首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Galactose-1-phosphate uridylyltransferase catalyzes the interconversion of UDP-glucose and galactose-1-P with UDP-galactose and glucose-1-P by a double-displacement mechanism involving the compulsory formation of a uridylyl enzyme intermediate. The uridylyl group is covalently bonded to the N3 position of a histidine residue in the uridylyl enzyme. The galT gene of Escherichia coli, which codes for the uridylyltransferase and is contained in a plasmid for transformation of E. coli, has been sequenced, and the positions of the 15 histidine residues have been determined from the deduced amino acid sequence of this protein. Fifteen mutant genes, in each of which one of the 15 histidine codons has been changed to an asparagine codon, have been generated and used to transform the E. coli strain JM101. When extracts of the transformants were assayed for uridylyltransferase, 13 exhibited high levels of activity. Two of the extracts containing mutant uridylyltransferase exhibited less than control levels of activity. These mutant proteins, H164N and H166N, were overexpressed, isolated, and tested for their ability to form the compulsory uridylyl enzyme intermediate. Neither the H164N nor the H166N mutant proteins could form the intermediate. Thus, both His-164 and His-166 are critical for activity, and their proximity suggests that both are in the active site. One is the essential nucleophilic catalyst to which the uridylyl group is bonded in the intermediate, and the other serves an equally important, as yet unknown, function. The active-site sequence His(164)-Pro-His(166) is conserved in this enzyme from E. coli, humans, Saccharomyces, and Streptomyces.  相似文献   

2.
The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAH 7-P) synthase (Phe) is inactivated by diethyl pyrocarbonate (DEPC). The inactivation is first order with respect to enzyme and DEPC concentrations with a pseudo-second order rate constant of inactivation by DEPC of 4.9 +/- 0.8 m(-1) s(-1) at pH 6.8 and 4 degrees C. The dependence of inactivation on pH and the spectral features of enzyme modified at specific pH values imply that both histidine and cysteine residues are modified, which is confirmed by site-directed mutagenesis. Analysis of the chemical modification data indicates that one histidine is essential for activity. DAH 7-P synthase (Phe) is protected against DEPC inactivation by phosphoenolpyruvate, whereas d-erythrose 4-phosphate offers only minimal protection. The conserved residues H-172, H-207, H-268, and H-304 were individually mutated to glycine. The H304G and H207G mutants retain some level of activity, whereas the H268G and H172G mutants are virtually inactive. A comparison of the circular dichroism spectra of wild-type enzyme and the various mutants demonstrates that H-172 may play a structural role. Comparison of the UV spectra of the H268G and wild-type enzymes saturated with Cu(2+) indicates that the metal-binding site of the H268G mutant resembles that of the wild-type enzyme. The residue H-268 may play a catalytic role based on the site-directed mutagenesis and spectroscopic studies. Cysteine 61 appears to influence the pK(a) of H-268 in the wild-type enzyme. The pK(a) of H-268 increases from 6.0 to 7.0 following mutation of C-61 to glycine.  相似文献   

3.
K Sankaran  K Gan  B Rash  H Y Qi  H C Wu    P D Rick 《Journal of bacteriology》1997,179(9):2944-2948
Phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (Lgt) is the first enzyme in the posttranslational sequence of reactions resulting in the lipid modification of lipoproteins in bacteria. A previous comparison of the primary sequences of the Lgt enzymes from phylogenetically distant bacterial species revealed several highly conserved amino acid sequences throughout the molecule; the most extensive of these was the region 103HGGLIG108 in the Escherichia coli Lgt (H.-Y. Qi, K. Sankaran, K. Gan, and H. C. Wu, J. Bacteriol. 177:6820-6824, 1995). These studies also revealed that the kinetics of inactivation of E. coli Lgt with diethylpyrocarbonate were consistent with the modification of a single essential histidine or tyrosine residue. The current study was conducted in an attempt to identify this essential amino acid residue in order to further define structure-function relationships in Lgt. Accordingly, all of the histidine residues and seven of the tyrosine residues of E. coli Lgt were altered by site-directed mutagenesis, and the in vitro activities of the altered enzymes, as well the abilities of the respective mutant lgt alleles to complement the temperature-sensitive phenotype of E. coli SK634 defective in Lgt activity, were determined. The data obtained from these studies, in conjunction with additional chemical inactivation studies, support the conclusion that His-103 is essential for Lgt activity. These studies also indicated that Tyr-235 plays an important role in the function of this enzyme. Although other histidine and tyrosine residues were not found to be essential for Lgt activity, alterations of His-196 resulted in a significant reduction of in vitro activity.  相似文献   

