首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new xanthine (X) biosensors based on a hybrid nanocomposite containing multi-walled carbon nanotubes (MWCNT), Pt nanoparticles (PtNP) and gold nanoparticle (AuNP) was presented. X biosensor was fabricated by dropping AuNP/PtNP/MWCNT onto xanthine oxidase (XO) modified glassy carbon paste electrode (GCPE). Resulted XO/AuNP/PtNP/MWCNT/GCPE biosensor showed two linearity between 2.0 and 50 µM and 0.25 and 6.0 mM for X. RSD value was calculated as 2.46 (n = 5). Finally, the biosensor was applied to the X detection in synthetic serum samples and good recovery value was obtained.  相似文献   

2.
The determination of xanthine has considerable importance in clinical and food quality control. Therefore, in this present work, we developed a novel xanthine biosensor based on immobilization of xanthine oxidase (XnOx) by attractive materials layered double hydroxides (LDHs). Amperometric detection of xanthine was evaluated by holding the modified electrode at 0.55V (versus saturated calomel electrode (SCE)). Due to the special properties of LDHs, such as chemical inertia, mechanical and thermal stability, anionic exchange ability, high porosity and swelling properties, XnOx/LDHs-modified electrode exhibited a developed analytical performance. The biosensor provided a linear response to xanthine over a concentration range of 1 x 10(-6)M to 2 x 10(-4)M with a sensitivity of 220 mAM(-1)cm(-2) and a detection limit of 1x10(-7)M based on S/N=3. In addition, the immobilized XnOx layers have been characterized using atomic force microscopy under both air atmosphere and liquid environment, which exhibited the interesting swelling phenomenon of LDHs. The investigation of inhibition of XnOx by allopurinol was carried out using this XnOx/LDHs-modified electrode. The experimental results indicated that inhibitory effect could be achieved by allopurinol with a quasi-reversible competitive type.  相似文献   

3.
A novel biosensor for superoxide radical (O(2)(*-)) detection based on Pseudomonas aeruginosa azurin immobilized on gold electrode was designed. The rate constant of azurin reduction by O(2)(*-) was found to be 10(5)M(-1)s(-1) in solution and five times lower, i.e., 0.2 x 10(5)M(-1)s(-1), for azurin coupled to gold by 3,3'-dithiobis(sulfosuccinimidylpropionate) (DTSSP). The electron transfer rate between the protein and the electrode ranged from 2 to 6s(-1). The sensitivity of this biosensor to O(2)(*-) was 6.8 x 10(2)Am(-2)M(-1). The response to the interference substances, such as uric acid, H(2)O(2), and dimethylsulfoxide was negligible below 10 microM. The electrode was applied in three O(2)(*-) generating systems: (i) xanthine oxidase (XOD), (ii) potassium superoxide (KO(2)), and (iii) stimulated neutrophil granulocytes. The latter was compared with luminol-amplified chemiluminescence. The biosensor responded to O(2)(*-) in all three environments, and the signals were antagonized by superoxide dismutase.  相似文献   

4.
We are reporting fabrication and characterization of electrochemical sucrose biosensor using ultra-microelectrode (UME) for the detection of heavy metal ions (Hg(II), Ag(I), Pb(II) and Cd(II)). The working UME, with 25 microm diameter, was modified with invertase (INV, EC: 3.2.1.26) and glucose oxidase (GOD, EC: 1.1.3.4) entrapped in agarose-guar gum. The hydrophilic character of the agarose-guar gum composite matrix was checked by water contact angle measurement. The atomic force microscopy (AFM) images of the membranes showed proper confinement of both the enzymes during co-immobilization. The dynamic range for sucrose biosensor was achieved in the range of 1 x 10(-10) to 1 x 10(-7)M with lower detection limit 1 x 10(-10)M at pH 5.5 with 9 cycles of reuse. The spectrophotometric and electrochemical studies showed linear relationship between concentration of heavy metal ions and degree of inhibition of invertase. The toxicity sequence for invertase using both methods was observed as Hg(2+)>Pb(2+)>Ag(+)>Cd(2+). The dynamic linear range for mercury using electrochemical biosensor was observed in the range of 5 x 10(-10) to 12.5 x 10(-10)M for sucrose. The lower detection limit for the fabricated biosensor was found to be 5 x 10(-10)M. The reliability of the electrochemical biosensor was conformed by testing the spike samples and the results were comparable with the conventional photometric DNSA method.  相似文献   

