首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stable actin structures play important roles in the development and specialization of differentiated cells. How these structures form, are organized, and are used to mediate physiological processes is not well understood in most cases. In Drosophila testis, stable actin structures, called actin cones, mediate spermatid individualization, a large-scale cellular remodeling process. These actin cones are composed of two structural domains, a front meshwork and a rear region of parallel bundles. Myosin VI is an important player in proper actin cone organization and function. Myosin VI localizes to the cones' fronts and its specific localization is required for proper actin cone formation and function during individualization. To understand how these structures are organized and assembled, ultrastructural studies are important to reveal both organization of actin and the precise localization of actin regulators relative to regions with different filament organizations. In the present work, we have developed a novel pre-embedding immunogold-silver labeling method for high-resolution analysis of protein distribution in actin structures which allowed both satisfactory antibody labeling and good ultrastructural preservation. Electron microscopic studies revealed that myosin VI accumulated at the extreme leading edge of the actin cone and preferentially localized throughout the front meshwork of the cone where branched actin filaments were most concentrated. No myosin VI labeling was found adjacent to the membranes along the length of the cone or connecting neighboring cones. This method has potential to reveal important information about precise relationships between actin-binding proteins, membranes, and different types of actin structures.  相似文献   

2.
Actin structures are often stable, remaining unchanged in organization for the lifetime of a differentiated cell. Little is known about stable actin structure formation, organization, or maintenance. During Drosophila spermatid individualization, long-lived actin cones mediate cellular remodeling. Myosin VI is necessary for building the dense meshwork at the cones' fronts. We test several ideas for myosin VI's mechanism of action using domain deletions or site-specific mutations of myosin VI. The head (motor) and globular tail (cargo-binding) domains were both needed for localization at the cone front and dense meshwork formation. Several conserved partner-binding sites in the globular tail previously identified in vertebrate myosin VI were critical for function in cones. Localization and promotion of proper actin organization were separable properties of myosin VI. A vertebrate myosin VI was able to localize and function, indicating that functional properties are conserved. Our data eliminate several models for myosin VI's mechanism of action and suggest its role is controlling organization and action of actin assembly regulators through interactions at conserved sites. The Drosophila orthologues of interaction partners previously identified for vertebrate myosin VI are likely not required, indicating novel partners mediate this effect. These data demonstrate that generating an organized and functional actin structure in this cell requires multiple activities coordinated by myosin VI.  相似文献   

3.
Here, we demonstrate a new function of myosin VI using observations of Drosophila spermatid individualization in vivo. We find that myosin VI stabilizes a branched actin network in actin structures (cones) that mediate the separation of the syncytial spermatids. In a myosin VI mutant, the cones do not accumulate F-actin during cone movement, whereas overexpression of myosin VI leads to bigger cones with more F-actin. Myosin subfragment 1-fragment decoration demonstrated that the actin cone is made up of two regions: a dense meshwork at the front and parallel bundles at the rear. The majority of the actin filaments were oriented with their pointed ends facing in the direction of cone movement. Our data also demonstrate that myosin VI binds to the cone front using its motor domain. Fluorescence recovery after photobleach experiments using green fluorescent protein-myosin VI revealed that myosin VI remains bound to F-actin for minutes, suggesting its role is tethering, rather than transporting cargo. We hypothesize that myosin VI protects the actin cone structure either by cross-linking actin filaments or anchoring regulatory molecules at the cone front. These observations uncover a novel mechanism mediated by myosin VI for stabilizing long-lived actin structures in cells.  相似文献   

4.
Repulsive guidance cues induce growth cone collapse or collapse and retraction. Collapse results from disruption and loss of the actin cytoskeleton. Actin‐rich regions of growth cones contain binding proteins that influence filament organization, such as Arp2/3, cortactin, and fascin, but little is known about the role that these proteins play in collapse. Here, we show that Semaphorin 3A (Sema 3A), which is repulsive to mouse dorsal root ganglion neurons, has unequal effects on actin binding proteins and their associated filaments. The immunofluorescence staining intensity of Arp‐2 and cortactin decreases relative to total protein; whereas in unextracted growth cones fascin increases. Fascin and myosin IIB staining redistribute and show increased overlap. The degree of actin filament loss during collapse correlates with filament superstructures detected by rotary shadow electron microscopy. Collapse results in the loss of branched f‐actin meshworks, while actin bundles are partially retained to varying degrees. Taken together with the known affects of Sema 3A on actin, this suggests a model for collapse that follows a sequence; depolymerization of actin meshworks followed by partial depolymerization of fascin associated actin bundles and their movement to the neurite to complete collapse. The relocated fascin associated actin bundles may provide the substrate for actomyosin contractions that produce retraction. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

