首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular interactions between purified poly(ADP-ribose) polymerase, whole thymus histones, histone H1, rat fibroblast genomic DNA, and closed circular and linearized SV40 DNA were determined by the nitrocellulose filter binding technique. Binding of the polymerase protein or histones to DNA was augmented greatly when both the enzyme protein and histones were present simultaneously. The polymerase protein also associated with histones in the absence of DNA. The cooperative or promoted binding of histones and the enzyme to relaxed covalently closed circular SV40 DNA was greater than the binding to the linearized form. Binding of the polymerase to SV40 DNA fragments in the presence of increasing concentrations of NaCl indicated a preferential binding to two restriction fragments as compared to the others. Polymerase binding to covalently closed relaxed SV40 DNA resulted in the induction of superhelicity. The simultaneous influence of the polymerase and histones on DNA topology were more than additive. Topological constraints on DNA induced by poly(ADP-ribose) polymerase were abolished by auto ADP-ribosylation of the enzyme. Benzamide, by inhibiting poly(ADP-ribosylation), reestablished the effect of the polymerase protein on DNA topology. Polymerase binding to in vitro-assembled core particle-like nucleosomes was also demonstrated.  相似文献   

2.
The post-translational poly ADP-ribosylation of proteins by the nuclear enzyme poly(ADP-ribose) polymerase (EC 2.4.2.30) involves a complex pattern of ADP-ribose polymers. We have determined how this enzyme produces the various polymer size patterns responsible for altered protein function. The results show that histone H1 and core histones are potent regulators of both the numbers and sizes of ADP-ribose polymers. Each histone induced the polymerase to synthesize a specific polymer size pattern. Various other basic and/or DNA binding proteins as well as other known stimulators of poly(ADP-ribose) polymerase (spermine, MgCl2, nicked DNA) were ineffective as polymer size modulators. Testing specific proteolytic fragments of histone H1, the polymer number and polymer size modulating activity could be mapped to specific polypeptide domains. The results suggest that histones specifically regulate the polymer termination reaction of poly(ADP-ribose) polymerase.  相似文献   

3.
Chromatin-bound ADP-ribosyltransferase from adult hen liver nuclei was purified to a homogeneous state through salt extraction, gel filtration, hydroxyapatite, phenyl-Sepharose, Cm-cellulose, and DNA-Sepharose. The ADP-ribosyltransferase has a pH optimum at 9.0 and does not require DNA for reaction. The purified enzyme has a molecular weight of 27,500 +/- 500. Agmatine sulfate, arginine methyl ester, histones, and casein proved to be effective acceptors for the ADP-ribose molecule. Among histones, H3 was most active, followed by H2a, H4, and H2b, in that order, the lowest activity seen with H1. With all the acceptors tested, the rate of nicotinamide release was in excess of the ADP-ribosylation. However, changes in the ratio of nicotinamide release to ADP-ribosylation seemed to depend on concentrations of the acceptor used. ADP-ribose-whole histones X adducts formed by ADP-ribosyltransferase served as initiators for poly(ADP-ribose) synthesis when these adducts were incubated in the presence of NAD, DNA, Mg2+, and the purified poly(ADP-ribose) synthetase, in which poly(ADP-ribose) formation can occur.  相似文献   

4.
When the effect of diadenosine 5',5"'-P1,P4-tetraphosphate on a purified poly(ADP-ribose) polymerase reaction was examined, the compound strongly inhibited ADP-ribosylation reaction of histone, while the compound was much less inhibitory of the Mg2+-dependent automodification of this enzyme. In an attempt to study the mechanism of the inhibition, we analyzed the total reaction products, which were synthesized from NAD+ in the presence of diadenosine 5',5"'-P1,P4-tetraphosphate in a reaction mixture for ADP-ribosylation of histone, and found that a new, low molecular product was predominantly synthesized instead of ADP-ribosylated histone in the reaction. Approximately 90% of added NAD+ was converted into this low molecular product under an appropriate reaction condition. Further analysis revealed that the product was mono- and oligo(ADP-ribosyl)ated diadenosine nucleotide and that the bound oligo(ADP-ribose) is elongating at one end of the product during the reaction. Thus, the present study clearly demonstrated that diadenosine 5',5"'-P1,P4-tetraphosphate functions as an acceptor for ADP-ribose in a poly(ADP-ribose) polymerase reaction in vitro. The finding that histone H1 is required in the reaction mixture for the synthesis of this new product suggests that histone H1 and the diadenosine compound interact during this modification reaction.  相似文献   