5.
Zinc oxide nanoparticles (ZnO-NPs) were synthesized from zinc nitrate by simple and efficient method in aqueous media at 55°C without any requirement of calcinations step. A mixture of ZnO-NPs and pyrrole was eletropolymerized on Pt electrode to form a ZnO-NPs-polypyrrole (PPy) composite film. Xanthine oxidase (XOD) was immobilized onto this nanocomposite film through physiosorption. The ZnO-NPs/polypyrrole/Pt electrode was characterized by Fourier transform infrared (FTIR), cyclic voltammetry (CV), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical impedance spectroscopy (EIS) before and after immobilization of XOD. The XOD/ZnO-NPs-PPy/Pt electrode as working electrode, Ag/AgCl as reference electrode and Pt wire as auxiliary electrode were connected through a potentiostat to construct a xanthine biosensor. The biosensor exhibited optimum response within 5s at pH 7.0, 35°C and linearity from 0.8 μM to 40 μM for xanthine with a detection limit 0.8 μM (S/E=3). Michaelis Menten constant (K(m)) for xanthine oxidase was 13.51 μM and I(max) 0.071 μA. The biosensor measured xanthine in fish meat and lost 40% of its initial activity after its 200 uses over 100 days, when stored at 4°C.  相似文献   

6.
A method is described for construction of an amperometric xanthine biosensor based on covalent Immobilization of xanthine oxidase (XOD) onto citrate capped silver nanoparticles deposited on Au electrode surface through cysteine self assembled monolayers (SAM). The biosensor showed optimum response within 5 s at pH 7.0 and 35 °C, when polarized at 0.5 V vs. Ag/AgCl. The linear working range of biosensor for xanthine was from 2 to 16 μM, with a detection limit of 0.15 μM and sensitivity of 0.17 mA/μM/cm2. The mean analytical recovery of exogenously added xanthine in fish meat extract (5 g/l and 10 g/l) was 96.2 ± 2.3% and 95.2 ± 3.4%, respectively. Within and between batches coefficients of variation were <2.6% and <3.4%, respectively. The biosensor measured xanthine in fish, chicken, pork, and beef meat. The enzyme electrode lost 20% of its initial activity after its regular 180 uses over a period of 60 days, when stored at 4 °C in dry state.  相似文献   

7.
Yang M  Yang Y  Yang Y  Shen G  Yu R 《Analytical biochemistry》2004,334(1):127-134
An amperometric enzyme biosensor for the determination of choline utilizing two enzymes, choline oxidase (CHOD) and horseradish peroxidase (HRP), is described. The biosensor consisted of CHOD cross-linked onto a HRP-immobilized carbon paste electrode. The biosensor was prepared by in situ electropolymerization of poly(thionine) within a carbon paste containing the enzyme HRP and thionine monomer and then CHOD was immobilized by using chitosan film through cross-linking with glutaraldehyde. The in situ electrogenerated poly(thionine) displays excellent electron transform efficiency between the enzyme HRP and the electrode surface, and the polymer enables improvement in enzyme immobilization within the paste. Several parameters such as the amount of thionine and enzyme, the applied potential, the pH, etc. have been studied. Amperometric detection of choline was realized at an applied potential of -0.2V vs saturated calomel electrode in 1/15M phosphate buffer solution (pH 7.4) with a linear response range between 5.0 x 10(-6) and 6.0 x 10(-4)M choline and a response time of 15s. When applied to the analysis of phosphatidylcholine in serum samples, a 0.997 correlation was obtained between the biosensor results and those obtained by a hospital method.  相似文献   

8.
A choline (CHO) biosensor based on the determination of H(2)O(2) generated at the electrode surface by the enzyme choline oxidase (CHOx) was developed. The biosensor consisted of CHOx retained onto a horseradish peroxidase (HRP) immobilized solid carbon paste electrode (sCPE). The HRPsCPE contained the molecule phenothiazine as redox mediator and CHOx was physically retained on the electrode surface using a dialysis membrane. Several parameters have been studied such as, mediator amount, influence of applied potential, etc. The CHO measurements were performed in 0.1 M phosphate buffer, pH 7.4. Amperometric detection of CHO was realized at an applied potential of 0.0 mV vs Ag/AgCl. The response is linear over the concentration range 5.0x10(-7)-7.0x10(-5) M, with a detection limit of 1.0x10(-7) M. This biosensor was used to detect choline released from phosphatidylcholine (PC) by phospholipase D (PLD) in isolated rat salivary gland cells stimulated by a purinergic agonist (ATP).  相似文献   