5.
The gene encoding the actin-related protein Arp3 was first identified in the fission yeast Schizosaccharomyces pombe and is a member of an evolutionarily conserved family of actin-related proteins. Here we present several key findings that define an essential role for Arp3p in the functioning of the cortical actin cytoskeleton. First, mutants in arp3 interact specifically with profilin and actin mutants. Second, Arp3 localizes to cortical actin patches which are required for polarized cell growth. Third, the arp3 gene is required for the reorganization of the actin cytoskeleton during the cell cycle. Finally, the Arp3 protein is present in a large protein complex. We believe that this complex may mediate the cortical functions of profilin at actin patches in S. pombe.  相似文献   

6.
The appropriate regulation of the actin cytoskeleton is essential for cell movement, changes in cell shape, and formation of membrane protrusions like lamellipodia and filopodia. Moreover, several regulatory proteins affecting actin dynamics have been identified in the motile regions of cells. Here, we provide evidence for the involvement of SPIN90 in the regulation of actin cytoskeleton and actin comet tail formation. SPIN90 was distributed throughout the cytoplasm in COS-7 cells, but exposing the cells to platelet-derived growth factor (PDGF) caused a redistribution of SPIN90 to the cell cortex and the formation of lamellipodia (or membrane ruffles), both of which were dramatically inhibited in SPIN90-knockdown cells. In addition, the binding of the C terminus of SPIN90 with both the Arp2/3 complex (actin-related proteins Arp 2 and Arp 3) and G-actin activates the former, leading to actin polymerization in vitro. And when coexpressed with phosphatidylinositol 4-phosphate 5 kinase, SPIN90 was observed within actin comet tails. Taken these findings suggest that SPIN90 participates in reorganization of the actin cytoskeleton and in actin-based cell motility.  相似文献   

7.
We report the development and characterization of an in vitro system for the formation of filopodia-like bundles. Beads coated with actin-related protein 2/3 (Arp2/3)-activating proteins can induce two distinct types of actin organization in cytoplasmic extracts: (1) comet tails or clouds displaying a dendritic array of actin filaments and (2) stars with filament bundles radiating from the bead. Actin filaments in these bundles, like those in filopodia, are long, unbranched, aligned, uniformly polar, and grow at the barbed end. Like filopodia, star bundles are enriched in fascin and lack Arp2/3 complex and capping protein. Transition from dendritic to bundled organization was induced by depletion of capping protein, and add-back of this protein restored the dendritic mode. Depletion experiments demonstrated that star formation is dependent on Arp2/3 complex. This poses the paradox of how Arp2/3 complex can be involved in the formation of both branched (lamellipodia-like) and unbranched (filopodia-like) actin structures. Using purified proteins, we showed that a small number of components are sufficient for the assembly of filopodia-like bundles: Wiskott-Aldrich syndrome protein (WASP)-coated beads, actin, Arp2/3 complex, and fascin. We propose a model for filopodial formation in which actin filaments of a preexisting dendritic network are elongated by inhibition of capping and subsequently cross-linked into bundles by fascin.  相似文献   

8.
A role of Arp2/3 complex in lamellipodia is well established, whereas its roles in filopodia formation remain obscure. We addressed this question in neuronal cells, in which motility is heavily based on filopodia, and we found that Arp2/3 complex is involved in generation of both lamellipodia and filopodia in growth cones, and in neuritogenesis, the processes thought to occur largely in Arp2/3 complex-independent manner. Depletion of Arp2/3 complex in primary neurons and neuroblastoma cells by small interfering RNA significantly decreased the F-actin contents and inhibited lamellipodial protrusion and retrograde flow in growth cones, but also initiation and dynamics of filopodia. Using electron microscopy, immunochemistry, and gene expression, we demonstrated the presence of the Arp2/3 complex-dependent dendritic network of actin filaments in growth cones, and we showed that individual actin filaments in filopodia originated at Arp2/3 complex-dependent branch points in lamellipodia, thus providing a mechanistic explanation of Arp2/3 complex functions during filopodia formation. Additionally, Arp2/3 complex depletion led to formation of multiple neurites, erratic pattern of neurite extension, and excessive formation of stress fibers and focal adhesions. Consistent with this phenotype, RhoA activity was increased in Arp2/3 complex-depleted cells, indicating that besides nucleating actin filaments, Arp2/3 complex may influence cell motility by altering Rho GTPase signaling.  相似文献   

