首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Down syndrome is the most common aneuploidy. It is caused by the presence of an extra copy of chromosome 21. Several studies indicate that aberrant expression of the kinase Dyrk1a (dual-specificity tyrosine phosphorylation-regulated kinase 1a) is implicated in Down syndrome, in particular in the onset of mental retardation. Moreover, elevated Dyrk1a activity may also be a risk factor for other neurodegenerative disorders such as Alzheimer’s disease. Over the past years, Dyrk1a has appeared as a potential drug target. Availability of sensitive and quantitative enzyme assays is of prime importance to understand the role of Dyrk1a and to develop specific inhibitors. Here, we describe a new method to measure Dyrk1a activity based on the separation and quantification of specific fluorescent peptides (substrate and phosphorylated product) by high-performance liquid chromatography (HPLC). Kinetic and mechanistic analyses using well-known inhibitors of Dyrk1a confirmed the reliability of this approach. In addition, this assay was further validated using brain extracts of mice models expressing different copies of the Dyrk1a gene. Our results indicate that this novel Dyrk1a assay is simple, sensitive, and specific. It avoids the use of radioactivity-based approaches that, until now, have been widely employed to measure Dyrk1a activity.  相似文献   

2.
3.
4.
The highly conserved dual-specificity tyrosine phosphorylation–regulated kinase 1A (Dyrk1A) plays crucial roles during central nervous system development and homeostasis. Furthermore, its hyperactivity is considered responsible for some neurological defects in individuals with Down syndrome. We set out to establish a zebrafish model expressing human Dyrk1A that could be further used to characterize the interaction between Dyrk1A and neurological phenotypes. First, we revealed the prominent expression of dyrk1a homologs in cerebellar neurons in the zebrafish larval and adult brains. Overexpression of human dyrk1a in postmitotic cerebellar Purkinje neurons resulted in a structural misorganization of the Purkinje cells in cerebellar hemispheres and a compaction of this cell population. This impaired Purkinje cell organization was progressive, leading to an age-dependent dispersal of Purkinje neurons throughout the cerebellar molecular layer with larval swim deficits resulting in miscoordination of swimming and reduced exploratory behavior in aged adults. We also found that the structural misorganization of the larval Purkinje cell layer could be rescued by pharmacological treatment with Dyrk1A inhibitors. We further reveal the in vivo efficiency of a novel selective Dyrk1A inhibitor, KuFal194. These findings demonstrate that the zebrafish is a well-suited vertebrate organism to genetically model severe neurological diseases with single cell type specificity. Such models can be used to relate molecular malfunction to cellular deficits, impaired tissue formation, and organismal behavior and can also be used for pharmacological compound testing and validation.  相似文献   

5.
6.
7.
Two groups of tau, 3R- and 4R-tau, are generated by alternative splicing of tau exon 10. Normal adult human brain expresses equal levels of them. Disruption of the physiological balance is a common feature of several tauopathies. Very early in their life, individuals with Down syndrome (DS) develop Alzheimer-type tau pathology, the molecular basis for which is not fully understood. Here, we demonstrate that Dyrk1A, a kinase encoded by a gene in the DS critical region, phosphorylates alternative splicing factor (ASF) at Ser-227, Ser-234, and Ser-238, driving it into nuclear speckles and preventing it from facilitating tau exon 10 inclusion. The increased dosage of Dyrk1A in DS brain due to trisomy of chromosome 21 correlates to an increase in 3R-tau level, which on abnormal hyperphosphorylation and aggregation of tau results in neurofibrillary degeneration. Imbalance of 3R- and 4R-tau in DS brain by Dyrk1A-induced dysregulation of alternative splicing factor-mediated alternative splicing of tau exon 10 represents a novel mechanism of neurofibrillary degeneration and may help explain early onset tauopathy in individuals with DS.  相似文献   

8.
9.
Down syndrome (DS) phenotypes result from the overexpression of several dosage-sensitive genes. The DYRK1A (dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A) gene, which has been implicated in the behavioral and neuronal alterations that are characteristic of DS, plays a role in neuronal progenitor proliferation, neuronal differentiation and long-term potentiation (LTP) mechanisms that contribute to the cognitive deficits found in DS. The purpose of this study was to evaluate the effect of Dyrk1A overexpression on the behavioral and cognitive alterations in the Ts65Dn (TS) mouse model, which is the most commonly utilized mouse model of DS, as well as on several neuromorphological and electrophysiological properties proposed to underlie these deficits. In this study, we analyzed the phenotypic differences in the progeny obtained from crosses of TS females and heterozygous Dyrk1A (+/−) male mice. Our results revealed that normalization of the Dyrk1A copy number in TS mice improved working and reference memory based on the Morris water maze and contextual conditioning based on the fear conditioning test and rescued hippocampal LTP. Concomitant with these functional improvements, normalization of the Dyrk1A expression level in TS mice restored the proliferation and differentiation of hippocampal cells in the adult dentate gyrus (DG) and the density of GABAergic and glutamatergic synapse markers in the molecular layer of the hippocampus. However, normalization of the Dyrk1A gene dosage did not affect other structural (e.g., the density of mature hippocampal granule cells, the DG volume and the subgranular zone area) or behavioral (i.e., hyperactivity/attention) alterations found in the TS mouse. These results suggest that Dyrk1A overexpression is involved in some of the cognitive, electrophysiological and neuromorphological alterations, but not in the structural alterations found in DS, and suggest that pharmacological strategies targeting this gene may improve the treatment of DS-associated learning disabilities.  相似文献   