9.
We tested whether reactive oxygen species (ROS) generated from treatment with xanthine (XA) and xanthine oxidase (XO) alter vascular tone of human coronary arterioles (HCA). Fresh human coronary arterioles (HCA) from right atrial appendages were cannulated for video microscopy. ROS generated by XA (10(-4) M) + XO (10 mU/ml) dilated HCA (99 +/- 1%, 20 min after application of XA/XO). This dilation was not affected by denudation or superoxide dismutase (150 U/ml). Catalase (500 U/ml or 5,000 U/ml) attenuated the dilation early on, but a significant latent vasodilation appeared after 5 min peaking at 20 min (51 +/- 1%, 20 min after application of XA/XO + 500 U/ml catalase, P < 0.01 vs. control). KCl (40 mM) reduced the early and sustained vasodilation to XA/XO in the absence of catalase but 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 5 x 10(-5) M), diethyldithiocarbamate trihydrate (DDC, 10(-2) M), and deferoxamine (DFX, 10(-3) M) had no effect. In contrast, the catalase-resistant vasodilation was significantly attenuated by DDC, ODQ, and DFX as well as polyethylene-glycolated catalase (5,000 U/ml), but KCl had no effect. Confocal microscopy revealed that even in the presence of catalase, 2',7'-dichlorodihydrofluoresein diacetate fluorescence was observed in the vascular smooth muscle, but this was abolished by DDC. These data indicate that the exogenously generated superoxide anion (O2-*) by XA/XO is spontaneously converted to H2O2, which dilates HCA through vascular smooth muscle hyperpolarization. O2-* is also converted to H2O2 likely by superoxide dismustase within vascular cells and dilates HCA through a different pathway involving the activation of guanylate cyclase. These findings suggest that exogenously and endogenously produced H2O2 may elicit vasodilation by different mechanisms.  相似文献   

10.
A simple and controllable electrodeposition approach was established for one-step construction of hydrogen peroxide (H(2)O(2)) biosensors by in situ formation of chitosan-ionic liquid-horseradish peroxidase (CS-IL-HRP) biocomposite film on electrode surface. A highly porous surface with orderly three-dimensional network was revealed by scanning electron microscopy (SEM) investigation. The biocomposite provided improved conductivity and biocompatible microenvironment. The developed biosensor exhibited a fast amperometric response for the determination of H(2)O(2) and 95% of the steady-state current was obtained within 2s. The linear response of the developed biosensor for the determination of H(2)O(2) ranged from 6.0x10(-7) to 1.6x10(-4)M with a detection limit of 1.5x10(-7)M. Performance of the biosensor was evaluated with respect to possible interferences and a good selectivity was revealed. The fabricated biosensor exhibited high reproducibility and long-time storage stability. The ease of the one-step non-manual technique and the promising feature of biocomposite could serve as a versatile platform for the fabrication of electrochemical biosensors.  相似文献   

11.
The nanocomposite composed of carboxymethyl chitosan (CMCS) and gold nanoparticles was successfully prepared by a novel and in situ process. It was characterized by transmission electron microscopy (TEM) and Fourier transform infrared spectrophotometer (FTIR). The nanocomposite was hydrophilic even in neutral solutions, stable and inherited the properties of the AuNPs and CMCS, which make it biocompatible for enzymes immobilization. HRP, as a model enzyme, was immobilized on the silica sol-gel matrix containing the nanocomposite to construct a novel H(2)O(2) biosensor. The direct electron transfer of HRP was achieved and investigated. The biosensor exhibited a fast amperometric response (5s), a good linear response over a wide range of concentrations from 5.0 x 10(-6) to 1.4 x 10(-3)M, and a low detection limit of 4.01 x 10(-7)M. The apparent Michaelis-Menten constant (K(M)(app)) for the biosensor was 5.7 x 10(-4)M. Good stability and sensitivity were assessed for the biosensor.  相似文献   

12.
A commercial xanthine oxidase (XOD) was immobilized covalently onto carboxylated multiwalled carbon nanotubes (c-MWCNT) and polyaniline (PANI) composite film electrodeposited on the surface of a Pt electrode, using N-ethyl-N′-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) chemistry. A xanthine biosensor was fabricated using XOD/c-MWCNT/PANI/Pt electrode as a working electrode, Ag/AgCl (3 M KCl) as standard electrode and Pt wire as auxiliary electrode connected through a potentiostat. The enzyme electrode was characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectrophotometry and electrochemical impedance spectroscopy (EIS). The biosensor showed optimum response within 4 s at pH 7.0 and 35 °C, when polarized at 0.4 V. The optimized xanthine biosensor showed linear response range of 0.6–58 μM, with a detection limit of 0.6 μM (S/N = 3), and a correlation coefficient of 0.98. The biosensor was applied to determine xanthine in fish meat. The biosensor lost 50% of its initial activity after its 200 uses over a period of 100 days.  相似文献   

