共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Y. Xu H. Liu Y. Jiang W. Fan J. Hu Y. Zhang Z. Guo M. Xie W. Huang X. Liu Z. Zhou S. Hou 《Animal genetics》2019,50(3):287-292
Plasma cholinesterase (PCHE) activity is an important auxiliary test in human clinical medicine. It can distinguish liver diseases from non‐liver diseases and help detect organophosphorus poisoning. Animal experiments have confirmed that PCHE activity is associated with obesity and hypertension and changes with physiological changes in an animal's body. The objective of this study was to locate the genetic loci responsible for PCHE activity variation in ducks. PCHE activity of Pekin duck × mallard F2 ducks at 3 and 8 weeks of age were analyzed, and genome‐wide association studies were conducted. A region of about 1.5 Mb (21.8–23.3 Mb) on duck chromosome 9 was found to be associated with PCHE activity at both 3 and 8 weeks of age. The top SNP, g.22643979C>T in the butyrylcholinesterase (BCHE) gene, was most highly associated with PCHE activity at 3 weeks (?logP = 21.45) and 8 weeks (?logP = 27.60) of age. For the top SNP, the strong associations of CC and CT genotypes with low PCHE activity and the TT genotype with high PCHE activity indicates the dominant inheritance of low PCHE activity. Problems with block inheritance or linkage exist in this region. This study supports that BCHE is a functional gene for determining PCHE levels in ducks and that the genetic variations around this gene can cause phenotypic variations of PCHE activity. 相似文献
3.
A genome-wide association study reveals loci influencing height and other conformation traits in horses 总被引:1,自引:0,他引:1
The molecular analysis of genes influencing human height has been notoriously difficult. Genome-wide association studies (GWAS) for height in humans based on tens of thousands to hundreds of thousands of samples so far revealed ~200 loci for human height explaining only 20% of the heritability. In domestic animals isolated populations with a greatly reduced genetic heterogeneity facilitate a more efficient analysis of complex traits. We performed a genome-wide association study on 1,077 Franches-Montagnes (FM) horses using ~40,000 SNPs. Our study revealed two QTL for height at withers on chromosomes 3 and 9. The association signal on chromosome 3 is close to the LCORL/NCAPG genes. The association signal on chromosome 9 is close to the ZFAT gene. Both loci have already been shown to influence height in humans. Interestingly, there are very large intergenic regions at the association signals. The two detected QTL together explain ~18.2% of the heritable variation of height in horses. However, another large fraction of the variance for height in horses results from ECA 1 (11.0%), although the association analysis did not reveal significantly associated SNPs on this chromosome. The QTL region on ECA 3 associated with height at withers was also significantly associated with wither height, conformation of legs, ventral border of mandible, correctness of gaits, and expression of the head. The region on ECA 9 associated with height at withers was also associated with wither height, length of croup and length of back. In addition to these two QTL regions on ECA 3 and ECA 9 we detected another QTL on ECA 6 for correctness of gaits. Our study highlights the value of domestic animal populations for the genetic analysis of complex traits. 相似文献
4.
5.
The pressure to publish novel genetic associations has meant that meta-analysis has been applied to genome-wide association studies without the time for a careful consideration of the methods that are used. This review distinguishes between the use of meta-analysis to validate previously reported genetic associations and its use for gene discovery, and advocates viewing gene discovery as an exploratory screen that requires independent replication instead of treating it as the application of hundreds of thousands of statistical tests. The review considers the use of fixed and random effects meta-analyses, the investigation of between-study heterogeneity, adjustment for confounding, assessing the combined evidence and genomic control, and comments on alternative approaches that have been used in the literature. 相似文献
6.