4.
All known pseudouridine synthases have a conserved aspartic acid residue that is essential for catalysis, Asp-48 in Escherichia coli TruB. To probe the role of this residue, inactive D48C TruB was oxidized to generate the sulfinic acid cognate of aspartic acid. The oxidation restored significant but reduced catalytic activity, consistent with the proposed roles of Asp-48 as a nucleophile and general base. The family of pseudouridine synthases including TruB also has a nearly invariant histidine residue, His-43 in the E. coli enzyme. To examine the role of this conserved residue, site-directed mutagenesis was used to generate H43Q, H43N, H43A, H43G, and H43F TruB. Except for phenylalanine, the substitutions seriously impaired the enzyme, but all of the altered TruB retained significant activity. To examine the roles of Asp-48 and His-43 more fully, the pH dependences of wild-type, oxidized D48C, and H43A TruB were determined. The wild-type enzyme displays a typical bell-shaped profile. With oxidized D48C TruB, logk(cat) varies linearly with pH, suggesting the participation of specific rather than general base catalysis. Substitution of His-43 perturbs the pH profile, but it remains bell-shaped. The ascending limb of the pH profile is assigned to Asp-48, and the descending limb is tentatively ascribed to an active site tyrosine residue, the bound substrate uridine, or the bound product pseudouridine.  相似文献   

5.
The trehalose biosynthesis pathway has recently received attention for therapeutic intervention combating infectious diseases caused by bacteria, helminths or fungi. Trehalose-6-phosphate phosphatase (TPP) is a key enzyme of the most common trehalose biosynthesis pathway and a particularly attractive target owing to the toxicity of accumulated trehalose-6-phosphate in pathogens.Here, we characterised TPP-like proteins from bacterial pathogens implicated in nosocomial infections in terms of their steady-state kinetics as well as pH- and metal-dependency of their enzymatic activity. Analysis of the steady-state kinetics of recombinantly expressed enzymes from Acinetobacter baumannii, Corynebacterium diphtheriae and Pseudomonas stutzeri yielded similar kinetic parameters as those of other reported bacterial TPPs. In contrast to nematode TPPs, the divalent metal ion appears to be bound only weakly in the active site of bacterial TPPs, allowing the exchange of the resident magnesium ion with other metal ions. Enzymatic activity comparable to the wild-type enzyme was observed for the TPP from P. stutzeri with manganese, cobalt and nickel. Analysis of the enzymatic activity of S. maltophilia TPP active site mutants provides evidence for the involvement of four canonical aspartate residues as well as a strictly conserved histidine residue of TPP-like proteins from bacteria in the enzyme mechanism. That histidine residue is a member of an interconnected network of five conserved residues in the active site of bacterial TPPs which likely constitute one or more functional units, directly or indirectly cooperating to enhance different aspects of the catalytic activity.  相似文献   