9.
Summary Reorganization of the actin cytoskeleton following cell wall puncturing of characean internodal cells was studied by immunofluorescence and confocal laser scanning microscopy. Injury locally destroyed the parallel subcortical actin filament bundles and cortical actin strands that are characteristic of unwounded regions. At wounds, a delicate three-dimensional interlaced structure of actin strands, with meshes up to 5 m wide, formed by de novo assembly of isolated filaments and by the elongation of residual subcortical actin bundles and cortical actin strands. The actin meshwork persisted for up to 2 h, corresponding to the duration of intense wound wall secretion. Actin filament bundles continuous with the subcortical bundles outside the wound then regenerated, their parallel alignment probably assisted by endoplasmic flow. Cytochalasin D concentrations that arrested cytoplasmic streaming completely inhibited the formation of the actin meshwork, wound wall deposition and recovery of actin bundles. Concentrations that only reduced streaming velocity delayed meshwork formation and wound walls were thinner than in controls. The actual amount of F-actin within the meshwork, however, was clearly greater in the presence of low cytochalasin concentrations. In late stages of recovery, the actin bundles became very thick and intervening spaces became wider thereby forming a conspicuous, three-dimensional lattice that was continuous with interwebbing subcortical bundles and cortical actin around the periphery of the wound. Our experiments suggest that actin meshwork formation is a prerequisite for plasma membrane-directed transport of vesicles involved in wounding-induced exocytosis in characean internodes. Stabilization of the meshwork by subinhibitory concentrations of cytochalasin D is probably caused by actinbinding properties of the drug that either induce bundling or impede function of associated proteins.Abbreviations AFW artificial fresh water - BSA bovine serum albumin - CLSM confocal laser scanning microscope (microscopy) - DIC differential interference contrast - DMSO dimethyl sulfoxide - FITC fluorescein isothiocyanate - MBS m-maleimidobenzoyl N-hydroxy-succinimide ester - PBS phosphate-buffered saline - SCAB subcortical actin bundle  相似文献   

10.
Arp2/3 complex nucleates dendritic actin networks and plays a pivotal role in the formation of lamellipodia at the leading edge of motile cells. Mouse fibroblasts lacking functional Arp2/3 complex have the characteristic smooth, veil-like lamellipodial leading edge of wild-type cells replaced by a massive, bifurcating filopodia-like protrusions (FLPs) with fractal geometry. The nanometer-scale actin-network organization of these FLPs can be linked to the fractal geometry of the cell boundary by a self-organized criticality through the bifurcation behavior of cross-linked actin bundles. Despite the pivotal role of the Arp2/3 complex in cell migration, the cells lacking functional Arp2/3 complex migrate at rates similar to wild-type cells. However, these cells display defects in the persistence of a directional movement. We suggest that Arp2/3 complex suppresses the formation of FLPs by locally fine-tuning actin networks and favoring dendritic geometry over bifurcating bundles, giving cells a distinct evolutionary edge by providing the means for a directed movement.  相似文献   

11.
The most important discovery in the field is that the Arp2/3 complex nucleates assembly of actin filaments with free barbed ends. Arp2/3 also binds the sides of actin filaments to create a branched network. Arp2/3's nucleation activity is stimulated by WASP family proteins, some of which mediate signaling from small G-proteins. Listeria movement caused by actin polymerization can be reconstituted in vitro using purified proteins: Arp2/3 complex, capping protein, actin depolymerizing factor/cofilin, and actin. actin depolymerizing factor/cofilin increases the rate at which actin subunits leave pointed ends, and capping protein caps barbed ends.  相似文献   

