共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Sphingosylphosphorylcholine (SPC) produces reactive oxygen species (ROS) in MS1 pancreatic islet endothelial cells. In the present study, we explored the physiological significance of the SPC-induced ROS generation in endothelial cells. SPC induced cell death of MS1 cells at higher than 10 microM concentration through a caspase-3-dependent pathway. SPC treatment induced sustained activation of an extracellular signal-regulated kinase (ERK), in contrast to transient activation of ERK in response to platelet-derived growth factor (PDGF)-BB, which stimulated proliferation of MS1 cells. Both the SPC-induced cell death and ERK activation were abolished by pretreatment of the cells with the MEK inhibitor U0126 or by overexpression of a dominant negative mutant of MEK1 (DN-MEK1). Pretreatment of the cells with N-acetylcysteine, an antioxidant, completely prevented the SPC-induced ROS generation, apoptosis, and ERK activation, whereas the ROS generation was not abrogated by treatment with U0126. Consistent with these results, SPC induced cell death of human umbilical vein endothelial cells (HUVECs) through ROS-mediated activation of ERK. These results suggest that the SPC-induced generation of ROS plays a crucial role in the cell death of endothelial cells through ERK-dependent pathway. 相似文献
3.
Exposure to cigarette smoke increases apoptosis in the rat gastric mucosa through a reactive oxygen species-mediated and p53-independent pathway 总被引:5,自引:0,他引:5
Cigarette smoking is a major risk factor for gastric cancer and peptic ulcer. The aim of our study was to investigate the relationship between exposure to cigarette smoke and apoptosis in the rat gastric mucosa and the mechanism involved. Rats were exposed to different concentrations of cigarette smoke (0, 2, and 4%) once daily for a different number of 1 h periods (1, 3, 6, and 9 d). Apoptosis was identified by the terminal deoxy-transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) method and caspase-3 activity. The mucosal xanthine oxidase (XO) activity and p53 level were also measured. The results showed that exposure to cigarette smoke produced a time- and concentration-dependent increase in apoptosis in the rat gastric mucosa that was accompanied by an increase in XO activity. The increased apoptosis and XO activity could be detected after even a single exposure. In contrast, the level of p53 was elevated only in the later stage of cigarette smoke exposure. The apoptotic effect could be blocked by pretreatment with an XO inhibitor (allopurinol, 20 mg/kg intraperitoneally) or a hydroxyl free radical scavenger (DMSO, 0.2%, 1 ml/kg intravenously). However, neither of these treatments had any effect on the p53 level of the mucosa. In summary, we conclude that exposure to cigarette smoke can increase apoptosis in the rat gastric mucosa through a reactive oxygen species- (ROS) mediated and a p53-independent pathway. 相似文献
4.
Seol DW 《Biochemical and biophysical research communications》2011,416(1-2):222-225
Gliomas are the most common brain tumors in adults and account for more than half of all brain tumors. Despite intensive clinical investigations, average survival for the patients harboring the malignancy has not been significantly improved. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), shown to have potent and cancer-selective killing activity, has drawn considerable attention as a promising anti-cancer therapy. In an attempt to develop TRAIL as an anti-cancer therapy for gliomas, tumor suppressor activity of TRAIL was assessed using human glioma cell lines such as U373MG, U343MG, U87MG and LN18. U343MG, U87MG and LN18 cells were susceptible to TRAIL; however, U373MG cells were completely refractory to TRAIL. Resistance to the applied therapies is a key issue in cancer treatment; thus, various combination treatments were evaluated using U373MG cells to identify a better regimen. Unlike Doxorubicin, Etoposide, Actinomycin D and Wortmannin, a proteasome inhibitor MG132 significantly enhanced TRAIL-induced apoptosis. Similarly, other proteasome inhibitors, including Lactacystin, Proteasome inhibitor I and Velcade (Bortezomib), also enhanced apoptotic activity of TRAIL. Among these proteasome inhibitors, Velcade, the only approved drug, was as effective as MG132 in enhancing TRAIL-induced apoptosis. Both Velcade and MG132 increased the protein levels of DR5, a TRAIL receptor known to be up-regulated by p53, in U373MG cells where p53 is mutated. Our data indicate that proteasome inhibitors up-regulate DR5 in a p53-independent manner and a combination therapy comprising TRAIL and Velcade become a better treatment regimen for gliomas. 相似文献
5.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for cancer therapy. However, a number of prostate cancer cells exhibit high resistance to TRAIL effect. In this study, we found that Triptolide, a Chinese medicine, significantly sensitizes prostate cancer cells to TRAIL-mediated cellular apoptosis by up-regulating DR5 expression. Triptolide treatment can suppress Akt/Hdm2 signaling pathway, and lead to p53 accumulation, thereby up-regulating DR5 expression. Taken together, all evidences indicate that Triptolide may become a promising therapeutic agent that prevents the progression of prostate cancer. 相似文献
6.