13.
A new procedure for fabricating deoxyribonucleic acid (DNA) electrochemical biosensor was developed based on covalent immobilization of target single-stranded DNA (ssDNA) on Au electrode that had been functionalized by direct coupling of sol-gel and self-assembled technologies. Two siloxanes, 3-mercaptopropyltrimethoxysiloxane (MPTMS) and 3-glycidoxypropyltrimethoxysiloxane (GPTMS) were used as precursors to prepare functionally self-assembly sol-gel film on Au electrode. The thiol group of MPTMS allowed assembly of MPTMS sol-gel on gold electrode surface. Through co-condensation between silanols, GPTMS sol-gel with epoxide groups interconnected into MPTMS sol-gel and enabled covalent immobilization of target NH(2)-ssDNA through epoxide/amine coupling reaction. The concentration of MPTMS and GPTMS influenced the performance of the resulting biosensor due to competitive sol-gel process. The linear range of the developed biosensor for determination of complementary ssDNA was from 2.51 x 10(-9) to 5.02 x 10(-7)M with a detection limit of 8.57 x 10(-10)M. The fabricated biosensor possessed good selectivity and could be regenerated. The covalent immobilization of target ssDNA on self-assembled sol-gel matrix could serve as a versatile platform for DNA immobilization and fabrication of biosensors.  相似文献   

14.
1. Human xanthine oxidase [XO; EC 1.2.3.2.] was isolated by a non-proteolytic method from fresh human milk. Final purification of the protein was achieved by hydroxyapatite chromatography. Most (less than 95%) of the enzyme was released in the 0.40 M phosphate fraction at pH 6.8. 2. The specific activity of this preparation was found to be 0.047 microM min-1 mg-1 with xanthine as substrate. 3. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) separated two subunits, each with a mol. wt approximately 122 kDa. 4. On non-denaturing acrylamide gels both of these subunits exhibited oxidase-like activity with xanthine as substrate in the presence of nitroblue tetrazolium and molecular oxygen. 5. Immunoconjugates of XO were prepared by the keyhole limpet hemocyanin (KLH)- and glutaraldehyde-crosslinking techniques. 6. Polyclonal antibodies to XO were raised by i.m. injection of these conjugates into female New Zealand rabbits. 7. Western blot analysis using the semi-dry technique was employed to confirm the specificity of the antibody.  相似文献   

15.
Molybdenum-containing enzymes, aldehyde oxidase and xanthine oxidase, are important in the oxidation of N-heterocyclic xenobiotics. However, the role of these enzymes in the oxidation of drug-derived aldehydes has not been established. The present investigation describes the interaction of eleven structurally related benzaldehydes with guinea pig liver aldehyde oxidase and bovine milk xanthine oxidase, since they have similar substrate specificity to human molybdenum hydroxylases. The compounds under test included mono-hydroxy and mono-methoxy benzaldehydes as well as 3,4-dihydroxy-, 3-hydroxy-4-methoxy-, 4-hydroxy-3-methoxy-, and 3,4-dimethoxy-benzaldehydes. In addition, various amines and catechols were tested with the molybdenum hydroxylases as inhibitors of benzaldehyde oxidation. The kinetic constants have shown that hydroxy-, and methoxy-benzaldehydes are excellent substrates for aldehyde oxidase (Km values 5x10(-6) M to 1x10(-5) M) with lower affinities for xanthine oxidase (Km values around 10(-4) M). Therefore, aldehyde oxidase activity may be a significant factor in the oxidation of the aromatic aldehydes generated from amines and alkyl benzenes during drug metabolism. Compounds with a 3-methoxy group showed relatively high Vmax values with aldehyde oxidase, whereas the presence of a 3-hydroxy group resulted in minimal Vmax values or no reaction. In addition, amines acted as weak inhibitors, whereas catechols had a more pronounced inhibitory effect on the aldehyde oxidase activity. It is therefore possible that aldehyde oxidase may be critical in the oxidation of the analogous phenylacetaldehydes derived from dopamine and noradrenaline.  相似文献   

