首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enlargement of the vestibular aqueduct (EVA) is the most common inner ear anomaly detected in ears of children with sensorineural hearing loss. Pendred syndrome (PS) is an autosomal recessive disorder characterized by bilateral sensorineural hearing loss with EVA and an iodine organification defect that can lead to thyroid goiter. Pendred syndrome is caused by mutations of the SLC26A4 gene. SLC26A4 mutations may also be identified in some patients with nonsyndromic EVA (NSEVA). The presence of two mutant alleles of SLC26A4 is correlated with bilateral EVA and Pendred syndrome, whereas unilateral EVA and NSEVA are correlated with one (M1) or zero (M0) mutant alleles of SLC26A4. Thyroid gland enlargement (goiter) appears to be primarily dependent on the presence of two mutant alleles of SLC26A4 in pediatric patients, but not in older patients. In M1 families, EVA may be associated with a second, undetected SLC26A4 mutation or epigenetic modifications. In M0 families, there is probably etiologic heterogeneity that includes causes other than, or in addition to, monogenic inheritance.  相似文献   

2.
Linkage analysis and DNA sequencing in a family exhibiting an X-linked mental retardation (XLMR) syndrome, characterized by microcephaly, epilepsy, ataxia, and absent speech and resembling Angelman syndrome, identified a deletion in the SLC9A6 gene encoding the Na(+)/H(+) exchanger NHE6. Subsequently, other mutations were found in a male with mental retardation (MR) who had been investigated for Angelman syndrome and in two XLMR families with epilepsy and ataxia, including the family designated as having Christianson syndrome. Therefore, mutations in SLC9A6 cause X-linked mental retardation. Additionally, males with findings suggestive of unexplained Angelman syndrome should be considered as potential candidates for SLC9A6 mutations.  相似文献   

3.
Mutations in the SLC3A1 Transporter Gene in Cystinuria   总被引:3,自引:2,他引:1       下载免费PDF全文
Cystinuria is an autosomal recessive disease characterized by the development of kidney stones. Guided by the identification of the SLC3A1 amino acid–transport gene on chromosome 2, we recently established genetic linkage of cystinuria to chromosome 2p in 17 families, without evidence for locus heterogeneity. Other authors have independently identified missense mutations in SLC3A1 in cystinuria patients. In this report we describe four additional cystinuria-associated mutations in this gene: a frameshift, a deletion, a transversion inducing a critical amino acid change, and a nonsense mutation. The latter stop codon was found in all of eight Ashkenazi Jewish carrier chromosomes examined. This report brings the number of disease-associated mutations in this gene to 10. We also assess the frequency of these mutations in our 17 cystinuria families.  相似文献   

4.
5.
B Sagong  JH Seok  TJ Kwon  UK Kim  SH Lee  KY Lee 《Gene》2012,508(1):135-139
Pendred syndrome (PS) is an autosomal recessive disorder characterized by congenital bilateral sensorineural hearing loss, goiter, and incomplete iodide organification. Patients with PS also have structural anomalies of the inner ear such as enlarged vestibular aqueducts (EVA) and Mondini's malformation. The goiter, which is a major clinical manifestation of PS, usually develops around adolescence. PS is caused by biallelic mutations of the SLC26A4 gene, while nonsyndromic bilateral EVA is associated with zero or one SLC26A4 mutant allele. We report here a Korean family including a young female with PS who had goiter and progressive, fluctuating sensorineural hearing loss that could be partially recovered by oral steroid treatment. Genetic investigation revealed compound heterozygous mutations for p.R677AfsX11, a novel frameshift mutation, and p.H723R in the SLC26A4 gene. Our findings provide detailed information regarding the distribution of mutant alleles for PS and may serve as a foundation for studies to comprehend the genetic portion of syndromic hearing loss.  相似文献   

6.

Background

Arterial tortuosity syndrome (ATS) (OMIM #208050) is a rare autosomal recessive connective tissue disorder characterized by tortuosity and elongation of the large and medium-sized arteries, propensity to aneurysms formation, vascular dissection, and pulmonary arteries stenosis. ATS is caused by mutations in SLC2A10 gene, encoding for the facilitative glucose transporter 10 (GLUT10). So far, 17 SLC2A10 mutations have been reported in 32 families, two of which were Italian with a total of five patients. Here we present the clinical and molecular characterization of two novel Italian paediatric ATS patients.