5.
A novel endonuclease from adult hen liver nuclei has been purified to a homogeneous state through salt extraction, ammonium sulfate fractionation, gel filtration, acetone fractionation, and successive chromatography of 1) hydroxyapatite and DNA Sepharose and 2) hydroxyapatite and isoelectric focusing. The endonuclease has a pH optimum at 9.0 and requires Mg2+ for activity. The enzyme hydrolyzes more rapidly in the order of polynucleotide: denatured DNA = rRNA greater than poly(dA) = poly(dT) greater than poly(dC) = poly(dG) greater than native DNA. This endonuclease degrades denatured DNA about 20 times more rapidly than does the native DNA. The products contain 5'-phosphoryl and 3'-hydroxyl termini and all four deoxynucleotides are present while dGMP is predominant. The enzyme cleaves the circular duplex PM2 DNA, endonucleotically, via single strand scission. The isoelectric point is 10.2 +/- 0.2 and the molecular weight is 43,000 +/- 2,000, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. Pyridoxal 5'-phosphate and 2,3-butanedione inhibit the catalytic activity, respectively. The inhibition of DNA binding activity was also seen with former, but not with the latter. Purified Mg2+-dependent alkaline endonuclease was used to investigate the nature of poly(ADP-ribose) inhibition of the enzyme. In contrast to the Ca2+/Mg2+-dependent endonuclease (Yoshihara, K., Tanigawa, Y., Burzio, L., and Koide, S. S. (1975) Proc. Natl. Acad. Sci. U. S. A. 72, 289-293), ADP-ribosylation of the endonuclease protein was not observed. When 100 ng of the poly(ADP-ribose) having four to five ADP-ribose units per molecule were added to the nuclease assay system (total volume of 0.2 ml) 14% inhibition was observed, and increase in the chain length increased the inhibition. When 100 ng of poly(ADP-ribose) consisting of 20 or more units of the ADP-ribose per mol were added, the inhibition was over 95%. The possible role of the poly(ADP-ribose)-sensitive endonuclease is discussed.  相似文献   

6.
The chromatin-associated enzyme PARP1 has previously been suggested to ADP-ribosylate histones, but the specific ADP-ribose acceptor sites have remained enigmatic. Here, we show that PARP1 covalently ADP-ribosylates the amino-terminal histone tails of all core histones. Using biochemical tools and novel electron transfer dissociation mass spectrometric protocols, we identify for the first time K13 of H2A, K30 of H2B, K27 and K37 of H3, as well as K16 of H4 as ADP-ribose acceptor sites. Multiple explicit water molecular dynamics simulations of the H4 tail peptide into the catalytic cleft of PARP1 indicate that two stable intermolecular salt bridges hold the peptide in an orientation that allows K16 ADP-ribosylation. Consistent with a functional cross-talk between ADP-ribosylation and other histone tail modifications, acetylation of H4K16 inhibits ADP-ribosylation by PARP1. Taken together, our computational and experimental results provide strong evidence that PARP1 modifies important regulatory lysines of the core histone tails.  相似文献   