6.
Lewin TM  Wang P  Coleman RA 《Biochemistry》1999,38(18):5764-5771
Alignment of amino acid sequences from various acyltransferases [sn-glycerol-3-phosphate acyltransferase (GPAT), lysophosphatidic acid acyltransferase (LPAAT), acyl-CoA:dihydroxyacetone-phosphate acyltransferase (DHAPAT), 2-acylglycerophosphatidylethanolamine acyltransferase (LPEAT)] reveals four regions of strong homology, which we have labeled blocks I-IV. The consensus sequence for each conserved region is as follows: block I, [NX]-H-[RQ]-S-X-[LYIM]-D; block II, G-X-[IF]-F-I-[RD]-R; block III, F-[PLI]-E-G-[TG]-R-[SX]-[RX]; and block IV, [VI]-[PX]-[IVL]-[IV]-P-[VI]. We hypothesize that blocks I-IV and, in particular, the invariant amino acids contained within these regions form a catalytically important site in this family of acyltransferases. Using Escherichia coli GPAT (PlsB) as a model acyltransferase, we examined the role of the highly conserved amino acid residues in blocks I-IV in GPAT activity through chemical modification and site-directed mutagenesis experiments. We found that the histidine and aspartate in block I, the glycine in block III, and the proline in block IV all play a role in E. coli GPAT catalysis. The phenylalanine and arginine in block II and the glutamate and serine in block III appear to be important in binding the glycerol 3-phosphate substrate. Since blocks I-IV are also found in LPAAT, DHAPAT, and LPEAT, we believe that these conserved amino acid motifs are diagnostic for the acyltransferase reaction involving glycerol 3-phosphate, 1-acylglycerol 3-phosphate, and dihydroxyacetone phosphate substrates.  相似文献   

7.
The enzyme encoded by Rv2682c in Mycobacterium tuberculosis is a functional 1-deoxy-D-xylulose 5-phosphate synthase (DXS), suggesting that the pathogen utilizes the mevalonate-independent pathway for isopentenyl diphosphate and subsequent polyprenyl phosphate synthesis. These key precursors are vital in the biosynthesis of many essential aspects of the mycobacterial cell wall. Rv2682c encodes the conserved DRAG sequence that has been proposed as a signature motif for DXSs and also all 13 conserved amino acid residues thought to be important to the function of transketolase enzymes. Recombinant Rv2682c is capable of utilizing glyceraldehyde 3-phosphate and erythrose 4-phosphate as well as D- and L-glyceraldehyde as aldose substrates. The enzyme has K(m) values of 40 microM, 6.1 microM, 5.6 mM, and 4.5 mM for pyruvate, D-glyceraldehyde 3-phosphate, D-glyceraldehyde, and L-glyceradehyde, respectively. Rv2682c has an absolute requirement for divalent cation and thiamin diphosphate as cofactors. The K(d) (thiamin diphosphate )for the native M. tuberculosis DXS activity partially purified from M. tuberculosis cytosol is 1 microM in the presence of Mg(2+).  相似文献   

8.
1-Deoxy-d-xylulose 5-phosphate (DXP) reductoisomerase, which simultaneously catalyzes the intramolecular rearrangement and reduction of DXP to form 2-C-methyl-d-erythritol 4-phosphate, constitutes a key enzyme of an alternative mevalonate-independent pathway for isopentenyl diphosphate biosynthesis. The dxr gene encoding this enzyme from Escherichia coli was overexpressed as a histidine-tagged protein and characterized in detail. DNA sequencing analysis of the dxr genes from 10 E. coli dxr-deficient mutants revealed base substitution mutations at four points: two nonsense mutations and two amino acid substitutions (Gly(14) to Asp(14) and Glu(231) to Lys(231)). Diethyl pyrocarbonate treatment inactivated DXP reductoisomerase, and subsequent hydroxylamine treatment restored the activity of the diethyl pyrocarbonate-treated enzyme. To characterize these defects, we overexpressed the mutant enzymes G14D, E231K, H153Q, H209Q, and H257Q. All of these mutant enzymes except for G14D were obtained as soluble proteins. Although the purified enzyme E231K had wild-type K(m) values for DXP and NADPH, the mutant enzyme had less than a 0.24% wild-type k(cat) value. K(m) values of H153Q, H209Q, and H257Q for DXP increased to 3.5-, 7.6-, and 19-fold the wild-type value, respectively. These results indicate that Glu(231) of E. coli DXP reductoisomerase plays an important role(s) in the conversion of DXP to 2-C-methyl-d-erythritol 4-phosphate, and that His(153), His(209), and His(257), in part, associate with DXP binding in the enzyme molecule.  相似文献   