12.
Yamashita H  Sato Y  Kanegae T  Kagawa T  Wada M  Kadota A 《Planta》2011,233(2):357-368
Cytoskeleton dynamics during phototropin-dependent chloroplast photorelocation movement was analyzed in protonemal cells of actin- and microtubule-visualized lines of Physcomitrella patens expressing GFP- or tdTomato-talin and GFP-tubulin. Using newly developed epi- and trans-microbeam irradiation systems that permit fluorescence observation of the cell under blue microbeam irradiation inducing chloroplast relocation, it was revealed that meshwork of actin filaments formed at the chloroplast-accumulating area both in the avoidance and accumulation movements. The structure disappeared soon when blue microbeam was turned off, and it was not induced under red microbeam irradiation that did not evoke chloroplast relocation movement. In contrast, no apparent change in microtubule organization was detected during the movements. The actin meshwork was composed of short actin filaments distinct from the cytoplasmic long actin cables and was present between the chloroplasts and plasma membrane. The short actin filaments emerged from around the chloroplast periphery towards the center of chloroplast. Showing highly dynamic behavior, the chloroplast actin filaments (cp-actin filaments) were rapidly organized into meshwork on the chloroplast surface facing plasma membrane. The actin filament configuration on a chloroplast led to the formation of actin meshwork area in the cell as the chloroplasts arrived at and occupied the area. After establishment of the meshwork, cp-actin filaments were still highly dynamic, showing appearance, disappearance, severing and bundling of filaments. These results indicate that the cp-actin filaments have significant roles in the chloroplast movement and positioning in the cell.  相似文献   

13.
Wiskott-Aldrich syndrome protein (WASP)/Scar family proteins promote actin polymerization by stimulating the actin-nucleating activity of the Arp2/3 complex. While Scar/WAVE proteins are thought to be involved in lamellipodia protrusion, the hematopoietic WASP has been implicated in various actin-based processes such as chemotaxis, podosome formation, and phagocytosis. Here we show that the ubiquitously expressed N-WASP is essential for actin assembly at the surface of endomembranes induced as a consequence of increased phosphatidylinositol 4,5-biphosphate (PIP2) levels. This process resulting in the motility of intracellular vesicles at the tips of actin comets involved the recruitment of the Src homology 3 (SH3)-SH2 adaptor proteins Nck and Grb2 as well as of WASP interacting protein (WIP). Reconstitution of vesicle movement in N-WASP-defective cells by expression of various N-WASP mutant proteins revealed three independent domains capable of interaction with the vesicle surface, of which both the WH1 and the polyproline domains contributed significantly to N-WASP recruitment and/or activation. In contrast, the direct interaction of N-WASP with the Rho-GTPase Cdc42 was not required for reconstitution of vesicle motility. Our data reveal a distinct cellular phenotype for N-WASP loss of function, which adds to accumulating evidence that the proposed link between actin and membrane dynamics may, at least partially, be reflected by the actin-based movement of vesicles through the cytoplasm.  相似文献   

14.
During cellular migration, regulated actin assembly takes place at the cell leading edge, with continuous disassembly deeper in the cell interior. Actin polymerization at the plasma membrane results in the extension of cellular protrusions in the form of lamellipodia and filopodia. To understand how cells regulate the transformation of lamellipodia into filopodia, and to determine the major factors that control their transition, we studied actin self-assembly in the presence of Arp2/3 complex, WASp-VCA and fascin, the major proteins participating in the assembly of lamellipodia and filopodia. We show that in the early stages of actin polymerization fascin is passive while Arp2/3 mediates the formation of dense and highly branched aster-like networks of actin. Once filaments in the periphery of an aster get long enough, fascin becomes active, linking the filaments into bundles which emanate radially from the aster's surface, resulting in the formation of star-like structures. We show that the number of bundles nucleated per star, as well as their thickness and length, is controlled by the initial concentration of Arp2/3 complex ([Arp2/3]). Specifically, we tested several values of [Arp2/3] and found that for given initial concentrations of actin and fascin, the number of bundles per star, as well as their length and thickness are larger when [Arp2/3] is lower. Our experimental findings can be interpreted and explained using a theoretical scheme which combines Kinetic Monte Carlo simulations for aster growth, with a simple mechanistic model for bundles' formation and growth. According to this model, bundles emerge from the aster's (sparsely branched) surface layer. Bundles begin to form when the bending energy associated with bringing two filaments into contact is compensated by the energetic gain resulting from their fascin linking energy. As time evolves the initially thin and short bundles elongate, thus reducing their bending energy and allowing them to further associate and create thicker bundles, until all actin monomers are consumed. This process is essentially irreversible on the time scale of actin polymerization. Two structural parameters, L, which is proportional to the length of filament tips at the aster periphery and b, the spacing between their origins, dictate the onset of bundling; both depending on [Arp2/3]. Cells may use a similar mechanism to regulate filopodia formation along the cell leading edge. Such a mechanism may allow cells to have control over the localization of filopodia by recruiting specific proteins that regulate filaments length (e.g., Dia2) to specific sites along lamellipodia.  相似文献   