7.
Poly(ADP-ribosylated) histones in chromatin replication   总被引:2,自引:0,他引:2  
Poly(ADP-ribosylation) of histones and several other nuclear proteins seem to participate in nuclear processes involving DNA strand breaks like repair, replication, or recombination. This is suggested from the fact that the enzyme poly(ADP-ribose) polymerase responsible for this modification is activated by DNA strand breaks produced in these nuclear processes. In this article I provide three lines of evidence supporting the idea that histone poly(ADP-ribosylation) is involved in chromatin replication. First, cellular lysates from rapidly dividing mouse or human cells in culture synthesize a significant number of oligo- in addition to mono(ADP-ribosylated) histones. Blocking the cells by treatment of cultures with 5 mM butyrate for 24 h or by serum or nutrient depletion results in the synthesis of only mono- but not of oligo(ADP-ribosylated) histones under the same conditions. Thus, the presence of oligo(ADP-ribosylated) histones is related to cell proliferation. Second, cellular lysates or nuclei isolated under mild conditions in the presence of spermine and spermidine and devoid of DNA strand breaks mainly synthesize mono(ADP-ribosylated) histones; introduction of a small number of cuts by DNase I or micrococcal nuclease results in a dramatic increase in the length of poly(ADP-ribose) attached to histones presumably by activation of poly(ADP-ribose) polymerase. Free ends of DNA that could stimulate poly(ADP-ribosylation) of histones are present at the replication fork. Third, putatively acetylated species of histone H4 are more frequently ADP-ribosylated than nonacetylated H4; the number of ADP-ribose groups on histone H4 was found to be equal or exceed by one the number of acetyl groups on this molecule. Since one recognized role of tetraacetylated H4 is its participation in the assembly of new nucleosomes, oligo(ADP-ribosylation) of H4 (and by extension of other histones) may function in new nucleosome formation. Based on these results I propose that poly(ADP-ribosylated) histones are employed for the assembly of histone complexes and their deposition on DNA during replication. Modified histones arise at the replication fork by activation of poly(ADP-ribose) polymerase by unligated Okazaki fragments.  相似文献   

8.
The enzymatic mechanism of poly(ADP-ribose) polymerase (PARP-1) has been analyzed in two in vitro systems: (a) in solution and (b) when the acceptor histones were attached to a solid surface. In system (a), it was established that the coenzymatic function of dsDNAs was sequence-independent. However, it is apparent from the calculated specificity constants that the AT homopolymer is by far the most effective coenzyme and randomly damaged DNA is the poorest. Rates of auto(poly-ADP-ribosylation) with dsDNAs as coenzymes were nearly linear for 20 min, in contrast to rates with dcDNA, which showed product [(ADPR)n] inhibition. An allosteric activation of auto(poly-ADP-ribosylation) by physiologic cellular components, Mg2+, Ca2+, and polyamines, was demonstrated, with spermine as the most powerful activator. On a molar basis, histones H(1) and H(3) were the most effective PARP-1 activators, and their action was abolished by acetylation of lysine end groups. It was shown in system (b) that oligo(ADP-ribosyl) transfer to histone H(1) is 1% of that of auto(poly-ADP-ribosylation) of PARP-1, and this trans(ADP-ribosylation) is selectively regulated by putrescine (activator). Physiologic cellular concentrations of ATP inhibit PARP-1 auto(poly-ADP-ribosylation) but less so the transfer of oligo(ADP-ribose) to histones, indicating that PARP-1 auto(ADP-ribosylation) activity is dormant in bioenergetically intact cells, allowing only trans(ADP-ribosylation) to take place. The inhibitory mechanism of ATP on PARP-1 consists of a noncompetitive interaction with the NAD site and competition with the coenzymic DNA binding site. A novel regulation of PARP-1 activity and its chromatin-related functions by cellular bioenergetics is proposed that occurs in functional cells not exposed to catastrophic DNA damage.  相似文献   

9.
We have found that two nuclear enzymes, i.e. poly(ADP-ribose) polymerase (EC 2.4.2.30) and poly(ADP-ribose) glycohydrolase, may cooperate to function as a histone shuttle mechanism on DNA. The mechanism involves four distinct reaction intermediates that were analyzed in a reconstituted in vitro system. In the first step, the enzyme poly(ADP-ribose) polymerase is activated in the presence of histone-DNA complexes and converts itself into a protein carrying multiple ADP-ribose polymers. These polymers attract histones that dissociate from the DNA as a histone-polymer-polymerase complex. The DNA assumes the electrophoretic mobility of free DNA and becomes susceptible to nuclease digestion (second step). In the third step, poly(ADP-ribose) glycohydrolase degrades ADP-ribose polymers and thereby eliminates the binding sites for histones. In the fourth step, histones reassociate with DNA, and the histone-DNA complexes exhibit the electrophoretic mobilities and nuclease susceptibilities of the original complexes prior to dissociation. Our results are compatible with the view that the poly(ADP-ribosylation) system acts as a catalyst of nucleosomal unfolding of chromatin in DNA excision repair.  相似文献   