Methods

The exons and intronic flanking regions of SLC2A10 gene were amplified and direct sequencing was performed.

Results

In both patients, the involvement of major- and medium-sized arteries was characteristic; the nonvascular connective tissue manifestations were mild and not pathognomic of the disorder. Both patients, born from non-consanguineous parents, were heterozygous for two different SLC2A10 mutations, three of which were recurrent and one was novel (p.Arg231Trp). This mutation is localized at the endofacial loop between the transmembrane domains 6 and 7 of GLUT10.

Conclusion

Two novel ATS patients were characterized at clinical and molecular level. Overall, four ATS unrelated families are known in Italy so far. Though ATS clinical delineation improved in the last years, further works in the comprehension of disease presentation and complications onset, particularly in paediatric age, and on ATS molecular basis are needed to add new insights for diagnosis and prevention strategies for related complications.  相似文献   

7.
Firasat  Sabika  Dur-e-Shawar  Khan  Wajid Ali  Sughra  Ume  Nousheen  Kaul  Haiba  Naz  Shagufta  Noreen  Bushra  Gul  Rutaba  Afshan  Kiran 《Molecular biology reports》2021,48(11):7467-7476
Background

Autosomal recessive corneal hereditary endothelial dystrophy (CHED) is a rare congenital disorder of cornea. Mutations in SLC4A11 gene are associated with CHED phenotype. CHED is also an early feature of Harboyan syndrome. The aim of the present study was to identify genetic mutations in the SLC4A11 gene in CHED cases belonging to inbred Pakistani families. Furthermore, all homozygous mutation carriers were investigated for hearing deficit.

Methods and results

This study included consanguineous CHED families presented at Al-Shifa Trust Eye Hospital, Rawalpindi, Pakistan from June 2018 to September 2018. DNA was extracted from blood samples. Direct sequencing of SLC4A11 gene was performed. All identified variants were evaluated by in silico programs i.e., SIFT, PolyPhen‐2, and MutationTaster. Pathogenicity of the two identified splice site variants was analyzed by Human Splicing Finder and MaxEnt Scan. Screening of five CHED families revealed a total of three previously un reported (p.Arg128Gly, c.2241-2A?>?T and c.1898-2A?>?C in family CHED19, CHED22 and CHED26 respectively) and two already reported homozygous disease causing variants (p.Arg869Cys and p.Val824Met in family CHED24 and CHED25 respectively) as predicted by mutation taster. All of these variants segregated with disease phenotype and were not detected in controls.

Conclusion

Affected individuals of the five CHED families screened in this study had the disease due to SLC4A11 mutations and progressing to Harboyan syndrome. Identification of previously unreported mutations aid to heterogeneity of SLC4A11 and CHED pathogenesis as well as helped to provide genetic counseling to affected families.

  相似文献   

8.
9.
Pendred syndrome is an autosomal recessive inherited disorder characterized by a combination of sensorineural hearing impairment and euthyroid goiter; its clinical manifestation in children is hardly distinguishable from nonsyndromic hearing loss. Pendred syndrome is one of the most frequent types of syndromic hearing loss. Hearing impairment is accompanied by abnormal development of the bony labyrinth—enlarged vestibular aqueduct (EVA) and occasionally combined with Mondini dysplasia. Mutations in the SLC26A4 gene, which encodes the pendrin protein, are responsible for both Pendred syndrome and for allelic disorder (nonsyndromic enlarged vestibular aqueduct). The present study for the first time conducted molecular genetic analysis in 20 Russian patients with Pendred syndrome, EVA and/or Mondini dysplasia. As a result, six pathogenic mutations in the SLC26A4 gene were revealed in four patients. The mutation c.222G>T (p.Trp74Cys) was detected for the first time. Mutations were found in patients with Pendred syndrome and nonsyndromic EVA with or without Mondini dysplasia. Mutations were not detected in patients with isolated Mondini dysplasia. One proband with clinical diagnosis Pendred syndrome was homozygous for the c.35delG mutation in the GJB2 gene. The absence of frequent mutations, including well-known ones or “hot” exons in the SLC26A4 gene, was reported. Therefore, the optimal method to search for mutations in the SLC26A4 gene in Russian patients is Sanger sequencing of all exons and exon-intron boundaries in the SLC26A4 gene.  相似文献   