Hypoxia triggers AMPK activation through reactive oxygen species-mediated activation of calcium release-activated calcium channels 总被引:1,自引:0,他引:1
Mungai PT Waypa GB Jairaman A Prakriya M Dokic D Ball MK Schumacker PT 《Molecular and cellular biology》2011,31(17):3531-3545
AMP-activated protein kinase (AMPK) is an energy sensor activated by increases in [AMP] or by oxidant stress (reactive oxygen species [ROS]). Hypoxia increases cellular ROS signaling, but the pathways underlying subsequent AMPK activation are not known. We tested the hypothesis that hypoxia activates AMPK by ROS-mediated opening of calcium release-activated calcium (CRAC) channels. Hypoxia (1.5% O(2)) augments cellular ROS as detected by the redox-sensitive green fluorescent protein (roGFP) but does not increase the [AMP]/[ATP] ratio. Increases in intracellular calcium during hypoxia were detected with Fura2 and the calcium-calmodulin fluorescence resonance energy transfer (FRET) sensor YC2.3. Antioxidant treatment or removal of extracellular calcium abrogates hypoxia-induced calcium signaling and subsequent AMPK phosphorylation during hypoxia. Oxidant stress triggers relocation of stromal interaction molecule 1 (STIM1), the endoplasmic reticulum (ER) Ca(2+) sensor, to the plasma membrane. Knockdown of STIM1 by short interfering RNA (siRNA) attenuates the calcium responses to hypoxia and subsequent AMPK phosphorylation, while inhibition of L-type calcium channels has no effect. Knockdown of the AMPK upstream kinase LKB1 by siRNA does not prevent AMPK activation during hypoxia, but knockdown of CaMKKβ abolishes the AMPK response. These findings reveal that hypoxia can trigger AMPK activation in the apparent absence of increased [AMP] through ROS-dependent CRAC channel activation, leading to increases in cytosolic calcium that activate the AMPK upstream kinase CaMKKβ. 相似文献
7.
8.
IL-2 gene expression and NF-kappa B activation through CD28 requires reactive oxygen production by 5-lipoxygenase. 总被引:6,自引:0,他引:6 下载免费PDF全文
M Los H Schenk K Hexel P A Baeuerle W Dr?ge K Schulze-Osthoff 《The EMBO journal》1995,14(15):3731-3740
Activation of the CD28 surface receptor provides a major costimulatory signal for T cell activation resulting in enhanced production of interleukin-2 (IL-2) and cell proliferation. In primary T lymphocytes we show that CD28 ligation leads to the rapid intracellular formation of reactive oxygen intermediates (ROIs) which are required for CD28-mediated activation of the NF-kappa B/CD28-responsive complex and IL-2 expression. Delineation of the CD28 signaling cascade was found to involve protein tyrosine kinase activity, followed by the activation of phospholipase A2 and 5-lipoxygenase. Our data suggest that lipoxygenase metabolites activate ROI formation which then induce IL-2 expression via NF-kappa B activation. These findings should be useful for therapeutic strategies and the development of immunosuppressants targeting the CD28 costimulatory pathway. 相似文献
9.