10.
We have previously reported for the first time the purification to homogeneity of the enzyme NMN adenylyltransferase (EC 2.7.7.1) from yeast and its major molecular and catalytic properties. The homogeneous enzyme was found to be a glycoprotein containing 2% carbohydrate and 1 mol of adenine residue and 2 mol of phosphate covalently bound per mole of protein. Such a stoichiometry, apparently consistent with that of ADP-ribose, prompted us to further investigate the possibility that NMN adenylyltransferase could be subjected to poly(ADP-ribosylation) in vitro in a reconstituted system. Poly(ADP-ribose) polymerase was purified to homogeneity from bull testis by means of a rapid procedure involving two batchwise steps on DNA-agarose and Reactive Blue 2 cross-linked agarose and a column affinity chromatography step on 3-aminobenzamide-Sepharose; the optimal conditions for the poly(ADP-ribosylation) of exogenous substrates were determined. When pure NMN adenylyltransferase was incubated in the presence of the homogeneous poly(ADP-ribose) polymerase, a marked inhibition of the polymerase was observed, both in the presence and in the absence of histones, while the activity of NMN adenylyltransferase was not affected. The inhibition could not be prevented by increasing the concentrations of either DNA or NAD. Mg2+ did not affect the activity or the inhibition. The significance of such a phenomenon is at present unknown, but it may be of biological relevance in view of the close topological and metabolic relationship between the two enzymes.  相似文献   

11.
12.
The molecular mechanism of activation of Ca2+/Mg2+-dependent endonuclease in thymocytes of irradiated rats was studied. Thymocyte nuclei of control and irradiated rats were pre-incubated with NAD under conditions favourable for poly ADP-ribosylation. Pre-incubation results in a decrease in the rate of autolytic DNA digestion by Ca2+/Mg2+-dependent endonuclease of 6-7- and 2-3-fold for control and irradiated animals, respectively. The activity of Ca2+/Mg2+-nuclease extracted from the nuclei pre-incubated with NAD is also considerably decreased. The presence of nicotinamide and thymidine in the preincubation medium prevents the suppression of Ca2+/Mg2+-nuclease activity. In the experiments performed with isolated nuclei and permeabilized thymocytes the synthesis of poly(ADP-ribose) does not significantly change within 1 h after irradiation at a dose of 10 Gy, whereas 2 and 3 h after the exposure it decreases by 35-40 and 45-55 per cent, respectively. The activity of poly(ADP-ribose) glycohydrolase in this period is similar to that in the controls. The average size of the de novo synthesized chains of poly(ADP-ribose) increases from 11 to 17 ADP-ribose units by the second hour after irradiation. Inhibition of poly(ADP-ribose) polymerase in the postirradiation period preceded the internucleosomal fragmentation of chromatin. The results suggest that activation of Ca2+/Mg2+-nuclease in irradiated thymocytes is accounted for by the disturbance of its poly ADP-ribosylation.  相似文献   