Genetic loci associated with plasma phospholipid n-3 fatty acids: a meta-analysis of genome-wide association studies from the CHARGE Consortium 总被引:1,自引:0,他引:1
Lemaitre RN Tanaka T Tang W Manichaikul A Foy M Kabagambe EK Nettleton JA King IB Weng LC Bhattacharya S Bandinelli S Bis JC Rich SS Jacobs DR Cherubini A McKnight B Liang S Gu X Rice K Laurie CC Lumley T Browning BL Psaty BM Chen YD Friedlander Y Djousse L Wu JH Siscovick DS Uitterlinden AG Arnett DK Ferrucci L Fornage M Tsai MY Mozaffarian D Steffen LM 《PLoS genetics》2011,7(7):e1002193
Long-chain n-3 polyunsaturated fatty acids (PUFAs) can derive from diet or from α-linolenic acid (ALA) by elongation and desaturation. We investigated the association of common genetic variation with plasma phospholipid levels of the four major n-3 PUFAs by performing genome-wide association studies in five population-based cohorts comprising 8,866 subjects of European ancestry. Minor alleles of SNPs in FADS1 and FADS2 (desaturases) were associated with higher levels of ALA (p = 3×10−64) and lower levels of eicosapentaenoic acid (EPA, p = 5×10−58) and docosapentaenoic acid (DPA, p = 4×10−154). Minor alleles of SNPs in ELOVL2 (elongase) were associated with higher EPA (p = 2×10−12) and DPA (p = 1×10−43) and lower docosahexaenoic acid (DHA, p = 1×10−15). In addition to genes in the n-3 pathway, we identified a novel association of DPA with several SNPs in GCKR (glucokinase regulator, p = 1×10−8). We observed a weaker association between ALA and EPA among carriers of the minor allele of a representative SNP in FADS2 (rs1535), suggesting a lower rate of ALA-to-EPA conversion in these subjects. In samples of African, Chinese, and Hispanic ancestry, associations of n-3 PUFAs were similar with a representative SNP in FADS1 but less consistent with a representative SNP in ELOVL2. Our findings show that common variation in n-3 metabolic pathway genes and in GCKR influences plasma phospholipid levels of n-3 PUFAs in populations of European ancestry and, for FADS1, in other ancestries. 相似文献
7.
Meta-analysis is an increasingly popular tool for combining multiple genome-wide association studies in a single analysis to identify associations with small effect sizes. The effect sizes between studies in a meta-analysis may differ and these differences, or heterogeneity, can be caused by many factors. If heterogeneity is observed in the results of a meta-analysis, interpreting the cause of heterogeneity is important because the correct interpretation can lead to a better understanding of the disease and a more effective design of a replication study. However, interpreting heterogeneous results is difficult. The standard approach of examining the association p-values of the studies does not effectively predict if the effect exists in each study. In this paper, we propose a framework facilitating the interpretation of the results of a meta-analysis. Our framework is based on a new statistic representing the posterior probability that the effect exists in each study, which is estimated utilizing cross-study information. Simulations and application to the real data show that our framework can effectively segregate the studies predicted to have an effect, the studies predicted to not have an effect, and the ambiguous studies that are underpowered. In addition to helping interpretation, the new framework also allows us to develop a new association testing procedure taking into account the existence of effect. 相似文献
8.
Background
The high-throughput genotyping chips have contributed greatly to genome-wide association (GWA) studies to identify novel disease susceptibility single nucleotide polymorphisms (SNPs). The high-density chips are designed using two different SNP selection approaches, the direct gene-centric approach, and the indirect quasi-random SNPs or linkage disequilibrium (LD)-based tagSNPs approaches. Although all these approaches can provide high genome coverage and ascertain variants in genes, it is not clear to which extent these approaches could capture the common genic variants. It is also important to characterize and compare the differences between these approaches.Methodology/Principal Findings
In our study, by using both the Phase II HapMap data and the disease variants extracted from OMIM, a gene-centric evaluation was first performed to evaluate the ability of the approaches in capturing the disease variants in Caucasian population. Then the distribution patterns of SNPs were also characterized in genic regions, evolutionarily conserved introns and nongenic regions, ontologies and pathways. The results show that, no mater which SNP selection approach is used, the current high-density SNP chips provide very high coverage in genic regions and can capture most of known common disease variants under HapMap frame. The results also show that the differences between the direct and the indirect approaches are relatively small. Both have similar SNP distribution patterns in these gene-centric characteristics.Conclusions/Significance
This study suggests that the indirect approaches not only have the advantage of high coverage but also are useful for studies focusing on various functional SNPs either in genes or in the conserved regions that the direct approach supports. The study and the annotation of characteristics will be helpful for designing and analyzing GWA studies that aim to identify genetic risk factors involved in common diseases, especially variants in genes and conserved regions. 相似文献9.
To search the entire human genome for association is a novel and promising approach to unravelling the genetic basis of complex genetic diseases. In these genome-wide association studies (GWAs), several hundreds of thousands of single nucleotide polymorphisms (SNPs) are analyzed at the same time, posing substantial biostatistical and computational challenges. In this paper, we discuss a number of biostatistical aspects of GWAs in detail. We specifically consider quality control issues and show that signal intensity plots are a sine qua condition non in today's GWAs. Approaches to detect and adjust for population stratification are briefly examined. We discuss different strategies aimed at tackling the problem of multiple testing, including adjustment of p -values, the false positive report probability and the false discovery rate. Another aspect of GWAs requiring special attention is the search for gene-gene and gene-environment interactions. We finally describe multistage approaches to GWAs. 相似文献
10.
Kruglyak L 《Nature reviews. Genetics》2008,9(4):314-318
The recent crop of results from genome-wide association studies might seem like a sudden development. However, this blooming follows a long germination period during which the necessary concepts, resources and techniques were developed and assembled. Here, I look back at how the necessary pieces fell into place, focusing on the less well-chronicled days before the launch of the HapMap project, and speculate about future developments. 相似文献
11.