Ferroptosis-inducing agents enhance TRAIL-induced apoptosis through upregulation of death receptor 5
Young-Sun Lee Dae-Hee Lee So Yeon Jeong Seong Hye Park Sang Cheul Oh Yong Seok Park Jian Yu Haroon A Choudry David L Bartlett Yong J Lee 《Journal of cellular biochemistry》2019,120(1):928-939
Ferroptosis is considered genetically and biochemically distinct from other forms of cell death. In this study, we examined whether ferroptosis shares cell death pathways with other types of cell death. When human colon cancer HCT116, CX-1, and LS174T cells were treated with ferroptotic agents such as sorafenib (SRF), erastin, and artesunate, data from immunoblot assay showed that ferroptotic agents induced endoplasmic reticulum (ER) stress and the ER stress response-mediated expression of death receptor 5 (DR5), but not death receptor 4. An increase in the level of DR5, which is activated by binding to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and initiates apoptosis, was probably responsible for synergistic apoptosis when cells were treated with ferroptotic agent in combination with TRAIL. This collateral effect was suppressed in C/EBP (CCAAT-enhancer-binding protein)-homologous protein (CHOP)-deficient mouse embryonic fibroblasts or DR5 knockdown HCT116 cells, but not in p53-deficient HCT116 cells. The results from in vitro studies suggest the involvement of the p53-independent CHOP/DR5 axis in the synergistic apoptosis during the combinatorial treatment of ferroptotic agent and TRAIL. The synergistic apoptosis and regression of tumor growth were also observed in xenograft tumors when SRF and TRAIL were administered to tumor-bearing mice. 相似文献
10.
Carnosic acid (CA), a rosemary phenolic compound, has been shown to display anti-cancer activity. We examined the apoptotic
effect of CA in human neuroblastoma IMR-32 cells and elucidated the role of the reactive oxygen species (ROS) and mitogen-activated
protein kinase (MAPK) associated with carcinogenesis. The result indicated that CA decreased the cell viability in a dose-dependent
manner. Further investigation in IMR-32 cells revealed that cell apoptosis following CA treatment is the mechanism as confirmed
by flow cytometry, hoechst 33258, and caspase-3/-9 and poly(ADP-ribose) polymerase (PARP) activation. Immunoblotting suggested
a down-regulation of anti-apoptotic Bcl-2 protein in the CA-treated cells. In flow cytometric analysis, CA caused the generation
of reactive oxygen species (ROS); however, pretreatment with the antioxidant N-acetylcysteine (NAC) attenuated the CA-induced generation of ROS and apoptosis. This effect was accompanied by increased
activation of p38 and by decreased activation of extracellular signal-regulated kinase (ERK) as well as activation of c-Jun
NH2-terminal kinase (JNK). Moreover, NAC attenuated the CA-induced phosphorylation of p38. Silencing of p38 by siRNA gene knockdown
reduced the CA-induced activation of caspase-3. In conclusion, ROS-mediated p38 MAPK activation plays a critical role in CA-induced
apoptosis in IMR-32 cells. 相似文献
11.
Ras activation is a frequent event in human hepatocarcinoma that may contribute to resistance towards apoptosis. Salirasib is a ras and mTOR inhibitor that induces a pro-apoptotic phenotype in human hepatocarcinoma cell lines. In this work, we evaluate whether salirasib sensitizes those cells to TRAIL-induced apoptosis. Cell viability, cell death and apoptosis were evaluated in vitro in HepG2, Hep3B and Huh7 cells treated with DMSO, salirasib and YM155 (a survivin inhibitor), alone or in combination with recombinant TRAIL. Our results show that pretreatment with salirasib sensitized human hepatocarcinoma cell lines, but not normal human hepatocytes, to TRAIL-induced apoptosis. Indeed, FACS analysis showed that 25 (Huh7) to 50 (HepG2 and Hep3B) percent of the cells treated with both drugs were apoptotic. This occurred through activation of the extrinsic and the intrinsic pathways, as evidenced by a marked increase in caspase 3/7 (five to ninefold), caspase 8 (four to sevenfold) and caspase 9 (eight to 12-fold) activities in cells treated with salirasib and TRAIL compared with control. Survivin inhibition had an important role in this process and was sufficient to sensitize hepatocarcinoma cells to apoptosis. Furthermore, TRAIL-induced apoptosis in HCC cells pretreated with salirasib was dependent on activation of death receptor (DR) 5. In conclusion, salirasib sensitizes hepatocarcinoma cells to TRAIL-induced apoptosis by a mechanism involving the DR5 receptor and survivin inhibition. These results in human hepatocarcinoma cell lines and primary hepatocytes provide a rationale for testing the combination of salirasib and TRAIL agonists in human hepatocarcinoma. 相似文献
12.