15.
Disassembly of the epithelial apical junctional complex (AJC), composed of the tight junction (TJ) and adherens junction (AJ), is important for normal tissue remodeling and pathogen-induced disruption of epithelial barriers. Using a calcium depletion model in T84 epithelial cells, we previously found that disassembly of the AJC results in endocytosis of AJ/TJ proteins. In the present study, we investigated the role of the actin cytoskeleton in disassembly and internalization of the AJC. Calcium depletion induced reorganization of apical F-actin into contractile rings. Internalized AJ/TJ proteins colocalized with these rings. Both depolymerization and stabilization of F-actin inhibited ring formation and disassembly of the AJC, suggesting a role for actin filament turnover. Actin reorganization was accompanied by activation (dephosphorylation) of cofilin-1 and its translocation to the F-actin rings. In addition, Arp3 and cortactin colocalized with these rings. F-actin reorganization and disassembly of the AJC were blocked by blebbistatin, an inhibitor of nonmuscle myosin II. Myosin IIA was expressed in T84 cells and colocalized with F-actin rings. We conclude that disassembly of the AJC in calcium-depleted cells is driven by reorganization of apical F-actin. Mechanisms of such reorganization involve cofilin-1-dependent depolymerization and Arp2/3-assisted repolymerization of actin filaments as well as myosin IIA-mediated contraction.  相似文献   

16.
Hu X  Kuhn JR 《PloS one》2012,7(2):e31385
We reconstructed cellular motility in vitro from individual proteins to investigate how actin filaments are organized at the leading edge. Using total internal reflection fluorescence microscopy of actin filaments, we tested how profilin, Arp2/3, and capping protein (CP) function together to propel thin glass nanofibers or beads coated with N-WASP WCA domains. Thin nanofibers produced wide comet tails that showed more structural variation in actin filament organization than did bead substrates. During sustained motility, physiological concentrations of Mg(2+) generated actin filament bundles that processively attached to the nanofiber. Reduction of total Mg(2+) abolished particle motility and actin attachment to the particle surface without affecting actin polymerization, Arp2/3 nucleation, or filament capping. Analysis of similar motility of microspheres showed that loss of filament bundling did not affect actin shell formation or symmetry breaking but eliminated sustained attachments between the comet tail and the particle surface. Addition of Mg(2+), Lys-Lys(2+), or fascin restored both comet tail attachment and sustained particle motility in low Mg(2+) buffers. TIRF microscopic analysis of filaments captured by WCA-coated beads in the absence of Arp2/3, profilin, and CP showed that filament bundling by polycation or fascin addition increased barbed end capture by WCA domains. We propose a model in which CP directs barbed ends toward the leading edge and polycation-induced filament bundling sustains processive barbed end attachment to the leading edge.  相似文献   

17.
Summary Retinal pigmented epithelial cells of chicken have circumferential microfilament bundles (CMBs) at the zonula adherens region. Isolated CMBs are polygons filled with a meshwork composed primarily of intermediate filaments; they show three major components of 200000, 55000, and 42000 daltons in SDS-gel electrophoresis. Here we have characterized the 55000-dalton protein immunochemically and ultrastructurally. Immunoblotting and immunofluorescence microscopy have shown that the 55000-dalton protein is an intermediate filament protein, vimentin.Vimentin filaments changed their distribution during differentiation of pigmented epithelial cells in culture. The protein in the elongated cells showed a fibroblast-type pattern of intermediate filaments. During epithelium formation, the filaments were uniformly distributed and formed a finer meshwork at the apical level. In pigmented epithelial cells that differentiated and matured in culture, vimentin and actin exhibited their characteristic behavior after treatment with colcemid. In the central to basal region of the cell, intermediate filaments formed thick perinuclear bundles. In the apical region, however, intermediate filaments changed in organization from a nonpolarized meshwork to a polarized bundle-like structure. Simultaneously, new actin bundles were formed, running parallel to the intermediate filaments. This suggests that there is some interaction between microfilaments and intermediate filaments in the apical region of these cells.  相似文献   