Association mapping has successfully identified common SNPs associated with many diseases. However, the inability of this class of variation to account for most of the supposed heritability has led to a renewed interest in methods - primarily linkage analysis - to detect rare variants. Family designs allow for control of population stratification, investigations of questions such as parent-of-origin effects and other applications that are imperfectly or not readily addressed in case-control association studies. This article guides readers through the interface between linkage and association analysis, reviews the new methodologies and provides useful guidelines for applications. Just as effective SNP-genotyping tools helped to realize the potential of association studies, next-generation sequencing tools will benefit genetic studies by improving the power of family-based approaches. 相似文献
12.
Sunduimijid Bolormaa Jennie E Pryce Kathryn E Kemper Ben J Hayes Yuandan Zhang Bruce Tier William Barendse Antonio Reverter Mike E Goddard 《遗传、选种与进化》2013,45(1):43
Background
The apparent effect of a single nucleotide polymorphism (SNP) on phenotype depends on the linkage disequilibrium (LD) between the SNP and a quantitative trait locus (QTL). However, the phase of LD between a SNP and a QTL may differ between Bos indicus and Bos taurus because they diverged at least one hundred thousand years ago. Here, we test the hypothesis that the apparent effect of a SNP on a quantitative trait depends on whether the SNP allele is inherited from a Bos taurus or Bos indicus ancestor.Methods
Phenotype data on one or more traits and SNP genotype data for 10 181 cattle from Bos taurus, Bos indicus and composite breeds were used. All animals had genotypes for 729 068 SNPs (real or imputed). Chromosome segments were classified as originating from B. indicus or B. taurus on the basis of the haplotype of SNP alleles they contained. Consequently, SNP alleles were classified according to their sub-species origin. Three models were used for the association study: (1) conventional GWAS (genome-wide association study), fitting a single SNP effect regardless of subspecies origin, (2) interaction GWAS, fitting an interaction between SNP and subspecies-origin, and (3) best variable GWAS, fitting the most significant combination of SNP and sub-species origin.Results
Fitting an interaction between SNP and subspecies origin resulted in more significant SNPs (i.e. more power) than a conventional GWAS. Thus, the effect of a SNP depends on the subspecies that the allele originates from. Also, most QTL segregated in only one subspecies, suggesting that many mutations that affect the traits studied occurred after divergence of the subspecies or the mutation became fixed or was lost in one of the subspecies.Conclusions
The results imply that GWAS and genomic selection could gain power by distinguishing SNP alleles based on their subspecies origin, and that only few QTL segregate in both B. indicus and B. taurus cattle. Thus, the QTL that segregate in current populations likely resulted from mutations that occurred in one of the subspecies and can have both positive and negative effects on the traits. There was no evidence that selection has increased the frequency of alleles that increase body weight. 相似文献13.
Ellinghaus D Ellinghaus E Nair RP Stuart PE Esko T Metspalu A Debrus S Raelson JV Tejasvi T Belouchi M West SL Barker JN Kõks S Kingo K Balschun T Palmieri O Annese V Gieger C Wichmann HE Kabesch M Trembath RC Mathew CG Abecasis GR Weidinger S Nikolaus S Schreiber S Elder JT Weichenthal M Nothnagel M Franke A 《American journal of human genetics》2012,90(4):636-647
Psoriasis (PS) and Crohn disease (CD) have been shown to be epidemiologically, pathologically, and therapeutically connected, but little is known about their shared genetic causes. We performed meta-analyses of five published genome-wide association studies on PS (2,529 cases and 4,955 controls) and CD (2,142 cases and 5,505 controls), followed up 20 loci that showed strongest evidence for shared disease association and, furthermore, tested cross-disease associations for previously reported PS and CD risk alleles in additional 6,115 PS cases, 4,073 CD cases, and 10,100 controls. We identified seven susceptibility loci outside the human leukocyte antigen region (9p24 near JAK2, 10q22 at ZMIZ1, 11q13 near PRDX5, 16p13 near SOCS1, 17q21 at STAT3, 19p13 near FUT2, and 22q11 at YDJC) shared between PS and CD with genome-wide significance (p < 5 × 10−8) and confirmed four already established PS and CD risk loci (IL23R, IL12B, REL, and TYK2). Three of the shared loci are also genome-wide significantly associated with PS alone (10q22 at ZMIZ1, prs1250544 = 3.53 × 10−8, 11q13 near PRDX5, prs694739 = 3.71 × 10−09, 22q11 at YDJC, prs181359 = 8.02 × 10−10). In addition, we identified one susceptibility locus for CD (16p13 near SOCS1, prs4780355 = 4.99 × 10−8). Refinement of association signals identified shared genome-wide significant associations for exonic SNPs at 10q22 (ZMIZ1) and in silico expression quantitative trait locus analyses revealed that the associations at ZMIZ1 and near SOCS1 have a potential functional effect on gene expression. Our results show the usefulness of joint analyses of clinically distinct immune-mediated diseases and enlarge the map of shared genetic risk loci. 相似文献
14.