13.
The effect of poly(ADP-ribosyl)ation on native and H1-depleted chromatin was analyzed by gel electrophoresis, electron microscopy, and velocity sedimentation. In parallel, the interaction of automodified poly(ADP-ribose) polymerase with native and H1-depleted chromatin was analyzed. In H1-depleted chromatin histone H2B becomes the major poly(ADP-ribose) histone acceptor protein, whereas in native chromatin histone H1 was the major histone acceptor. Poly(ADP-ribosyl)ation of H1-depleted chromatin prevented the recondensation of polynucleosomes reconstituted with exogenous histone H1. This is probably due to the presence of modified poly(ADP-ribose) polymerase and hyper(ADP-ribosyl)ated histone H2B. Indeed, about 40% of the modified enzyme remained associated with H1-depleted chromatin, while less than 1% of the modified enzyme was bound to native chromatin. The influence of poly(ADP-ribosyl)ation on the chromatin conformation was also studied at the level of nucleosome in using monoclonal and polyclonal antibodies specific for individual histones and synthetic peptides of histones. In native chromatin incubated in the presence of Mg2+ there was a drop in the accessibility of histone epitopes to monoclonal and polyclonal antibodies whereas upon poly(ADP-ribosyl)ation their accessibility was found to remain even in the presence of Mg2+. In poly(ADP-ribosyl)ated H1-depleted chromatin an increased accessibility of some histone tails to antibodies was observed.  相似文献   

14.
Poly (ADP-ribosylated) histones appear to be intermediates in nuclear processes that involve DNA strand breaks. We have studied histone ADP-ribosylation in cellular lysates from activated human lymphoid cells in culture. Modified histones differing in the number of ADP-ribose groups gave separate bands upon two-dimensional gel electrophoresis. Cellular lysates from control cells contained histones modified with 1 to 15 ADP-ribose groups. Stimulation of the cells during culture with phytohemagglutinin (PHA) or a phorbol ester (TPA) as well as combinations of these two reagents led to a significant increase in the upper limit number of ADP-ribose groups attached to histones in the presence of divalent metal ions. Hyper (ADP-ribosylated) H2B carrying at least 32 ADP-ribose groups gave a distinctly characteristic pattern on two-dimensional gels showing that highly ordered enzymatic steps are followed for its synthesis. Moreover, it was found that PHA and/or TPA induces branching of the poly (ADP-ribose) on H2B. The increase in histone poly (ADP-ribosylation) following lymphocyte activation was less dramatic during incubation of cellular lysates in the absence of divalent metal ions. The increased histone modification observed in this study may result from an increase in cell proliferation during activation of lymphoid cells. The finding that the number of ADP-ribose groups on H4 equals or exceeds by one the number of acetyl groups suggests that the two modifications may share common functions.  相似文献   

15.
16.
The enzymatic transfer of ADP-ribose from NAD to histone H1 (defined as trans-poly(ADP-ribosylation)) or to PARP I (defined as auto-poly(ADP-ribosylation)) was studied with respect to the nature of the DNA required as a coenzyme. Linear double-stranded DNA (dsDNA) containing the MCAT core motif was compared with DNA containing random nicks (discontinuous or dcDNA). The dsDNAs activated trans-poly(ADP-ribosylation) about 5 times more effectively than dcDNA as measured by V(max). Activation of auto-poly(ADP-ribosylation) by dcDNA was 10 times greater than by dsDNA. The affinity of PARP I toward dcDNA or dsDNA in the auto-poly(ADP-ribosylation) was at least 100-fold lower than in trans-poly(ADP-ribosylation) (K(a) = 1400 versus 3-15, respectively). Mg2+ inhibited trans-poly(ADP-ribosylation) and so did dcDNA at concentrations required to maximally activate auto-poly(ADP-ribosylation). Mg2+ activated auto-poly(ADP-ribosylation) of PARP I. These results for the first time demonstrate that physiologically occurring dsDNAs can serve as coenzymes for PARP I and catalyze preferentially trans-poly(ADP- ribosylation), thereby opening the possibility to study the physiologic function of PARP I.  相似文献   