9.
10.
Ehrlich ascites carcinoma (EAC) cell glyceraldehyde-3-phosphate dehydrogenase (GA3PD) (EC. 1.2.1.12) was completely inactivated by diethyl pyrocarbonate (DEPC), a fairly specific reagent for histidine residues in the pH range of 6.0-7.5. The rate of inactivation was dependent on pH and followed pseudo-first order reaction kinetics. The difference spectrum of the inactivated and native enzymes showed an increase in the absorption maximum at 242 nm, indicating the modification of histidine residues. Statistical analysis of the residual enzyme activity and the extent of modification indicated modification of one essential histidine residue to be responsible for loss of the catalytic activity of EAC cell GA3PD. DEPC inactivation was protected by substrates, D-glyceraldehyde-3-phosphate and NAD, indicating the presence of essential histidine residue at the substrate-binding region of the active site. Double inhibition studies also provide evidence for the presence of histidine residue at the active site.  相似文献   

11.
Glucose-6-phosphate isomerase   总被引:2,自引:0,他引:2  
Glucose-6-phosphate isomerase (EC 5.3.1.9) is a dimeric enzyme of molecular mass 132000 which catalyses the interconversion of D-glucose-6-phosphate and D-fructose-6-phosphate. The crystal structure of the enzyme from pig muscle has been determined at a nominal resolution of 2.6 A. The structure is of the alpha/beta type. Each subunit consists of two domains and the active site is in both the domain interface and the subunit interface (P.J. Shaw & H. Muirhead (1976), FEBS Lett. 65, 50-55). Each subunit contains 13 methionine residues so that cyanogen bromide cleavage will produce 14 fragments, most of which have been identified and at least partly purified. Sequence information is given for about one-third of the molecule from 5 cyanogen bromide fragments. One of the sequences includes a modified lysine residue. Modification of this residue leads to a parallel loss of enzymatic activity. A tentative fit of two of the peptides to the electron density map has been made. It seems possible that glucose-6-phosphate isomerase, triose phosphate isomerase and pyruvate kinase all contain a histidine and a glutamate residue at the active site.  相似文献   

12.
The sn-glycerol-3-phosphate acyltransferase (plsB) of Escherichia coli is a key regulatory enzyme that catalyzes the first committed step in phospholipid biosynthesis. We report the initial characterization of a novel gene (termed plsD) from Clostridium butyricum, cloned based on its ability to complement the sn-glycerol-3-phosphate auxotrophic phenotype of a plsB mutant strain of E. coli. Unlike the 83-kDa PlsB acyltransferase from E. coli, the predicted plsD open reading frame encoded a protein of 26.5 kDa. Two regions of strong homology to other lipid acyltransferases, including PlsB and PlsC analogs from mammals, plants, yeast, and bacteria, were identified. PlsD was most closely related to the 1-acyl-sn-glycerol-3-phosphate acyltransferase (plsC) gene family but did not complement the growth of plsC(Ts) mutants. An in vivo metabolic labeling experiment using a plsB plsX plsC(Ts) strain of E. coli confirmed that the plsD expression restored the ability of the cells to synthesize 1-acyl-glycerol-3-phosphate. However, glycerol-3-phosphate acyltransferase activity was not detected in vitro in assays using either acyl-acyl carrier protein or acyl coenzyme A as the substrate.  相似文献   

13.
A procedure for the purification of 5-enolpyruvylshikimate 3-phosphate synthase from Escherichia coli is described. Homogeneous enzyme of specific activity 17.7 units/mg was obtained in 22% yield. The key purification step involves substrate elution of the enzyme from a cellulose phosphate column. The subunit Mr was estimated to be 49 000 by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. The native Mr was estimated to be 55 000 by gel filtration, indicating that the enzyme is monomeric.  相似文献   