13.
Jinqiu Tao Guangli Sun Qing Li Xiaofei Zhi Zheng Li Zhongyuan He Huihui Chen Aiping Zhou Jiahui Ye Guifang Xu Wenxian Guan Weijie Zhang 《Journal of cellular physiology》2020,235(12):9388-9398
Kinesin family member 15 (KIF15) is a member of the kinesin superfamily of proteins, which promotes cell mitosis, participates in the transport of intracellular materials, and helps structural assembly and cell signaling pathways transduction. However, its biological role and molecular mechanisms of action in the development of gastric cancer (GC) remain unclear. In the present study, an integrated analysis of The Cancer Genome Atlas (TCGA), Gene Expression Omnibus database, and Kaplan–Meier plotter database was performed to predict the expression and prognostic value of KIF15 in GC patients. Detection of KIF15 expression in GC cells and tissues was performed by a quantitative polymerase chain reaction. In vitro cell proliferation, viability, colony formation ability and flow cytometry assays, and in vivo tumorigenicity assay, were performed to evaluate the effects of KIF15 knockdown on GC cell phenotype. It was demonstrated that the expression of KIF15 messenger RNA in GC tissues was significantly higher compared with that in adjacent tissues, and was closely associated with larger tumor size and poor patient prognosis. In addition, functional studies demonstrated that, due to the increase in reactive oxygen species (ROS) generation, the interference with the expression of KIF15 not only decreased cell proliferation but also increased cell apoptosis and induced cell cycle arrest. ROS-mediated activation of c-Jun N-terminal kinase/c-Jun signaling reduced cell proliferation by regulating the GC cell cycle and increasing apoptosis. Taken together, the results of the present study indicate that KIF15 is an oncoprotein contributing to GC progression, and is expected to help identify novel biomarkers and treatment targets in GC. 相似文献
14.
15.
《Cell cycle (Georgetown, Tex.)》2013,12(17):3312-3323
The discovery of the molecular targets of chemotherapeutic medicines and their chemical footprints can validate and improve the use of such medicines. In the present report, we investigated the effect of mitomycin C (MMC), a classical chemotherapeutic agent on cancer cell apoptosis induced by TRAIL. We found that MMC not only potentiated TRAIL-induced apoptosis in HCT116 (p53?/?) colon cancer cells but also sensitized TRAIL-resistant colon cancer cells HT-29 to the cytokine both in vitro and in vivo. MMC also augmented the pro-apoptotic effects of two TRAIL receptor agonist antibodies, mapatumumab and lexatumumab. At a mechanistic level, MMC downregulated cell survival proteins, including Bcl2, Mcl-1 and Bcl-XL, and upregulated pro-apoptotic proteins including Bax, Bim and the cell surface expression of TRAIL death receptors DR4 and DR5. Gene silencing of DR5 by short hairpin RNA reduced the apoptosis induced by combination treatment of MMC and TRAIL. Induction of DR4 and DR5 was independent of p53, Bax and Bim but was dependent on c-Jun N terminal kinase (JNK) as JNK pharmacological inhibition and siRNA abolished the induction of the TRAIL receptors by MMC. 相似文献
16.
17.