17.
Acetylation-dependent ADP-ribosylation by Trypanosoma brucei Sir2   总被引:1,自引:0,他引:1  
Sirtuins are a highly conserved family of proteins implicated in diverse cellular processes such as gene silencing, aging, and metabolic regulation. Although many sirtuins catalyze a well characterized protein/histone deacetylation reaction, there are a number of reports that suggest protein ADP-ribosyltransferase activity. Here we explored the mechanisms of ADP-ribosylation using the Trypanosoma brucei Sir2 homologue TbSIR2rp1 as a model for sirtuins that reportedly display both activities. Steady-state kinetic analysis revealed a highly active histone deacetylase (k cat = 0.1 s(-1), with Km values of 42 microm and for NAD+ and 65 microm for acetylated substrate). A series of biochemical assays revealed that TbSIR2rp1 ADP-ribosylation of protein/histone requires an acetylated substrate. The data are consistent with two distinct ADP-ribosylation pathways that involve an acetylated substrate, NAD+ and TbSIR2rp1 as follows: 1) a noncatalytic reaction between the deacetylation product O-acetyl-ADP-ribose (or its hydrolysis product ADP-ribose) and histones, and 2) a more efficient mechanism involving interception of an ADP-ribose-acetylpeptide-enzyme intermediate by a side-chain nucleophile from bound histone. However, the sum of both ADP-ribosylation reactions was approximately 5 orders of magnitude slower than histone deacetylation under identical conditions. The biological implications of these results are discussed.  相似文献   

18.
A partially purified preparation of the enzyme poly ADP-ribose polymerase which controls the transfer of ADP-ribose from NAD has been investigated. Data presented here indicate that the enzyme ADP-ribosylates itself. The enzyme preparation can be stimulated by DNA and this stimulation is exclusively associated with an auxiliary protein which copurifies with the enzyme and which we refer to as endogenous acceptor protein. Exogenously added proteins such as histones H1, H2A, and H3, cholera toxin, and Escherichia coli DNA-dependent RNA polymerase can also act as acceptor proteins in addition to the DNA-associated labeling of the endogenous acceptor. We speculate that the self-ADP-ribosylation of enzyme and that of the endogenous acceptor may play a role in control of the extremely rapid turnover of cellular NAD. Additionally, we have used this enzyme to ADP-ribosylate histones and to determine the effect of such modification on in vitro nucleosome formation and stability. The enzyme mediated ADP-ribosylation of free histones prior to incorporation into nucleosomes affects both nucleosome formation and stability while such ADP-ribosylation of histones already incorporated into nucleosomes does not affect their stability. These observations suggest that the ADP-ribosylation of histones prior to their involvement in nucleosomes might be the site of the physiologically important ADP-ribose transfer.  相似文献   

19.
Purified rat liver nuclei were incubated in vitro with [3H]NAD. Altered patterns of ADP-ribosylation of nuclear proteins occurred with 1 mM spermidine or spermine with the latter polyamine causing the greater change. Spermine treated nuclei showed a two-fold increase in ADP-ribose incorporation into H1 histones and a decrease in the other histones. Likewise, the incorporation into the more acidic non-histone nuclear proteins was greater with spermine than spermidine. These results suggest that polyamines may exert a regulatory function by altering the pattern of ADP-ribosylation of both histone and non-histone nuclear proteins.  相似文献   

20.
The patterns of poly(ADP-ribosylation) in vivo of CS (cleavage stage) histone variants were compared in sea urchin zygotes at the entrance and the exit of S1 and S2 in the initial developmental cell cycles. This post-translational modification was detected by Western immunoblots with rabbit sera anti-poly(ADP-ribose) that was principally reactive against ADP-ribose polymers and slightly against ADP-ribose oligomers. The effect of 3 aminobenzamide (3-ABA), an inhibitor of the poly(ADP-ribose) synthetase, on S phase progression was determined in vivo by measuring the incorporation of 3H thymidine into DNA. The results obtained indicate that the CS histone variants are poly(ADP-ribosylated) in a cell cycle dependent manner. A significantly positive reaction of several CS variants with sera anti-poly(ADP-ribose) was found at the entrance into S phase, which decreases after its completion. The incubation of zygotes in 3-ABA inhibited the poly(ADP-ribosylation) of CS variants and prevented both the progression of the first S phase and the first cleavage division. These observations suggest that the poly(ADP-ribosylation) of atypical CS histone variants is relevant for initiation of sea urchin development and is required for embryonic DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号