10.
Objectives: Among the many pathological aspects of Down syndrome, brain hypoplasia and mental retardation have been recently ascribed to defective proliferation of neural precursors during central nervous system development. By analogy, other features of Down syndrome, such as heart defects, gastrointestinal abnormalities, craniofacial dystrophy and reduced growth rate could be related, at least in theory, to similar proliferation impairment in peripheral tissues.
Materials and methods: In order to test this hypothesis, we evaluated cell proliferation in peripheral tissues of the Ts65Dn mouse, one of the animal models most commonly used to investigate Down syndrome.
Results: In fibroblast cultures from neonatal Ts65Dn mice, we found that cell proliferation was notably impaired. While length of the cell cycle was similar in fibroblasts from Ts65Dn and control mice, the number of actively proliferating cells was significantly smaller in Ts65Dn mice. Moreover, fibroblasts from Ts65Dn animals exhibited limited population-doubling capacity, decreased proliferative lifespan and premature senescence. Analysis of cell proliferation in the skin of neonates, in vivo , showed that in Ts65Dn mice, cell proliferation was significantly reduced compared to control mice.
Conclusions: Our results suggest that defective proliferation may be a generalized feature of trisomic mice. In view of the genetic and phenotypic similarities between Ts65Dn mice and individuals with Down syndrome, proliferation impairment in various organs may also occur in subjects with Down syndrome. Thus, perturbation of a basic developmental function, cell proliferation, may be a critical determinant that contributes to the many aspects of pathology of this condition.  相似文献   

11.
Down syndrome (DS) leads to complex phenotypes and is the main genetic cause of birth defects and heart diseases. The Ts65Dn DS mouse model is trisomic for the distal part of mouse chromosome 16 and displays similar features with post-natal lethality and cardiovascular defects. In order to better understand these defects, we defined electrocardiogram (ECG) with a precordial set-up, and we found conduction defects and modifications in wave shape, amplitudes, and durations in Ts65Dn mice. By using a genetic approach consisting of crossing Ts65Dn mice with Ms5Yah mice monosomic for the App-Runx1 genetic interval, we showed that the Ts65Dn viability and ECG were improved by this reduction of gene copy number. Whole-genome expression studies confirmed gene dosage effect in Ts65Dn, Ms5Yah, and Ts65Dn/Ms5Yah hearts and showed an overall perturbation of pathways connected to post-natal lethality (Coq7, Dyrk1a, F5, Gabpa, Hmgn1, Pde10a, Morc3, Slc5a3, and Vwf) and heart function (Tfb1m, Adam19, Slc8a1/Ncx1, and Rcan1). In addition cardiac connexins (Cx40, Cx43) and sodium channel sub-units (Scn5a, Scn1b, Scn10a) were found down-regulated in Ts65Dn atria with additional down-regulation of Cx40 in Ts65Dn ventricles and were likely contributing to conduction defects. All these data pinpoint new cardiac phenotypes in the Ts65Dn, mimicking aspects of human DS features and pathways altered in the mouse model. In addition they highlight the role of the App-Runx1 interval, including Sod1 and Tiam1, in the induction of post-natal lethality and of the cardiac conduction defects in Ts65Dn. These results might lead to new therapeutic strategies to improve the care of DS people.  相似文献   

12.
In humans, trisomy 21 results in a specific phenotype known as Down syndrome (DS). The mechanism by which an extra copy of normal genes leads to the DS phenotype is unknown. Most studies in DS and other aneuploid organisms have shown that gene dose is proportional to gene expression. To date, most genes examined have encoded either metabolic enzymes or constitutively expressed products. In the trisomy 16 mouse, an animal model of DS, we found marked dysregulation of two developmentally regulated genes, App and Prn-p. Dysregulation varied from tissue to tissue and during development in the same tissue. We conclude that abnormal phenotypes seen in aneuploid conditions may result in part from disordered expression of developmentally regulated genes.  相似文献   