Zhernakova A Stahl EA Trynka G Raychaudhuri S Festen EA Franke L Westra HJ Fehrmann RS Kurreeman FA Thomson B Gupta N Romanos J McManus R Ryan AW Turner G Brouwer E Posthumus MD Remmers EF Tucci F Toes R Grandone E Mazzilli MC Rybak A Cukrowska B Coenen MJ Radstake TR van Riel PL Li Y de Bakker PI Gregersen PK Worthington J Siminovitch KA Klareskog L Huizinga TW Wijmenga C Plenge RM 《PLoS genetics》2011,7(2):e1002004
15.
Manav Kapoor Jen-Chyong Wang Leah Wetherill Nhung Le Sarah Bertelsen Anthony L. Hinrichs John Budde Arpana Agrawal Kathleen Bucholz Danielle Dick Oscar Harari Victor Hesselbrock John Kramer John I. Nurnberger Jr John Rice Nancy Saccone Marc Schuckit Jay Tischfield Bernice Porjesz Howard J. Edenberg Laura Bierut Tatiana Foroud Alison Goate 《Human genetics》2013,132(10):1141-1151
Maximum number of alcoholic drinks consumed in a 24-h period (maxdrinks) is a heritable (>50 %) trait and is strongly correlated with vulnerability to excessive alcohol consumption and subsequent alcohol dependence (AD). Several genome-wide association studies (GWAS) have studied alcohol dependence, but few have concentrated on excessive alcohol consumption. We performed two GWAS using maxdrinks as an excessive alcohol consumption phenotype: one in 118 extended families (N = 2,322) selected from the Collaborative Study on the Genetics of Alcoholism (COGA), and the other in a case–control sample (N = 2,593) derived from the Study of Addiction: Genes and Environment (SAGE). The strongest association in the COGA families was detected with rs9523562 (p = 2.1 × 10?6) located in an intergenic region on chromosome 13q31.1; the strongest association in the SAGE dataset was with rs67666182 (p = 7.1 × 10?7), located in an intergenic region on chromosome 8. We also performed a meta-analysis with these two GWAS and demonstrated evidence of association in both datasets for the LMO1 (p = 7.2 × 10?7) and PLCL1 genes (p = 4.1 × 10?6) with maxdrinks. A variant in AUTS2 and variants in INADL, C15orf32 and HIP1 that were associated with measures of alcohol consumption in a meta-analysis of GWAS studies and a GWAS of alcohol consumption factor score also showed nominal association in the current meta-analysis. The present study has identified several loci that warrant further examination in independent samples. Among the top SNPs in each of the dataset (p ≤ 10?4) far more showed the same direction of effect in the other dataset than would be expected by chance (p = 2 × 10?3, 3 × 10?6), suggesting that there are true signals among these top SNPs, even though no SNP reached genome-wide levels of significance. 相似文献
16.
Genic variants are more likely to alter gene function and affect disease risk than those that occur outside genes. Variants in genes, however, might not be sufficiently covered by the existing approaches to genome-wide association studies. Our analysis of the HapMap ENCODE data indicates that this concern is valid, and that an alternative approach that focuses on genic variants provides a more complete coverage of functionally important regions and a greater genotyping efficiency. We therefore argue that resources should be developed to make gene-centric genome-wide association studies feasible. 相似文献
17.
The Bayesian lasso for genome-wide association studies 总被引:1,自引:0,他引:1
18.
19.
Genotyping technology now allows the rapid and affordable generation of million-SNP profiles for humans, leading to considerable activity in association mapping. Similar activity is anticipated for many plant species, including Brassica. These plant association mapping activities will require the same care in quality control and quality assurance as for humans. The subsequent analyses may draw upon the same body of theory that is described here in the language of quantitative genetics. 相似文献
20.
Analysing biological pathways in genome-wide association studies 总被引:1,自引:0,他引:1
Genome-wide association (GWA) studies have typically focused on the analysis of single markers, which often lacks the power to uncover the relatively small effect sizes conferred by most genetic variants. Recently, pathway-based approaches have been developed, which use prior biological knowledge on gene function to facilitate more powerful analysis of GWA study data sets. These approaches typically examine whether a group of related genes in the same functional pathway are jointly associated with a trait of interest. Here we review the development of pathway-based approaches for GWA studies, discuss their practical use and caveats, and suggest that pathway-based approaches may also be useful for future GWA studies with sequencing data. 相似文献