10.
Linked markers flanking the gene for multiple endocrine neoplasia type 2A   总被引:11,自引:0,他引:11  
The inherited cancer syndrome multiple endocrine neoplasia type 2A (MEN2A) has recently been mapped to chromosome 10. We have typed 29 families with this disorder with DNA markers from the pericentromeric region of chromosome 10. Two markers, RBP3 and MCK2, were tightly linked to the MEN2A gene at recombination fractions of less than 3%. Multipoint analysis of the linkage data suggests that the gene is located within a 3-cM interval defined by the markers RBP3/MCK2 on one side and TB14.34 on the other. No evidence for locus heterogeneity was detected in any of the 27 families from 14 countries who were informative for the markers tested. The data confirm and refine the original assignment and provide the basis for presymptomatic screening for this disorder.  相似文献   

11.
PURPOSE: Gitelman's syndrome (GS) is an inherited autosomal recessive disorder due to loss of function mutations in the SLC12A3 gene encoding the Na-Cl co-transporter (NCCT), the target of thiazide diuretics. The defective function of the NCCT, which normally is expressed in the apical membrane of the distal convolute tubule in the kidney, leads to mild hypotension, hypokalemia, hyperreninemic hyperaldosteronism, mild metabolic alkalosis, hypomagnesemia and hypocalciuria. Up to now, more than 100 mutations of the SLC12A3 gene have been described in GS patients. METHODS: We have collected 30 patients from Sweden with a clinical diagnosis of GS and undertaken a mutation screening by SSCP and successive sequencing of the 26 exons and intronic boundaries. Both mutations were identified in most (n = 28, 93%) and at least one mutation was identified in all patients. RESULTS: We found 22 different mutations evenly distributed throughout the gene, 11 of which have not been described previously. The new variants include 8 missense mutations (Glu68Lys, His69Asn, Argl45His, Vall53Met, Gly230Asp, Gly342Ala, Val677Leu and Gly867Ser), 1 insertion (c.834_835insG on exon 6) and 2 splice-site mutations (c.2667 + lT>G substitution in splicing donor site after exon 22, c.1569-1G>A substitution in the splicing acceptor site before exon 13). CONCLUSION: In Swedish patients with the clinical features of GS, disease-causing mutations in the SLC12A3 gene were identified in most patients. The spectrum of GS mutations is wide making full mutation screening of the SLC12A3 gene necessary to confirm the diagnosis.  相似文献   

12.
Environmental manganese (Mn) toxicity causes an extrapyramidal, parkinsonian-type movement disorder with characteristic magnetic resonance images of Mn accumulation in the basal ganglia. We have recently reported a suspected autosomal recessively inherited syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia in cases without environmental Mn exposure. Whole-genome mapping of two consanguineous families identified SLC30A10 as the affected gene in this inherited type of hypermanganesemia. This gene was subsequently sequenced in eight families, and homozygous sequence changes were identified in all affected individuals. The function of the wild-type protein and the effect of sequence changes were studied in the manganese-sensitive yeast strain Δpmr1. Expressing human wild-type SLC30A10 in the Δpmr1 yeast strain rescued growth in high Mn conditions, confirming its role in Mn transport. The presence of missense (c.266T>C [p.Leu89Pro]) and nonsense (c.585del [p.Thr196Profs17]) mutations in SLC30A10 failed to restore Mn resistance. Previously, SLC30A10 had been presumed to be a zinc transporter. However, this work has confirmed that SLC30A10 functions as a Mn transporter in humans that, when defective, causes Mn accumulation in liver and brain. This is an important step toward understanding Mn transport and its role in neurodegenerative processes.  相似文献   