16.
In this research, thermally dried Pseudomonas aeruginosa cells were used as a biological material for the construction of a microbial biosensor. The preparation, optimization and application of the developed microbial biosensor, which analyzed Pb(II), are presented. The method was based on stripping of adsorbed metal ions from the modified electrode surface. Modified carbon paste electrodes were preconcentrated at open circuit, and then electrochemically measured by using cyclic voltammetry (CV) and differential pulse stripping voltammetry (DPSV) techniques. It was found that the thermally dried cells were capable of adsorbing Pb(II) ions from aqueous solutions and could determine the ions prominently at optimum experimental conditions. Many important parameters to acquire the best electrochemical response were carried out, including effect of different electrolyte solutions, pH, deposition potential, deposition time, ionic strength, preconcentration time, and effect of interference ions. Finally, a calibration graph was obtained with a linear range from 1.0×10(-6) to 2.0×10(-5) M Pb(II) (R(2)=0.9916) and detection limit was found as 6.0×10(-7) M Pb(II) by using 3×S(b)/m formula. Other analytical properties of the developed microbial biosensor were also investigated. The suggested usage format of P. aeruginosa for the determination of Pb(II) does not require complicated immobilization procedure, easy to handle, and not time consuming.  相似文献   

17.
A microbial biosensor, using Acetobacter pasteurianus cells and an oxygen electrode, was developed for the determination of lactic acid. The bacterial cells were retained on a nylon membrane and attached to the surface of the oxygen electrode. In view of response time, stability and sensitivity, the biosensor performed best at 26°C and in pH 6 phthalate buffer containing magnesium sulfate. The activity of the retained cells was stable for approximately 170 h and was regenerable. The biosensor exhibited a hyperbolic response to both D- and L-lactic acid in the range of 10−4 M to 25 × 10−3 M. However, in the range 10−4 M to 15 × 10−4 M the response was linear. The microbial biosensor was applicable for detecting lactate concentration in yogurt and milk, since it was not sensitive to lactose, sucrose and glucose — three major components of such dairy products.  相似文献   

18.
We have extended peak-shift method for measuring purine bases to make it suitable for other purine-related compounds. We optimized the reactions of the purine metabolism enzymes 5′-nucleotidase (EC 3.1.3.5), purine nucleoside phosphorylase (PNP) (EC 2.4.2.1), xanthine oxidase (XO) (EC 1.17.3.2), urate hydroxylase (EC 1.7.3.3), adenosine deaminase (ADA) (EC 3.5.4.4), and guanine deaminase (EC 3.5.4.3) by determining their substrate specificity and reaction kinetics. These enzymes eliminate the five purine base peaks (adenine, guanine, hypoxanthine, xanthine, and uric acid) and four nucleosides (adenosine, guanosine, inosine, and xanthosine). The bases and nucleosides can be identified and accurately quantified by comparing the chromatograms before and after treatment with the enzymes. Elimination of the individual purine compound peaks was complete in a few minutes. However, when there were multiple substrates, such as for XO, and when the metabolites were purine compounds, such as for PNP and ADA, it took longer to eliminate the peaks. The optimum reaction conditions for the peak-shift assay methods were an assay mixture containing the substrate (10 μL, 0.1 mg/mL), the combined enzyme solution (10 μL each, optimum concentration), and 50 mM sodium phosphate (up to 120 μL, pH 7.4). The mixture was incubated for 60 minutes at 37°C. This method should be suitable for determining the purine content of a variety of samples, without interference from impurities.  相似文献   

19.
A novel organic-inorganic nanocomposite of methylene blue (MB) and silicon oxide was synthesized and characterized by TEM, FTIR, and UV-vis. The as-prepared material was able to transfer the electron of the MB to electrode and was different from other SiO2 spheres structurally. It can be used as mediator to construct a biosensor with horseradish peroxidase (HRP) coimmobilized in the gelatine matrix and cross-linked with formaldehyde. The resulting biosensor exhibited fast amperometric response and good stability to hydrogen peroxide (H2O2). The linear range for H2O2 determination was from 1 x 10(-5) to 1.2 x 10(-3) M, with a detection limit of 4 x 10(-6) M based on S/N = 3. Moreover, the lifetime is more than 3 months under dry conditions at 4 degrees C.  相似文献   

20.
In this study, an amperometric carbon paste biosensor is developed for glucose-6-phosphate (G6P) monitoring which is based on entrapped Mg2+ ions, G6P dehydrogenase, NADP+ polyethylenimine (PEI) and the electroactive mediator, tetracyanoquinodimethane (TCNQ). The calibration line had a slope of 1.55 x 10(-5) A. M-1 with a correlation coefficient of 0.9965. The limit of detection (defined as three times the standard deviation of the response of the electrode to blank phosphate buffer injections (noise)) of the G6P biosensor was 5.0 x 10(-5) M. The application of this biosensor for monitoring G6P in human blood using the standard addition method is also demonstrated. A two-parameter empirical equation which adequately describes the deactivation of the biosensor steady-state response with time is also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号