14.
The 2-C-methyl-D-erythritol 4-phosphate pathway has been proposed as a promising target to develop new antimicrobial agents. However, spontaneous mutations in Escherichia coli were observed to rescue the otherwise lethal loss of the first two enzymes of the pathway, 1-deoxy-D-xylulose 5-phosphate (DXP) synthase (DXS) and DXP reductoisomerase (DXR), with a relatively high frequency. A mutation in the gene encoding the E1 subunit of the pyruvate dehydrogenase complex was shown to be sufficient to rescue the lack of DXS but not DXR in vivo, suggesting that the mutant enzyme likely allows the synthesis of DXP or an alternative substrate for DXR.  相似文献   

15.
The catalytically essential amino acid, histidine 176, in the active site of Escherichia coli glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been replaced with an asparagine residue by site-directed mutagenesis. The role of histidine 176 as a chemical activator, enhancing the reactivity of the thiol group of cysteine 149, has been demonstrated, with iodoacetamide as a probe. The esterolytic properties of GAPDH, illustrated by the hydrolysis of p-nitrophenyl acetate, have been also studied. The kinetic results favor a role for histidine 176 not only as a chemical activator of cysteine 149 but also as a hydrogen donor facilitating the formation of tetrahedral intermediates. These results support the hypothesis that histidine 176 plays a similar role during the oxidative phosphorylation of glyceraldehyde 3-phosphate.  相似文献   

16.
In yeast, phosphatidic acid, the biosynthetic precursor for all glycerophospholipids and triacylglycerols, is made de novo by the 1-acyl-sn-glycerol-3-phosphate acyltransferases Ale1p and Slc1p. Ale1p belongs to the membrane-bound O-acyltransferase (MBOAT) family, which contains many enzymes acylating lipids but also others that acylate secretory proteins residing in the lumen of the ER. A histidine present in a very short loop between two predicted transmembrane domains is the only residue that is conserved throughout the MBOAT gene family. The yeast MBOAT proteins of known function comprise Ale1p, the ergosterol acyltransferases Are1p and Are2p, and Gup1p, the last of which acylates lysophosphatidylinositol moieties of GPI anchors on ER lumenal GPI proteins. C-terminal topology reporters added to truncated versions of Gup1p yield a topology predicting a lumenal location of its uniquely conserved histidine 447 residue. The same approach shows that Ale1p and Are2p also have the uniquely conserved histidine residing in the ER lumen. Because these data raised the possibility that phosphatidic acid could be made in the lumen of the ER, we further investigated the topology of the second yeast 1-acyl-sn-glycerol-3-phosphate acyltransferase, Slc1p. The location of C-terminal topology reporters, microsomal assays probing the protease sensitivity of inserted tags, and the accessibility of natural or artificially inserted cysteines to membrane-impermeant alkylating agents all indicate that the most conserved motif containing the presumed active site histidine of Slc1p is oriented toward the ER lumen, whereas other conserved motifs are cytosolic. The implications of these findings are discussed.  相似文献   

17.
Pyridoxal 5'-phosphate is a competitive inhibitor of glucosamine-6-phosphate synthase with respect to the substrate fructose 6-phosphate. Irreversible inactivation of pyridoxal-5'-phosphate-treated enzyme with [14C]-cyanide resulted in covalent incorporation of close to 1 mol pyridoxal 5'-phosphate/mol enzyme subunit. The enzyme-pyridoxal-5'-phosphate complex could also be inactivated by reduction with NaBH3CN. Sequence analysis of the unique radioactively labelled tryptic peptide, resulting from inactivation with [3H]NaBH3CN, identified the C-terminal nonapeptide encompassing the modified Lys603. The presence of fructose 6-phosphate protected this residue from pyridoxylation. Direct evidence that a lysine residue is involved in the binding of the substrate as a Schiff base came from the isolation at 4 degrees C of a enzyme-fructose-6-phosphate complex in a 1:1 molar ratio. Treatment of the enzyme-[14C]fructose-6-phosphate complex with NaBH3CN revealed one site of modification in the tryptic peptide map. In contrast, trapping the same complex with potassium cyanide resulted in the isolation of several radiolabelled peptides containing lysines which could potentially bind fructose 6-phosphate. However, since the radioactivity was not specifically associated with the lysine residues, it is suggested that these 14C-labelled peptides resulted from the decomposition of an unstable alpha,alpha'-dihydroxyaminonitrile adduct rather than from a lack of specificity of fructose 6-phosphate fixation. Lys603 is then the candidate of choice for fructose 6-phosphate binding since it lies at or near the active site as demonstrated by the trapping experiments with pyridoxal 5'-phosphate described above, and among the lysines which belong to the sugar-binding domain this is the only one conserved between the three members of the purF, glutamine-dependent, amidotransferase subfamily which include the glucosamine-6-phosphate synthase from Escherichia coli, Saccharomyces cerevisiae and the Rhizobium nodulation protein NodM.  相似文献   

