, 33, SD = 9.2. The four large Robertsonian fusion chromosomes of neopodismopsis have an average of 67 MTs per kinetochore, the large number possibly the result of a permanent dicentric condition. Chloealtis has three pairs of Robertsonian fusion chromosomes which, at late meiotic metaphase I, form bivalents of 116, 134, and 152 μm (3) with an average of 67 MTs per kinetochore similar to Locusta bivalents, but with a much higher average of 42 MTs per kinetochore region. It is speculated that, in addition to mechanical demands of force, load, and viscosity, the kMT numbers are governed by cell type and evolutionary history of the karyotype in these grasshoppers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号