13.
Cystinuria is an autosomal recessive disorder characterized by increased urinary excretion of cystine and dibasic amino acids, which cause recurrent stone formation in affected individuals. Three subtypes of cystinuria have been described (type I, II, and III): type I is caused by mutations in the SLC3A1 gene, whereas nontype I (II and III) has been associated with SLC7A9 mutations. Of the 53 patients reported in our previous work, patients that showed SLC7A9 mutations in single-strand conformation polymorphism (SSCP) screening and/or either lacked or showed heterozygosity for SLC3A1 mutations were included in the present study. The entire coding region and the exon/intron boundaries of the SLC7A9 gene were analyzed by means of both SSCP and DNA sequencing in 16 patients, all but one of which were clinically diagnosed as homozygous cystinurics. Three novel SLC7A9 mutations were identified in the patient group: two missense mutations (P261L and V330M), and one single base-pair deletion (1009 delA). We also detected the previously reported A182T and nine novel polymorphisms in the patients. Mutations V330M and 1009delA occurred on different alleles in one individual, and we suggest that these mutations cause cystinuria in this patient. One patient that was homozygously mutated in the SLC3A1 gene carried the third novel mutation (P261L). We conclude that SLC3A1 is still the major disease gene among Swedish cystinuria patients, with only a minor contribution of SLC7A9 mutations as the genetic basis of cystinuria. The absence of SLC3A1 and SLC7A9 mutations in a substantial proportion of the patients implies that mutations in parts of the genes that were not analyzed may be present, as well as large deletions that escape detection by the methods used. However, our results raise the question of whether other, as yet unknown genes, may also be involved in cystinuria.  相似文献   

14.
Cystinuria type I is an autosomal recessive disorder with an exclusively renal phenotype caused by inactivating mutations in SLC3A1. Recently 3 similar but distinct syndromes associated with cystinuria type I have been described: 2p21 deletion syndrome, Hypotonia-Cystinuria Syndrome (HCS) and atypical HCS. Genetic analysis indicated that these are recessive contiguous gene deletion syndromes which differ in the number of genes affected. Patients with HCS are missing both alleles of SLC3A1 and PREPL. In atypical HCS an additional gene (C2orf34) is deleted, and finally, in the 2p21 deletion syndrome the open reading frame of PPM1B is also disrupted. With the exception of SLC3A1, the gene products have not been fully characterized. The severity of the different syndromes reflects the number of genes which are deleted. HCS, a relatively mild syndrome, is characterised by cystinuria type I, generalised hypotonia at birth, growth retardation and minor facial dysmorphic features. On the other end of the spectrum is the 2p21 deletion syndrome, a severe syndrome with a number of additional features including a moderate to severe psychomotor retardation and a decrease in activity of the respiratory chain complexes I, III, IV and V. Finally, atypical HCS displays an intermediate phenotype comparable with classical HCS but associated with mild to moderate mental retardation and a decrease in activity of only the respiratory chain complex IV. This review will focus on the phenotypic similarities and differences observed in these syndromes. Furthermore, we speculate on the function of the gene products, based on the available data.  相似文献   

15.
Warburg Micro syndrome and Martsolf syndrome are heterogenous autosomal-recessive developmental disorders characterized by brain, eye, and endocrine abnormalities. Previously, identification of mutations in RAB3GAP1 and RAB3GAP2 in both these syndromes implicated dysregulation of the RAB3 cycle (which controls calcium-mediated exocytosis of neurotransmitters and hormones) in disease pathogenesis. RAB3GAP1 and RAB3GAP2 encode the catalytic and noncatalytic subunits of the hetrodimeric enzyme RAB3GAP (RAB3GTPase-activating protein), a key regulator of the RAB3 cycle. We performed autozygosity mapping in five consanguineous families without RAB3GAP1/2 mutations and identified loss-of-function mutations in RAB18. A c.71T > A (p.Leu24Gln) founder mutation was identified in four Pakistani families, and a homozygous exon 2 deletion (predicted to result in a frameshift) was found in the fifth family. A single family whose members were compound heterozygotes for an anti-termination mutation of the stop codon c.619T > C (p.X207QextX20) and an inframe arginine deletion c.277_279 del (p.Arg93 del) were identified after direct gene sequencing and multiplex ligation-dependent probe amplification (MLPA) of a further 58 families. Nucleotide binding assays for RAB18(Leu24Gln) and RAB18(Arg93del) showed that these mutant proteins were functionally null in that they were unable to bind guanine. The clinical features of Warburg Micro syndrome patients with RAB3GAP1 or RAB3GAP2 mutations and RAB18 mutations are indistinguishable, although the role of RAB18 in trafficking is still emerging, and it has not been linked previously to the RAB3 pathway. Knockdown of rab18 in zebrafish suggests that it might have a conserved developmental role. Our findings imply that RAB18 has a critical role in human brain and eye development and neurodegeneration.  相似文献   