18.
Modification by pyridoxal-5-phosphate of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) purified from Saccharomyces cerevisiae produces an inactivation effect, partially reversible by dilution in the presence of substrates. Spectroscopic analysis of the enzyme pyridoxal-5-phosphate complex reduced with NaBH4 provides the values expected for the binding of the aldehydic group to Lys residue. One Lys residue appears to be responsible for the observed enzyme inactivation, and the presence of the phosphate group is required for the effect. Besides the change of activity, the binding of pyridoxal-5-phosphate to the enzyme causes an increase in susceptibility to degradation by the intracellular yeast proteinase A at pH 7.6.  相似文献   

19.
By a newly developed double-stranded mutagenesis technique, histidine (H), glutamate (E), arginine (R) and leucine (L) have been substituted for the lysyl 193 residue (K-193) in isocitrate lyase from Escherichia coli. The substitutions for this residue, which is present in a highly conserved, cationic region, significantly affect both the Km for Ds-isocitrate and the apparent kcat of isocitrate lyase. Specifically, the conservative substitutions, K-193-->H (K193H) and K193R, reduce catalytic activity by ca. 50- and 14-fold, respectively, and the nonconservative changes, K193E and K193L, result in assembled tetrameric protein that is completely inactive. The K193H and K193R mutations also increase the Km of the enzyme by five- and twofold, respectively. These results indicate that the cationic and/or acid-base character of K193 is essential for isocitrate lyase activity. In addition to the noted effects on enzyme activity, the effects of the mutations on growth of JE10, an E. coli strain which does not express isocitrate lyase, were observed. Active isocitrate lyase is necessary for E. coli to grow on acetate as the sole carbon source. It was found that a mutation affecting the activity of isocitrate lyase similarly affects the growth of E. coli JE10 on acetate when the mutated plasmid is expressed in this organism. Specifically, the lag time before growth increases over sevenfold and almost twofold for E. coli JE10 expressing the K193H and K193R isocitrate lyase variants, respectively. In addition, the rate of growth decreases by almost 40-fold for E. coli JE10 cells expressing form K193H and ca. 2-fold for those expressing the K193R variants. Thus, the onset and rate of E. coli growth on acetate appears to depend on isocitrate lyase activity.  相似文献   

20.
Glucosamine-6-phosphate synthase from Escherichia coli was inactivated by diethylpyrocarbonate at pH 7.3 and 4 degrees C with a second-order rate constant of 1220 M-1 min-1. The difference spectrum of inactivated vs native enzyme had a maximum absorption at 242 nm, which is characteristic of N-carbethoxyhistidine. No trough at around 280 nm due to O-carbethoxytyrosine was observed and the sulfhydryl content of the enzyme was unchanged. Studies with [14C]diethylpyrocarbonate provided evidence that derivatization of a single histidine residue of the amino-terminal glutamine-binding domain inactivated glucosamine-6P synthase. These results are consistent with the participation of an histidine residue in a catalytic triad, Cys/His/Asp, necessary to generate ammonia from glutamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号