Prasad S Yadav VR Kannappan R Aggarwal BB 《The Journal of biological chemistry》2011,286(7):5546-5557
Discovery of the molecular targets of traditional medicine and its chemical footprints can validate the use of such medicine. In the present report, we investigated the effect of ursolic acid (UA), a pentacyclic triterpenoid found in rosemary and holy basil, on apoptosis induced by TRAIL. We found that UA potentiated TRAIL-induced apoptosis in cancer cells. In addition, UA also sensitized TRAIL-resistant cancer cells to the cytokine. When we investigated the mechanism, we found that UA down-regulated cell survival proteins and induced the cell surface expression of both TRAIL receptors, death receptors 4 and 5 (DR4 and -5). Induction of receptors by UA occurred independently of cell type. Gene silencing of either receptor by small interfering RNA reduced the apoptosis induced by UA and the effect of TRAIL. In addition, UA also decreased the expression of decoy receptor 2 (DcR2) but not DcR1. Induction of DRs was independent of p53 because UA induced DR4 and DR5 in HCT116 p53(-/-) cells. Induction of DRs, however, was dependent on JNK because UA induced JNK, and its pharmacologic inhibition abolished the induction of the receptors. The down-regulation of survival proteins and up-regulation of the DRs required reactive oxygen species (ROS) because UA induced ROS, and its quenching abolished the effect of the terpene. Also, potentiation of TRAIL-induced apoptosis by UA was significantly reduced by both ROS quenchers and JNK inhibitor. In addition, UA was also found to induce the expression of DRs, down-regulate cell survival proteins, and activate JNK in orthotopically implanted human colorectal cancer in a nude mouse model. Overall, our results showed that UA potentiates TRAIL-induced apoptosis through activation of ROS and JNK-mediated up-regulation of DRs and down-regulation of DcR2 and cell survival proteins. 相似文献
18.
19.
p38 MAP kinase regulates benzo(a)pyrene-induced apoptosis through the regulation of p53 activation 总被引:2,自引:0,他引:2
Kim SJ Ko CB Park C Kim BR Sung TH Koh DH Kim NS Oh KJ Chung SY Park R 《Archives of biochemistry and biophysics》2005,444(2):121-129
Polycyclic aromatic hydrocarbons, such as benzo(a)pyrene (BaP), are widespread in the environment and cause untoward effects, including carcinogenesis, in mammalian cells. However, the molecular mechanism of apoptosis by BaP is remained to be elusive. Pharmacological inhibition of p38 kinase markedly inhibited the BaP-induced cytotoxicity, which was proven as apoptosis characterized by an increase in sub-G(0)/G(1) fraction of DNA content, ladder-pattern fragmentation of genomic DNA, and catalytic activation of caspase-3 with PARP cleavage. Our data also demonstrated that activation of caspase-3 was accompanied with activation of caspase-9 and mitochondrial dysfunction, which was also apparently suppressed by pretreatment with p38 kinase inhibitors. Also, pharmacological inhibition of p38 markedly inhibited the phosphorylation, accumulated expression, and transactivation activity of p53 in BaP-treated cells. Adenoviral overexpression of human p53 (wild-type) further augmented in increase of PARP cleavage and the sub-G(0)/G(1) fraction of DNA content. Furthermore, p53 mediated apoptotic activity in BaP-treated cells was inhibited by p38 kinase inhibitor. The current data collectively indicate that BaP induces apoptosis of Hepa1c1c7 cells via activation of p53-related signaling, which was, in part, regulated by p38 kinase. 相似文献
20.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for anticancer therapy; however, non-small-cell lung carcinoma (NSCLC) cells are relatively TRAIL resistant. Identification of small molecules that can restore NSCLC susceptibility to TRAIL-induced apoptosis is meaningful. We found here that rotenone, as a mitochondrial respiration inhibitor, preferentially increased NSCLC cells sensitivity to TRAIL-mediated apoptosis at subtoxic concentrations, the mechanisms by which were accounted by the upregulation of death receptors and the downregulation of c-FLIP (cellular FLICE-like inhibitory protein). Further analysis revealed that death receptors expression by rotenone was regulated by p53, whereas c-FLIP downregulation was blocked by Bcl-XL overexpression. Rotenone triggered the mitochondria-derived reactive oxygen species (ROS) generation, which subsequently led to Bcl-XL downregulation and PUMA upregulation. As PUMA expression was regulated by p53, the PUMA, Bcl-XL and p53 in rotenone-treated cells form a positive feedback amplification loop to increase the apoptosis sensitivity. Mitochondria-derived ROS, however, promote the formation of this amplification loop. Collectively, we concluded that ROS generation, Bcl-XL and p53-mediated amplification mechanisms had an important role in the sensitization of NSCLC cells to TRAIL-mediated apoptosis by rotenone. The combined TRAIL and rotenone treatment may be appreciated as a useful approach for the therapy of NSCLC that warrants further investigation.Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has emerged as a promising cancer therapeutic because it can selectively induce apoptosis in tumor cells in vitro, and most importantly, in vivo with little adverse effect on normal cells.1 However, a number of cancer cells are resistant to TRAIL, especially highly malignant tumors such as lung cancer.2, 3 Lung cancer, especially the non-small-cell lung carcinoma (NSCLC) constitutes a heavy threat to human life. Presently, the morbidity and mortality of NSCLC has markedly increased in the past decade,4 which highlights the need for more effective treatment strategies.TRAIL has been shown to interact with five receptors, including the death receptors 4 and 5 (DR4 and DR5), the decoy receptors DcR1 and DcR2, and osteoprotegerin.5 Ligation of TRAIL to DR4 or DR5 allows for the recruitment of Fas-associated protein with death domain (FADD), which leads to the formation of death-inducing signaling complex (DISC) and the subsequent activation of caspase-8/10.6 The effector caspase-3 is activated by caspase-8, which cleaves numerous regulatory and structural proteins resulting in cell apoptosis. Caspase-8 can also cleave the Bcl-2 inhibitory BH3-domain protein (Bid), which engages the intrinsic apoptotic pathway by binding to Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist killer (BAK). The oligomerization between Bcl-2 and Bax promotes the release of cytochrome c from mitochondria to cytosol, and facilitates the formation of apoptosome and caspase-9 activation.7 Like caspase-8, caspase-9 can also activate caspase-3 and initiate cell apoptosis. Besides apoptosis-inducing molecules, several apoptosis-inhibitory proteins also exist and have function even when apoptosis program is initiated. For example, cellular FLICE-like inhibitory protein (c-FLIP) is able to suppress DISC formation and apoptosis induction by sequestering FADD.8, 9, 10, 11Until now, the recognized causes of TRAIL resistance include differential expression of death receptors, constitutively active AKT and NF-κB,12, 13 overexpression of c-FLIP and IAPs, mutations in Bax and BAK gene.2 Hence, resistance can be overcome by the use of sensitizing agents that modify the deregulated death receptor expression and/or apoptosis signaling pathways in cancer cells.5 Many sensitizing agents have been developed in a variety of tumor cell models.2 Although the clinical effectiveness of these agents needs further investigation, treatment of TRAIL-resistant tumor cells with sensitizing agents, especially the compounds with low molecular weight, as well as prolonged plasma half-life represents a promising trend for cancer therapy.Mitochondria emerge as intriguing targets for cancer therapy. Metabolic changes affecting mitochondria function inside cancer cells endow these cells with distinctive properties and survival advantage worthy of drug targeting, mitochondria-targeting drugs offer substantial promise as clinical treatment with minimal side effects.14, 15, 16 Rotenone is a potent inhibitor of NADH oxidoreductase in complex I, which demonstrates anti-neoplastic activity on a variety of cancer cells.17, 18, 19, 20, 21 However, the neurotoxicity of rotenone limits its potential application in cancer therapy. To avoid it, rotenone was effectively used in combination with other chemotherapeutic drugs to kill cancerous cells.22In our previous investigation, we found that rotenone was able to suppress membrane Na+,K+-ATPase activity and enhance ouabain-induced cancer cell death.23 Given these facts, we wonder whether rotenone may also be used as a sensitizing agent that can restore the susceptibility of NSCLC cells toward TRAIL-induced apoptosis, and increase the antitumor efficacy of TRAIL on NSCLC. To test this hypothesis, we initiated this study. 相似文献