18.
Growth cone collapsing factors induce growth cone collapse or repulsive growth cone turning by interacting with membrane receptors that induce alterations in the growth cone cytoskeleton. A common change induced by collapsing factors in the cytoskeleton of the peripheral domain, the thin lamellopodial area of growth cones, is a decline in the number of radially aligned F-actin bundles that form the core of filopodia. The present study examined whether ML-7, a myosin light chain kinase inhibitor, serotonin, a neurotransmitter and TPA, an activator of protein kinase C, which induce growth cone collapse of Helisoma growth cones, depolymerized or debundled F-actin. We report that these collapsing factors had different effects. ML-7 induced F-actin reorganization consistent with debundling whereas serotonin and TPA predominately depolymerized and possibly debundled F-actin. Additionally, these collapsing factors induced the formation of a dense actin-ring around the central domain, the thicker proximal area of growth cones [Zhou and Cohan, 2001: J. Cell Biol. 153:1071-1083]. The formation of the actin-ring occurred subsequent to the loss of actin bundles. The ML-7-induced actin-ring was found to inhibit microtubule extension into the P-domain. Thus, ML-7, serotonin, and TPA induce growth cone collapse associated with a decline in radially aligned F-actin bundles through at least two mechanisms involving debundling of actin filaments and/or actin depolymerization.  相似文献   

19.
Actin branch junctions are conserved cytoskeletal elements critical for the generation of protrusive force during actin polymerization-driven cellular motility. Assembly of actin branch junctions requires the Arp2/3 complex, upon activation, to initiate a new actin (daughter) filament branch from the side of an existing (mother) filament, leading to the formation of a dendritic actin network with the fast growing (barbed) ends facing the direction of movement. Using genetic labeling and electron microscopy, we have determined the structural organization of actin branch junctions assembled in vitro with 1-nm precision. We show here that the activators of the Arp2/3 complex, except cortactin, dissociate after branch formation. The Arp2/3 complex associates with the mother filament through a comprehensive network of interactions, with the long axis of the complex aligned nearly perpendicular to the mother filament. The actin-related proteins, Arp2 and Arp3, are positioned with their barbed ends facing the direction of daughter filament growth. This subunit map brings direct structural insights into the mechanism of assembly and mechanical stability of actin branch junctions.  相似文献   

20.
Arp2/3 complex is an important actin filament nucleator that creates branched actin filament networks required for formation of lamellipodia and endocytic actin structures. Cellular assembly of branched actin networks frequently requires multiple Arp2/3 complex activators, called nucleation promoting factors (NPFs). We recently presented a mechanism by which cortactin, a weak NPF, can displace a more potent NPF, N-WASP, from nascent branch junctions to synergistically accelerate nucleation. The distinct roles of these NPFs in branching nucleation are surprising given their similarities. We biochemically dissected these two classes of NPFs to determine how their Arp2/3 complex and actin interacting segments modulate their influences on branched actin networks. We find that the Arp2/3 complex-interacting N-terminal acidic sequence (NtA) of cortactin has structural features distinct from WASP acidic regions (A) that are required for synergy between the two NPFs. Our mutational analysis shows that differences between NtA and A do not explain the weak intrinsic NPF activity of cortactin, but instead that cortactin is a weak NPF because it cannot recruit actin monomers to Arp2/3 complex. We use TIRF microscopy to show that cortactin bundles branched actin filaments using actin filament binding repeats within a single cortactin molecule, but that N-WASP antagonizes cortactin-mediated bundling. Finally, we demonstrate that multiple WASP family proteins synergistically activate Arp2/3 complex and determine the biochemical requirements in WASP proteins for synergy. Our data indicate that synergy between WASP proteins and cortactin may play a general role in assembling diverse actin-based structures, including lamellipodia, podosomes, and endocytic actin networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号