13.
The integrity of the genetic material of bacteria is guaranteed by a set of distinct repair mechanisms. The participation of these repair systems in bacterial pathogenicity has been addressed only recently. Here, we study for the first time the participation in virulence of the MutSL mismatch repair system of Listeria monocytogenes. The mutS and mutL genes, which are contiguous in the L. monocytogenes chromosome, were identified after in silico analysis. The deduced MutS shares 62% identity with MutS of Bacillus subtilis and 50% identity with HexA, its homologue in Streptococcus pneumoniae; MutL shares 59% identity with MutL of B. subtilis and 47% identity with HexB of S. pneumoniae. Functional analysis of the mutSL locus was studied by constructing a double knock-out mutant. We showed that the deletion DeltamutSL induces: (i) a 100- to 1000-fold increase in the spontaneous mutation rate; and (ii) a 10- to 15-fold increase in the frequency of transduction, thus demonstrating the role of mutSL of L. monocytogenes in both mismatch repair and homologous recombination. We found that the deletion DeltamutSL moderately affected bacterial virulence, with a 1-log increase in the lethal dose 50% (LD50) in the mouse. Strikingly, repeated passages of the mutant strain in mice reduced virulence further. Competition assays between wild-type and mutant strains showed that the deletion DeltamutSL reduced the capacity of L. monocytogenes to survive and multiply in mice. These results thus demonstrate that, for the intracellular pathogen L. monocytogenes, a hypermutator phenotype is more deleterious than profitable to its virulence.  相似文献   

14.
Converging clinical data suggest that peripheral inflammation is likely involved in the pathogenesis of the neuropsychiatric symptoms associated with metabolic syndrome (MetS). However, the question arises as to whether the increased prevalence of behavioral alterations in MetS is also associated with central inflammation, i.e. cytokine activation, in brain areas particularly involved in controlling behavior. To answer this question, we measured in a mouse model of MetS, namely the diabetic and obese db/db mice, and in their healthy db/+ littermates emotional behaviors and memory performances, as well as plasma levels and brain expression (hippocampus; hypothalamus) of inflammatory cytokines. Our results shows that db/db mice displayed increased anxiety-like behaviors in the open-field and the elevated plus-maze (i.e. reduced percent of time spent in anxiogenic areas of each device), but not depressive-like behaviors as assessed by immobility time in the forced swim and tail suspension tests. Moreover, db/db mice displayed impaired spatial recognition memory (hippocampus-dependent task), but unaltered object recognition memory (hippocampus-independent task). In agreement with the well-established role of the hippocampus in anxiety-like behavior and spatial memory, behavioral alterations of db/db mice were associated with increased inflammatory cytokines (interleukin-1β, tumor necrosis factor-α and interleukin-6) and reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus but not the hypothalamus. These results strongly point to interactions between cytokines and central processes involving the hippocampus as important contributing factor to the behavioral alterations of db/db mice. These findings may prove valuable for introducing novel approaches to treat neuropsychiatric complications associated with MetS.  相似文献   

15.
Down syndrome (DS) is the most prevalent form of intellectual disability caused by the triplication of ∼230 genes on chromosome 21. Recent data in Ts65Dn mice, the foremost mouse model of DS, strongly suggest that cognitive impairment in individuals with DS is a consequence of reduced synaptic plasticity because of chronic over-inhibition. It remains unclear however whether changes in plasticity are tied to global molecular changes at synapses, or are due to regional changes in the functional properties of synaptic circuits. One interesting framework for evaluating the activity state of the DS brain comes from in vitro studies showing that chronic pharmacological silencing of neuronal excitability orchestrates stereotyped changes in the protein composition of synaptic junctions. In the present study, we use proteomic strategies to evaluate whether synapses from the Ts65Dn cerebrum carry signatures characteristic of inactive cortical neurons. Our data reveal that synaptic junctions do not exhibit overt alterations in protein composition. Only modest changes in the levels of synaptic proteins and in their phosphorylation are observed. This suggests that subtle changes in the functional properties of specific synaptic circuits rather than large-scale homeostatic shifts in the expression of synaptic molecules contribute to cognitive impairment in people with DS.  相似文献   