16.
《Endocrine practice》2018,24(10):889-893
Objective: Gitelman syndrome (GS) is an autosomal recessive disorder characterized by salt wasting and hypokalemia resulting from mutations in the SLC12A3 (solute carrier family 12 member 3) gene, which encodes the thiazide-sensitive sodium-chloride cotransporter. To date, more than 488 mutations of the SLC12A3 gene have been discovered in patients with GS. In this study, we reported a GS pedigree complicated by thyroid diseases or thyroid dysfunction.Methods: Sanger sequencing and next-generation sequencing analysis were performed to determine the SLC12A3 gene mutations in a GS pedigree including the 16-year old male patient with GS and his family members within 3 generations. Chemiluminescence immunoassays were used to detect thyroid hormone and antibody concentrations.Results: Genetic analysis of the SLC12A3 gene identified 2 mutations in the 16-year old male patient with GS concomitant with Graves disease (GD) and his younger sister accompanied by abnormal thyroid function. Additionally, one mutation site (c.1456G>A) in SLC12A3 gene was found in his father, paternal uncle and elder female cousin, who were complicated by subclinical hypothyroidism or autoantibody against thyroid. The other mutation site (c.2102_2107 delACAAGA) in SLC12A3 gene, a novel mutated variant of SLC12A3 gene, was carried by his mother and maternal grandfather.Conclusion: Two mutation sites were documented in the pedigree with GS, and one has not been reported before. Moreover, we found a mutation at nucleotide c.1456 G>A in the SLC12A3 gene that may affect thyroid function. However, further studies are needed to explore the underlying molecular mechanisms.Abbreviations: FT3 = free triiodothyronine; FT4 = free tetraiodothyronine; GD = Graves disease; GS = Gitelman syndrome; SLC12A3 = solute carrier family 12 member 3; TGAb = thyroglobulin antibody; TPOAb = thyroid peroxidase antibody; TSH = thyroid-stimulating hormone; TT3 = total triiodothyronine; TT4 = total tetraiodothyronine  相似文献   

17.
Barth syndrome is an X-linked cardiomyopathy with neutropenia and 3-methylglutaconic aciduria. Recently, mutations in the G4.5 gene, located in Xq28, have been described in four probands with Barth syndrome. We have now evaluated 14 Barth syndrome pedigrees for mutations in G4.5 and have identified unique mutations in all, including four splice-site mutations, three deletions, one insertion, five missense mutations, and one nonsense mutation. Nine of the 14 mutations are predicted to significantly disrupt the protein products of G4.5. The occurrence of missense mutations in exons 3 and 8 suggests that these exons encode essential portions of the G4. 5 proteins, whose functions remain unknown. We found no correlation between the location or type of mutation and any of the clinical or laboratory abnormalities of Barth syndrome, which suggests that additional factors modify the expression of the Barth phenotype. The characterization of mutations of the G4.5 gene will be useful for carrier detection, genetic counseling, and the identification of patients with Barth syndrome who do not manifest all of the cardinal features of this disorder.  相似文献   