16.
17.
As a deacetylase, SIRT1 plays essential roles in various physiological events, from development to lifespan regulation. SIRT1 has been shown neuroprotective effects in neurodegeneration disorders such as Parkinson's disease (PD). However, the underlying molecular mechanisms are still not well understood. Here, we generated transgenic mice with increased expression of Sirt1 in the brain and examined the potential roles of SIRT1 in PD. Our data showed that SIRT1 repressed proinflammatory cytokine expression both in microglia and astrocytes. In MPTP induced PD model mice, lower levels of microglia and astrocyte activation were observed in SIRT1 transgenic mice. Moreover, the tyrosine hydroxylase (TH) loss in the substantia nigra pars compacta (SNpc) and striatum induced by MPTP was also attenuated by SIRT1. As a consequence, the behavioral defects induced by MPTP were largely prevented in SIRT1 transgenic mice. Mechanistically, SIRT1 interacts with heat shock 70 kDa protein 4 (HSPA4) and deacetylates it at 305, 351 and 605 lysine residues. This deacetylation modification induces the nuclear translocation of HSPA4 and thus to repress proinflammatory cytokine expression. On the contrary, mutated HSPA4, in which 305/351/605 lysine residues were replaced with arginine, was mainly localized in the cytoplasm and losses its repression on proinflammatory cytokine expression. Taken together, our data indicate that SIRT1 plays beneficial roles in PD model mice, which is likely due to, at least in part, its anti-inflammation activity in glial cells by deacetylating HSPA4. Furthermore, HSPA4 might be a druggable target for developing novel agents for treating neuroinflammation associated disorders such as PD.  相似文献   

18.
Down syndrome (DS) is a human genetic disease caused by trisomy of chromosome 21 and characterized by early developmental brain abnormalities. Dysfunctional endosomal pathway in neurons is an early event of DS and Alzheimer's disease. Recently, we have demonstrated that exosome secretion is upregulated in human DS postmortem brains, in the brain of the trisomic mouse model Ts[Rb(12.1716)]2Cje (Ts2) and by DS fibroblasts as compared with disomic controls. High levels of the tetraspanin CD63, a regulator of exosome biogenesis, were observed in DS brains. Partially blocking exosome secretion by DS fibroblasts exacerbated a pre‐existing early endosomal pathology. We thus hypothesized that enhanced CD63 expression induces generation of intraluminal vesicles (ILVs) in late endosomes/multivesicular bodies (MVBs), increasing exosome release as an endogenous mechanism to mitigate endosomal abnormalities in DS. Herein, we show a high‐resolution electron microscopy analysis of MVBs in neurons of the frontal cortex of 12‐month‐old Ts2 mice and littermate diploid controls. Our quantitative analysis revealed that Ts2 MVBs are larger, more abundant, and contain a higher number of ILVs per neuron compared to controls. These findings were further corroborated biochemically by Western blot analysis of purified endosomal fractions showing higher levels of ILVs proteins in the same fractions containing endosomal markers in the brain of Ts2 mice compared to controls. These data suggest that upregulation of ILVs production may be a key homeostatic mechanism to alleviate endosomal dysregulation via the endosomal–exosomal pathway.  相似文献   

19.
The incidence of non-alcoholic fatty liver disease (NAFLD) has been increasing, and there is a shortage of liver donors, which has led to the acceptance of steatotic livers for transplantation. However, steatotic livers are known to experience more severe acute ischemia-reperfusion (I/R) injury than normal livers upon transplantation. In the present study, we investigated the role of theaflavin, a polyphenol substance extracted from black tea, in attenuating acute I/R injury in a fatty liver model. We induced I/R in normal and steatotic livers treated with or without theaflavin. We also separated primary hepatocytes from the normal and steatotic livers, and applied RAW264.7 cells, a mouse macrophage cell line, that was pretreated with theaflavin. We observed that liver steatosis, oxidative stress, inflammation and hepatocyte apoptosis were increased in the steatotic liver compared to the normal liver, however, these changes were significantly decreased by theaflavin treatment. In addition, theaflavin significantly diminished the ROS production of steatotic hepatocytes and TNF-α production by LPS-stimulated RAW264.7 cells. We concluded that theaflavin has protective effects against I/R injury in fatty livers by anti-oxidant, anti-inflammatory, and anti-apoptotic mechanisms.  相似文献   

20.
Diabetes mellitus (DM) is characterized by hyperglycemia. Glyoxalase 1 (GLO) has considerable potential as a possible therapeutic agent for DM. However, the precise action of GLO remains unclear in DM. In this study, we examined the protective effects of GLO protein in a streptozotocin (STZ)-induced diabetes animal model using cell-permeable Tat-GLO protein. Purified Tat-GLO protein was efficiently transduced into RINm5F cells in a time- and dose-dependent manner and protected cells against sodium nitroprusside (SNP)-induced cell death and DNA fragmentation. Furthermore, Tat-GLO protein significantly inhibited blood glucose levels and altered the serum biochemical parameters in STZ-induced diabetic mice. These results demonstrate that transduced Tat-GLO protein protects pancreatic cells by the inhibition of STZ-mediated toxicity. Therefore, Tat-GLO protein could be useful as a therapeutic agent against DM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号