18.
Oculocutaneous albinism(OCA)is an autosomal recessive disorder characterized by hypopigmentation in eyes,hair and skin,accompanied with vision loss.Currently,six genes have been identified as causative genes for non-syndromic OCA(OCA-1w4,6,7),and ten genes for syndromic OCA(HPS-1e9,CHS-1).Genetic counseling of 51 Chinese OCA families(39 OCA-1 with mutations in the TYR gene,6 OCA-2 with mutations in the OCA2 gene,4 OCA-4 with mutations in the SLC45A2 gene,1 HPS-1(Hermanskye Pudlak syndrome-1)with mutation in the HPS1 gene,and 1 mixed OCA-1 and OCA-4)led us to perform the prenatal genetic testing of OCA using amniotic fluid cells through the implementation of our optimized strategy.In our cohort,eleven previously unidentified alleles(PUAs)(5 in TYR,2 in OCA2,and 4 in SLC45A2)were found.Three missense PUAs(p.C112R,p.H363R and p.G379V of TYR)and one in-frame deletional PUA(p.S222del of SLC24A5)led to fetuses with OCA when co-inherited with other disease causative alleles.Three PUAs(p.P152H and p.W272X of TYR,p.A486T of SLC24A5)identified in the OCA probands did not co-transmit with known pathological alleles and thus gave rise to unaffected fetuses.Four PUAs(p.Q83X and p.A658T of TYR,p.G161R and p.G366R of SLC24A5)did not transmit to the unaffected fetuses.In addition,the in vitro transfection assays showed that the p.S192Y variant of TYR produced less pigment compared to the wild-type allele.A fetus with a digenic carrier of OCA-1 and OCA-4 was unaffected.In combination with functional assays,the family inheritance pattern is useful for the evaluation of pathogenicity of PUAs and genetic counseling of OCA.  相似文献   

19.
Solute carrier family 24 member 5 (SLC24A5) is a gene that is associated with oculocutaneous albinism type 6 (OCA6) disorder and is involved in skin and hair pigmentation. It is involved in the maturation of melanosomes and melanin synthesis. SLC24A5 gene is located in the chromosomal position of 15q21.1. The present study involves the use of computational techniques in order to obtain a detailed picture of the most probable mutations that are associated with SLC24A5. From the observed result it was found that the mutation S145F is most deleterious and disease associated is predicted using several bioinformatics tools. The 3-D structures of native and mutant (S145F) were modeled in order to understand protein functionality using ab initio Robetta server. The modeled structure validation was done with ERRAT, Verify-3D, Procheck and RAMPAGE Ramachandran plot analysis. The most validated structure undergoes molecular dynamics simulations (MDS) study to understand the structural and functional behaviour of the native and mutant proteins. The MDS result showed the more flexibility in the native SLC24A5 structure. Due to mutation in the SLC24A5 protein structure it became more rigid and might disturb the conformational changes and glycosylation function of protein structure and might play role in inducing the OCA6. This study provides a significant insight into the underlying molecular mechanism involved in albinism associated with OCA6. It further helps scientists to develop a drug therapy against OCA 6 disease.

Communicated by Ramaswamy H. Sarma  相似文献   


20.
Cystinuria represents 3% of nephrolithiasis in humans with an overall prevalence of 1 in 7,000 neonates. Two genes have been reported to account for the genetic basis of cystinuria, the SLC3A1 and the SLC7A9. Recently, the possible involvement of the SLC7A10 gene in the genetic basis of the disorder was also reported. In the present study, we found a total of 15 mutations in 20 Greek cystinuric patients. Eight mutations are novel, 4 in the SLC3A1: F266S, T351I, R456C, and N516D, and 4 in the SLC7A9: 479-1G>C, Y232C, D233E, and 1399+1G>T. Furthermore, 2 polymorphisms were identified in the SLC3A1 gene and 16 polymorphic variants were also found in the SLC7A9 gene of which the 235+18C>A, 604+10G>A, and 604+24T>C are novel. Finally, no mutation was found in the SLC7A10 gene in all patients. Only, the novel 634+8C>G and the previously reported 913-11C+T polymorphisms were identified in the SLC7A10 gene. In conclusion, a spectrum of SLC3A1 and SLC7A9 mutations are responsible for the genetic basis of cystinuria in Greek patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号